Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Intestinal lymphatic vasculature: structure, mechanisms and functions

Key Points

  • Intestinal lymphatic vessels are critical for fat absorption and gut immunosurveillance

  • Some of the molecular mechanisms of intestinal lymphatic development and maintenance are distinct from other lymphatic vessel beds

  • Intestinal lymphatic dysfunction is likely a contributing factor in intestinal pathologies such as IBD

  • Modulating intestinal lymphatic patterning and/or function might provide novel therapies for gastrointestinal tract diseases

Abstract

The mammalian intestine is richly supplied with lymphatic vasculature, which has functions ranging from maintenance of interstitial fluid balance to transport of antigens, antigen-presenting cells, dietary lipids and fat-soluble vitamins. In this Review, we provide in-depth information concerning the organization and structure of intestinal lymphatics, the current view of their developmental origins, as well as molecular mechanisms of intestinal lymphatic patterning and maintenance. We will also discuss physiological aspects of intestinal lymph flow regulation and the known and emerging roles of intestinal lymphatic vessels in human diseases, such as IBD, infection and cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Intestinal lymphatic vessel organization.
Figure 2: Lacteal length relative to the villus length along the small intestine.
Figure 3: Molecular mechanisms of intestinal lymphatic development and remodelling.
Figure 4: Intestinal lacteal absorption and immune cell trafficking.
Figure 5: Intestinal lymph draining pattern and contents.
Figure 6: Schematic depiction of the role of intestinal lymphatic vessel dysfunction in gut pathology.

Similar content being viewed by others

References

  1. Trapnell, D. H. Man's understanding of the lymphatics, with particular reference to the lung. J. R. Soc. Med. 58, 37–40 (1965).

    CAS  Google Scholar 

  2. Chikly, B. Who discovered the lymphatic system? Lymphology 30, 186–193 (1997).

    CAS  PubMed  Google Scholar 

  3. Asseli, G. De lactibus sive lacteis venis, quarto vasorum mesaraicorum genere, novo invento, dissertatio [Latin] (Henric-Petrinis, 1627).

    Google Scholar 

  4. Mayer, E. A., Tillisch, K. & Gupta, A. Gut/brain axis and the microbiota. J. Clin. Invest. 125, 926–938 (2015).

    PubMed  PubMed Central  Google Scholar 

  5. Belkaid, Y. & Hand, T. W. Role of the microbiota in immunity and inflammation. Cell 157, 121–141 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Powell, D. W., Pinchuk, I. V., Saada, J. I., Chen, X. & Mifflin, R. C. Mesenchymal cells of the intestinal lamina propria. Annu. Rev. Physiol. 73, 213–237 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Yang, Y. et al. Anti-VEGF- and anti-VEGF receptor-induced vascular alteration in mouse healthy tissues. Proc. Natl Acad. Sci. USA 110, 12018–12023 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kamba, T. et al. VEGF-dependent plasticity of fenestrated capillaries in the normal adult microvasculature. Am. J. Physiol. Heart Circ. Physiol. 290, H560–H576 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Mowat, A. M. & Agace, W. W. Regional specialization within the intestinal immune system. Nat. Rev. Immunol. 14, 667–685 (2014).

    CAS  PubMed  Google Scholar 

  10. Garrett, W. S., Gordon, J. I. & Glimcher, L. H. Homeostasis and inflammation in the intestine. Cell 140, 859–870 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. van der Flier, L. G. & Clevers, H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu. Rev. Physiol. 71, 241–260 (2009).

    CAS  PubMed  Google Scholar 

  12. Eberl, G. & Lochner, M. The development of intestinal lymphoid tissues at the interface of self and microbiota. Mucosal Immunol. 2, 478–485 (2009).

    CAS  PubMed  Google Scholar 

  13. Baluk, P. et al. Functionally specialized junctions between endothelial cells of lymphatic vessels. J. Exp. Med. 204, 2349–2362 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Schulte-Merker, S., Sabine, A. & Petrova, T. V. Lymphatic vascular morphogenesis in development, physiology, and disease. J. Cell Biol. 193, 607–618 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Scallan, J. P., Zawieja, S. D., Castorena-Gonzalez, J. A. & Davis, M. J. Lymphatic pumping: mechanics, mechanisms and malfunction. J. Physiol. 594, 5749–5768 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Jang, J. Y. et al. Conditional ablation of LYVE-1+cells unveils defensive roles of lymphatic vessels in intestine and lymph nodes. Blood 122, 2151–2161 (2013).

    CAS  PubMed  Google Scholar 

  17. Unthank, J. L. & Bohlen, H. G. Lymphatic pathways and role of valves in lymph propulsion from small-intestine. Am. J. Physiol. 254, G389–G398 (1988).

    CAS  PubMed  Google Scholar 

  18. Norrmén, C. et al. Liprin beta 1 is highly expressed in lymphatic vasculature and is important for lymphatic vessel integrity. Blood 115, 906–909 (2010).

    PubMed  PubMed Central  Google Scholar 

  19. Karkkainen, M. J. et al. A model for gene therapy of human hereditary lymphedema. Proc. Natl Acad. Sci. USA 98, 12677–12682 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Farstad, I., Malavasi, F., Haraldsen, G., Huitfeldt, H. & Brandtzaeg, P. CD38 is a marker of human lacteals. Virchows Arch. 441, 605–613 (2002).

    CAS  PubMed  Google Scholar 

  21. Bernier-Latmani, J. et al. DLL4 promotes continuous adult intestinal lacteal regeneration and dietary fat transport. J. Clin. Invest. 125, 4572–4586 (2015).

    PubMed  PubMed Central  Google Scholar 

  22. Papp, M., Röhlich, P., Rusznyák, I. & Törö, I. An electron microscopic study of the central lacteal in the intestinal villus of the cat. Z. Zellforsch. Mikrosk. Anat. 57, 475–486 (1962).

    CAS  PubMed  Google Scholar 

  23. Ohtani, O. & Ohtani, Y. Organization and developmental aspects of lymphatic vessels. Arch. Histol. Cytol. 71, 1–22 (2008).

    PubMed  Google Scholar 

  24. Choe, K. et al. Intravital imaging of intestinal lacteals unveils lipid drainage through contractility. J. Clin. Invest. 125, 4042–4052 (2015).

    PubMed  PubMed Central  Google Scholar 

  25. Bernier-Latmani, J. & Petrova, T. V. High-resolution 3D analysis of mouse small-intestinal stroma. Nat. Protoc. 11, 1617–1629 (2016).

    CAS  PubMed  Google Scholar 

  26. Nurmi, H. et al. VEGF-C is required for intestinal lymphatic vessel maintenance and lipid absorption. EMBO Mol. Med. 7, 1418–1425 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Wernstedt Asterholm, I. et al. Adipocyte inflammation is essential for healthy adipose tissue expansion and remodeling. Cell Metab. 20, 103–118 (2014).

    CAS  PubMed  Google Scholar 

  28. Ivanov, S. et al. CCR7 and IRF4-dependent dendritic cells regulate lymphatic collecting vessel permeability. J. Clin. Invest. 126, 1581–1591 (2016).

    PubMed  PubMed Central  Google Scholar 

  29. Rafii, S., Butler, J. M. & Ding, B.-S. Angiocrine functions of organ-specific endothelial cells. Nature 529, 316–325 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hatch, J. & Mukouyama, Y. S. Spatiotemporal mapping of vascularization and innervation in the fetal murine intestine. Dev. Dyn. 244, 56–68 (2015).

    PubMed  Google Scholar 

  31. Kim, K. E., Sung, H.-K. & Koh, G. Y. Lymphatic development in mouse small intestine. Dev. Dyn. 236, 2020–2025 (2007).

    CAS  PubMed  Google Scholar 

  32. Stanczuk, L. et al. cKit lineage hemogenic endothelium-derived cells contribute to mesenteric lymphatic vessels. Cell Rep. 10, 1708–1721 (2015).

    CAS  PubMed  Google Scholar 

  33. Mahadevan, A. et al. The left-right Pitx2 pathway drives organ-specific arterial and lymphatic development in the intestine. Dev. Cell 31, 690–706 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Wells, J. M. & Spence, J. R. How to make an intestine. Development 141, 752–760 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Norrmén, C. et al. FOXC2 controls formation and maturation of lymphatic collecting vessels through cooperation with NFATc1. J. Cell Biol. 185, 439–457 (2009).

    PubMed  PubMed Central  Google Scholar 

  36. Makinen, T. et al. Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. Nat. Med. 7, 199–205 (2001).

    CAS  PubMed  Google Scholar 

  37. Tammela, T. et al. Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454, 656–660 (2008).

    CAS  PubMed  Google Scholar 

  38. Zarkada, G., Heinolainen, K., Makinen, T., Kubota, Y. & Alitalo, K. VEGFR3 does not sustain retinal angiogenesis without VEGFR2. Proc. Natl Acad. Sci. USA 112, 761–766 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Karkkainen, M. J. et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat. Immunol. 5, 74–80 (2004).

    CAS  PubMed  Google Scholar 

  40. Xu, Y. L. et al. Neuropilin-2 mediates VEGF-C-induced lymphatic sprouting together with VEGFR3. J. Cell Biol. 188, 115–130 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Haiko, P. et al. Deletion of vascular endothelial growth factor c (Vegf-c) and Vegf-d is not equivalent to Vegf receptor 3 deletion in mouse embryos. Mol. Cell. Biol. 28, 4843–4850 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Lapinski, P. E. et al. RASA1 maintains the lymphatic vasculature in a quiescent functional state in mice. J. Clin. Invest. 122, 733–747 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Saharinen, P. et al. Claudin-like protein 24 interacts with the VEGFR-2 and VEGFR-3 pathways and regulates lymphatic vessel development. Genes Dev. 24, 875–880 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu, X. et al. Temporal and spatial regulation of Epsin abundance and VEGFR3 signaling are required for lymphatic valve formation and function. Sci. Signal. 7, ra97 (2014).

    PubMed  PubMed Central  Google Scholar 

  45. Gupta, S. et al. Binding of Ras to phosphoinositide 3-kinase p110 alpha is required for Ras-driven tumorigenesis in mice. Cell 129, 957–968 (2007).

    CAS  PubMed  Google Scholar 

  46. Mouta-Bellum, C. et al. Organ-specific lymphangiectasia, arrested lymphatic sprouting, and maturation defects resulting from gene-targeting of the PI3K regulatory isoforms p85 alpha, p55 alpha, and p50 alpha. Dev. Dyn. 238, 2670–2679 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wigle, J. T. & Oliver, G. Prox1 function is required for the development of the murine lymphatic system. Cell 98, 769–778 (1999).

    CAS  PubMed  Google Scholar 

  48. Harvey, N. L. et al. Lymphatic vascular defects promoted by Prox1 haploinsufficiency cause adult-onset obesity. Nat. Genet. 37, 1072–1081 (2005).

    CAS  PubMed  Google Scholar 

  49. Escobedo, N. et al. Restoration of lymphatic function rescues obesity in Prox1-haploinsufficient mice. JCI Insight 1, e85096 (2016).

    PubMed  PubMed Central  Google Scholar 

  50. Chen, L. et al. Tbx1 regulates Vegfr3 and is required for lymphatic vessel development. J. Cell Biol. 189, 417–424 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Augustin, H. G., Koh, G. Y., Thurston, G. & Alitalo, K. Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat. Rev. Mol. Cell Biol. 10, 165–177 (2009).

    CAS  PubMed  Google Scholar 

  52. Gale, N. W. et al. Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by angiopoietin-1. Dev. Cell 3, 411–423 (2002).

    CAS  PubMed  Google Scholar 

  53. Shimoda, H. et al. Abnormal recruitment of periendothelial cells to lymphatic capillaries in digestive organs of angiopoietin-2-deficient mice. Cell Tissue Res. 328, 329–337 (2007).

    CAS  PubMed  Google Scholar 

  54. Shen, B. et al. Genetic dissection of Tie pathway in mouse lymphatic maturation and valve development. Arterioscler. Thromb. Vasc. Biol. 34, 1221–1230 (2014).

    CAS  PubMed  Google Scholar 

  55. Qu, X., Zhou, B. & Baldwin, H. S. Tie1 is required for lymphatic valve and collecting vessel development. Dev. Biol. 399, 117–128 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Zheng, W. et al. Angiopoietin 2 regulates the transformation and integrity of lymphatic endothelial cell junctions. Genes Dev. 28, 1592–1603 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Hoopes, S. L., Willcockson, H. H. & Caron, K. M. Characteristics of multi-organ lymphangiectasia resulting from temporal deletion of calcitonin receptor-like receptor in adult mice. PLoS ONE 7, e45261 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Dijk, W. & Kersten, S. Regulation of lipid metabolism by angiopoietin-like proteins. Curr. Opin. Lipidol. 27, 249–256 (2016).

    CAS  PubMed  Google Scholar 

  59. Bäckhed, F., Crawford, P. A., O'Donnell, D. & Gordon, J. I. Postnatal lymphatic partitioning from the blood vasculature in the small intestine requires fasting-induced adipose factor. Proc. Natl Acad. Sci. USA 104, 606–611 (2007).

    PubMed  PubMed Central  Google Scholar 

  60. Lichtenstein, L. et al. Angptl4 protects against severe pro-inflammatory effects of dietary saturated fat by inhibiting lipoprotein lipase-dependent uptake of fatty acids in mesenteric lymph node macrophages. Cell Metab. 12, 580–592 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Bertozzi, C. C. et al. Platelets regulate lymphatic vascular development through CLEC-2-SLP-76 signaling. Blood 116, 661–670 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Uhrin, P. et al. Novel function for blood platelets and podoplanin in developmental separation of blood and lymphatic circulation. Blood 115, 3997–4005 (2010).

    CAS  PubMed  Google Scholar 

  63. Abtahian, F. et al. Regulation of blood and lymphatic vascular separation by signaling proteins SLP-76 and Syk. Science 299, 247–251 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Suzuki-Inoue, K. et al. A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2. Blood 107, 542–549 (2006).

    CAS  PubMed  Google Scholar 

  65. Hess, P. R. et al. Platelets mediate lymphovenous hemostasis to maintain blood-lymphatic separation throughout life. J. Clin. Invest. 124, 273–284 (2014).

    CAS  PubMed  Google Scholar 

  66. Suzuki-Inoue, K. et al. Essential in vivo roles of the C-type lectin receptor Clec-2: embryonic/neonatal lethality of Clec-2-deficient mice by blood/lymphatic misconnections and impaired thrombus formation of Clec-2-deficient platelets. J. Biol. Chem. 285, 24494–24507 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Welsh, J. D., Kahn, M. L. & Sweet, D. T. Lymphovenous hemostasis and the role of platelets in regulating lymphatic flow and lymphatic vessel maturation. Blood 128, 1169–1173 (2016).

    CAS  PubMed  Google Scholar 

  68. Bohmer, R. et al. Regulation of developmental lymphangiogenesis by Syk+ leukocytes. Dev. Cell 18, 437–449 (2010).

    PubMed  Google Scholar 

  69. Sabine, A. et al. FOXC2 and fluid shear stress stabilize postnatal lymphatic vasculature. J. Clin. Invest. 125, 3861–3877 (2015).

    PubMed  PubMed Central  Google Scholar 

  70. Makinen, T. et al. PDZ interaction site in ephrinB2 is required for the remodeling of lymphatic vasculature. Genes Dev. 19, 397–410 (2005).

    PubMed  PubMed Central  Google Scholar 

  71. Levet, S. et al. Bone morphogenetic protein 9 (BMP9) controls lymphatic vessel maturation and valve formation. Blood 122, 598–607 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Sabine, A. et al. Mechanotransduction, PROX1, and FOXC2 cooperate to control Connexin37 and Calcineurin during lymphatic-valve formation. Dev. Cell 22, 430–445 (2012).

    CAS  PubMed  Google Scholar 

  73. Scallan, J. P., Davis, M. J. & Huxley, V. H. Permeability and contractile responses of collecting lymphatic vessels elicited by atrial and brain natriuretic peptides. J. Physiol. 591, 5071–5081 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Armulik, A., Genové, G. & Betsholtz, C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev. Cell 21, 193–215 (2011).

    CAS  PubMed  Google Scholar 

  75. Mansbach, C. M. & Siddiqi, S. A. The biogenesis of chylomicrons. Annu. Rev. Physiol. 72, 315–333 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Dash, S., Xiao, C., Morgantini, C. & Lewis, G. F. New insights into the regulation of chylomicron production. Annu. Rev. Nutr. 35, 265–294 (2015).

    CAS  PubMed  Google Scholar 

  77. Karupaiah, T. & Sundram, K. Effects of stereospecific positioning of fatty acids in triacylglycerol structures in native and randomized fats: a review of their nutritional implications. Nutr. Metab. 4, 16–16 (2007).

    Google Scholar 

  78. Lo, C.-M. et al. Why does the gut choose apolipoprotein B48 but not B100 for chylomicron formation? Am. J. Physiol. Gastrointest. Liver Physiol. 294, G344–G352 (2008).

    CAS  PubMed  Google Scholar 

  79. Iqbal, J. & Hussain, M. M. Intestinal lipid absorption. Am. J. Physiol. Endocrinol. Metab. 296, E1183–E1194 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Hayashi, H. et al. Fat feeding increases size, but not number, of chylomicrons produced by small intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 259, G709–G719 (1990).

    CAS  Google Scholar 

  81. Clementi, F. & Palade, G. E. Intestinal capillaries: I. Permeability to peroxidase and ferritin. J. Cell Biol. 41, 33–58 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Altmann, S. W. et al. Niemann-Pick C1 like 1 protein is critical for intestinal cholesterol absorption. Science 303, 1201–1204 (2004).

    CAS  PubMed  Google Scholar 

  83. Brunham, L. R. et al. β-cell ABCA1 influences insulin secretion, glucose homeostasis and response to thiazolidinedione treatment. Nat. Med. 13, 340–347 (2007).

    CAS  PubMed  Google Scholar 

  84. Berge, K. E. et al. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science 290, 1771–1775 (2000).

    CAS  PubMed  Google Scholar 

  85. Lee, M.-H. et al. Identification of a gene, ABCG5, important in the regulation of dietary cholesterol absorption. Nat. Genet. 27, 79–83 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhang, L. S. et al. ABCG5/G8 deficiency in mice reduces dietary triacylglycerol and cholesterol transport into the lymph. Lipids 50, 371–379 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Wang, X. & Rader, D. J. Molecular regulation of macrophage reverse cholesterol transport. Curr. Opin. Cardiol. 22, 368–372 (2007).

    PubMed  Google Scholar 

  88. Lim, H. Y. et al. Lymphatic vessels are essential for the removal of cholesterol from peripheral tissues by SR-BI-mediated transport of HDL. Cell Metab. 17, 671–684 (2013).

    CAS  PubMed  Google Scholar 

  89. Martel, C. et al. Lymphatic vasculature mediates macrophage reverse cholesterol transport in mice. J. Clin. Invest. 123, 1571–1579 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Bura, K. S. et al. Intestinal SR-BI does not impact cholesterol absorption or transintestinal cholesterol efflux in mice. J. Lipid Res. 54, 1567–1577 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Mardones, P. et al. Hepatic cholesterol and bile acid metabolism and intestinal cholesterol absorption in scavenger receptor class B type I-deficient mice. J. Lipid Res. 42, 170–180 (2001).

    CAS  PubMed  Google Scholar 

  92. Van Dyck, F. et al. Loss of the Plagl2 transcription factor affects lacteal uptake of chylomicrons. Cell Metab. 6, 406–413 (2007).

    CAS  PubMed  Google Scholar 

  93. Eroglu, A. & Harrison, E. H. Carotenoid metabolism in mammals, including man: formation, occurrence, and function of apocarotenoids: thematic review series: fat-soluble vitamins: vitamin A. J. Lipid Res. 54, 1719–1730 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Traber, M. G. Mechanisms for the prevention of vitamin E excess. J. Lipid Res. 54, 2295–2306 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Dahan, A. & Hoffman, A. Evaluation of a chylomicron flow blocking approach to investigate the intestinal lymphatic transport of lipophilic drugs. Eur. J. Pharm. Sci. 24, 381–388 (2005).

    CAS  PubMed  Google Scholar 

  96. Shearer, M. J. & Newman, P. Metabolism and cell biology of vitamin K. Thromb. Haemost. 100, 530–547 (2008).

    CAS  PubMed  Google Scholar 

  97. Hornef, M. W., Frisan, T., Vandewalle, A., Normark, S. & Richter-Dahlfors, A. Toll-like receptor 4 resides in the Golgi apparatus and colocalizes with internalized lipopolysaccharide in intestinal epithelial cells. J. Exp. Med. 195, 559–570 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Neal, M. D. et al. Enterocyte TLR4 mediates phagocytosis and translocation of bacteria across the intestinal barrier. J. Immunol. 176, 3070–3079 (2006).

    CAS  PubMed  Google Scholar 

  99. McDole, J. R. et al. Goblet cells deliver luminal antigen to CD103+ DCs in the small intestine. Nature 483, 345–349 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Vreugdenhil, A. C. E. et al. Lipopolysaccharide (LPS)-binding protein mediates LPS detoxification by chylomicrons. J. Immunol. 170, 1399–1405 (2003).

    CAS  PubMed  Google Scholar 

  101. Ghoshal, S., Witta, J., Zhong, J., de Villiers, W. & Eckhardt, E. Chylomicrons promote intestinal absorption of lipopolysaccharides. J. Lipid Res. 50, 90–97 (2009).

    CAS  PubMed  Google Scholar 

  102. Drucker, D. J. The cardiovascular biology of glucagon-like peptide-1. Cell Metab. 24, 15–30 (2016).

    CAS  PubMed  Google Scholar 

  103. D'Alessio, D. et al. Fasting and postprandial concentrations of GLP-1 in intestinal lymph and portal plasma: evidence for selective release of GLP-1 in the lymph system. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293, R2163–R2169 (2007).

    CAS  PubMed  Google Scholar 

  104. Lu, W. J. et al. The regulation of the lymphatic secretion of glucagon-like peptide-1 (GLP-1) by intestinal absorption of fat and carbohydrate. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G963–G971 (2007).

    CAS  PubMed  Google Scholar 

  105. Deacon, C. F., Johnsen, A. H. & Holst, J. J. Degradation of glucagon-like peptide-1 by human plasma in vitro yields an N-terminally truncated peptide that is a major endogenous metabolite in vivo. J. Clin. Endocrinol. Metab. 80, 952–957 (1995).

    CAS  PubMed  Google Scholar 

  106. Holst, J. J. The physiology of glucagon-like peptide 1. Physiol. Rev. 87, 1409–1439 (2007).

    CAS  PubMed  Google Scholar 

  107. Palay, S. L. & Karlin, L. J. An electron microscopic study of the intestinal villus: II. The pathway of fat absorption. J. Biophys. Biochem. Cytol. 5, 373–384 (1959).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Casley-Smith, J. R. Identification of chylomicra and lipoproteins in tissue sections and their passage into jejunal lacteals. J. Cell Biol. 15, 259–277 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Tso, P. & Balint, J. A. Formation and transport of chylomicrons by enterocytes to the lymphatics. Am. J. Physiol. 250, G715–G726 (1986).

    CAS  PubMed  Google Scholar 

  110. Sabesin, S. M. & Frase, S. Electron-microscopic studies of assembly, intracellular-transport, and secretion of chylomicrons by rat intestine. J. Lipid Res. 18, 496–511 (1977).

    CAS  PubMed  Google Scholar 

  111. Reed, A. L., Rowson, S. A. & Dixon, J. B. Demonstration of ATP dependent, transcellular transport of lipid across the lymphatic endothelium using an in vitro model of the lacteal. Pharm. Res. 30, 3271–3280 (2013).

    CAS  PubMed  Google Scholar 

  112. Ashworth, C., Stembridge, V. & Sanders, E. Lipid absorption, transport and hepatic assimilation studied with electron microscopy. Am. J. Physiol. 198, 1326 (1960).

    CAS  PubMed  Google Scholar 

  113. Ottaviani, G. & Azzali, G. Ultrastructure of lymphatic vessels in some functional conditions. Acta Anat. Suppl. (Basel) 73 (Suppl. 56), 325–336 (1969).

    Google Scholar 

  114. Dobbins, W. & Rollins, E. Intestinal mucosal lymphatic permeability: an electron microscopic study of endothelial vesicles and cell junctions. J. Ultrastruct. Res. 33, 29–59 (1970).

    CAS  PubMed  Google Scholar 

  115. Dobbins, W. O. Intestinal mucosal lacteal in transport of macromolecules and chylomicrons. Am. J. Clin. Nutr. 24, 77–90 (1971).

    PubMed  Google Scholar 

  116. Listenberger, L. L. et al. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc. Natl Acad. Sci. USA 100, 3077–3082 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Borradaile, N. M. et al. Disruption of endoplasmic reticulum structure and integrity in lipotoxic cell death. J. Lipid Res. 47, 2726–2737 (2006).

    CAS  PubMed  Google Scholar 

  118. Gayer, C. P. & Basson, M. D. The effects of mechanical forces on intestinal physiology and pathology. Cell. Signal. 21, 1237–1244 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Güldner, F.-H., Wolff, J. R. & Keyserlingk, D. G. Fibroblasts as a part of the contractile system in duodenal villi of rat. Z. Zellforsch. Mikrosk. Anat. 135, 349–360 (1972).

    PubMed  Google Scholar 

  120. Lee, J. S. Contraction of villi and fluid transport in dog jejunal mucosa in-vitro. Am. J. Physiol. 221, 488–495 (1971).

    CAS  PubMed  Google Scholar 

  121. Womack, W. A. et al. Quantitative assessment of villous motility. Am. J. Physiol. 252, G250–G256 (1987).

    CAS  PubMed  Google Scholar 

  122. Tso, P., Pitts, V. & Granger, D. N. Role of lymph-flow in intestinal chylomicron transport. Am. J. Physiol. 249, G21–G28 (1985).

    CAS  PubMed  Google Scholar 

  123. Zawieja, D. C. Contractile physiology of lymphatics. Lymphat. Res. Biol. 7, 87–96 (2009).

    PubMed  PubMed Central  Google Scholar 

  124. Fu, Y.-Y., Peng, S.-J., Lin, H.-Y., Pasricha, P. J. & Tang, S.-C. 3D imaging and illustration of mouse intestinal neurovascular complex. Am. J. Physiol. Gastrointest. Liver Physiol. 304, G1–G11 (2013).

    CAS  PubMed  Google Scholar 

  125. Ichikawa, S., Kasahara, D., Iwanaga, T., Uchino, S. & Fujita, T. Peptidergic nerve-terminals associated with the central lacteal lymphatics in the ileal villi of dogs. Arch. Histol. Cytol. 54, 311–320 (1991).

    CAS  PubMed  Google Scholar 

  126. Ichikawa, S., Kyoda, K., Iwanaga, T., Fujita, T. & Uchino, S. Nerve-terminals associated with the central lacteal lymphatics in the duodenal and ileal villi of the monkey. Acta Anat. (Basel) 146, 14–21 (1993).

    CAS  Google Scholar 

  127. Poole, D. P. et al. Feeding-dependent activation of enteric cells and sensory neurons by lymphatic fluid: evidence for a neurolymphocrine system. Am. J. Physiol. Gastrointest. Liver Physiol. 306, G686–G698 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Mignini, F., Sabbatini, M., Coppola, L. & Cavallotti, C. Analysis of nerve supply pattern in human lymphatic vessels of young and old men. Lymphat. Res. Biol. 10, 189–197 (2012).

    CAS  PubMed  Google Scholar 

  129. Sacchi, G., Weber, E., Agliano, M. & Comparini, L. Subendothelial nerve-fibers in bovine mesenteric lymphatics — an ultrastructural and immunohistochemical study. Lymphology 27, 90–96 (1994).

    CAS  PubMed  Google Scholar 

  130. Alessandrini, C. et al. Cholinergic and adrenergic-innervation of mesenterial lymph vessels in guinea-pig. Lymphology 14, 1–6 (1981).

    CAS  PubMed  Google Scholar 

  131. Pabst, O. & Mowat, A. M. Oral tolerance to food protein. Mucosal Immunol. 5, 232–239 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Cerovic, V., Bain, C. C., Mowat, A. M. & Milling, S. W. F. Intestinal macrophages and dendritic cells: what's the difference? Trends Immunol. 35, 270–277 (2014).

    CAS  PubMed  Google Scholar 

  133. Schulz, O. et al. Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions. J. Exp. Med. 206, 3101–3114 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Bogunovic, M. et al. Origin of the lamina propria dendritic cell network. Immunity 31, 513–525 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Cerovic, V. et al. Intestinal CD103- dendritic cells migrate in lymph and prime effector T cells. Mucosal Immunol. 6, 104–113 (2013).

    CAS  PubMed  Google Scholar 

  136. Chang, S.-Y. et al. Circulatory antigen processing by mucosal dendritic cells controls CD8+ T cell activation. Immunity 38, 153–165 (2013).

    CAS  PubMed  Google Scholar 

  137. Farache, J. et al. Luminal bacteria recruit CD103+ dendritic cells into the intestinal epithelium to sample bacterial antigens for presentation. Immunity 38, 581–595 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Förster, R., Braun, A. & Worbs, T. Lymph node homing of T cells and dendritic cells via afferent lymphatics. Trends Immunol. 33, 271–280 (2012).

    PubMed  Google Scholar 

  139. Ohl, L. et al. CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions. Immunity 21, 279–288 (2004).

    CAS  PubMed  Google Scholar 

  140. Betterman, K. L. & Harvey, N. L. The lymphatic vasculature: development and role in shaping immunity. Immunol. Rev. 271, 276–292 (2016).

    CAS  PubMed  Google Scholar 

  141. Lammermann, T. et al. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453, 51–55 (2008).

    PubMed  Google Scholar 

  142. Worbs, T. et al. Oral tolerance originates in the intestinal immune system and relies on antigen carriage by dendritic cells. J. Exp. Med. 203, 519–527 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Johansson-Lindbom, B. et al. Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective T cell homing. J. Exp. Med. 202, 1063–1073 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Sonnenberg, G. F. & Artis, D. Innate lymphoid cells in the initiation, regulation and resolution of inflammation. Nat. Med. 21, 698–708 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Cella, M. et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 457, 722–725 (2009).

    CAS  PubMed  Google Scholar 

  146. Hepworth, M. R. et al. Innate lymphoid cells regulate CD4+ T cell responses to intestinal commensal bacteria. Nature 498, 113–117 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Sawa, S. et al. ROR gamma t+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nat. Immunol. 12, 320–326 (2011).

    CAS  PubMed  Google Scholar 

  148. Hanash, A. M. et al. Interleukin-22 protects intestinal stem cells from immune-mediated tissue damage and regulates sensitivity to graft versus host disease. Immunity 37, 339–350 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Aparicio-Domingo, P. et al. Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage. J. Exp. Med. 212, 1783–1791 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Mackley, E. C. et al. CCR7-dependent trafficking of RORγ+ ILCs creates a unique microenvironment within mucosal draining lymph nodes. Nat. Commun. 6, 5862 (2015).

    CAS  PubMed  Google Scholar 

  151. Abadie, V. et al. Neutrophils rapidly migrate via lymphatics after Mycobacterium bovis BCG intradermal vaccination and shuttle live bacilli to the draining lymph nodes. Blood 106, 1843–1850 (2005).

    CAS  PubMed  Google Scholar 

  152. Hampton, H. R., Bailey, J., Tomura, M., Brink, R. & Chtanova, T. Microbe-dependent lymphatic migration of neutrophils modulates lymphocyte proliferation in lymph nodes. Nat. Commun. 6, 7139 (2015).

    CAS  PubMed  Google Scholar 

  153. Tomura, M. et al. Activated regulatory T cells are the major T cell type emigrating from the skin during a cutaneous immune response in mice. J. Clin. Invest. 120, 883–893 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Umar, S. B. & DiBaise, J. K. Protein-losing enteropathy: case illustrations and clinical review. Am. J. Gastroenterol. 105, 43–49 (2010).

    PubMed  Google Scholar 

  155. Freeman, H. J. & Nimmo, M. Intestinal lymphangiectasia in adults. World. J. Gastrointest. Oncol. 3, 19–23 (2011).

    PubMed  PubMed Central  Google Scholar 

  156. Ingle, S. B. & Hinge, C. R. Primary intestinal lymphangiectasia: minireview. World J. Clin. Cases 2, 528–533 (2014).

    PubMed  PubMed Central  Google Scholar 

  157. Sawane, M. et al. Apelin inhibits diet-induced obesity by enhancing lymphatic and blood vessel integrity. Diabetes 62, 1970–1980 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Brouillard, P., Boon, L. & Vikkula, M. Genetics of lymphatic anomalies. J. Clin. Invest. 124, 898–904 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Alders, M. et al. Mutations in CCBE1 cause generalized lymph vessel dysplasia in humans. Nat. Genet. 41, 1272–1274 (2009).

    CAS  PubMed  Google Scholar 

  160. Alders, M. et al. Hennekam syndrome can be caused by FAT4 mutations and be allelic to Van Maldergem syndrome. Hum. Genet. 133, 1161–1167 (2014).

    CAS  PubMed  Google Scholar 

  161. Hennekam, R. C. M. et al. Autosomal recessive intestinal lymphangiectasia and lymphedema, with facial anomalies and mental retardation. Am. J. Med. Genet. 34, 593–600 (1989).

    CAS  PubMed  Google Scholar 

  162. Jeltsch, M. et al. CCBE1 enhances lymphangiogenesis via a disintegrin and metalloprotease with thrombospondin motifs-3-mediated vascular endothelial growth factor-C activation. Circulation 129, 1962–1971 (2014).

    CAS  PubMed  Google Scholar 

  163. Le Guen, L. et al. Ccbe1 regulates Vegfc-mediated induction of Vegfr3 signaling during embryonic lymphangiogenesis. Development 141, 1239–1249 (2014).

    CAS  PubMed  Google Scholar 

  164. Saburi, S. et al. Loss of Fat4 disrupts PCP signaling and oriented cell division and leads to cystic kidney disease. Nat. Genet. 40, 1010–1015 (2008).

    CAS  PubMed  Google Scholar 

  165. Karkkainen, M. J. et al. Missense mutations interfere with VEGFR-3 signalling in primary lymphoedema. Nat. Genet. 25, 153–159 (2000).

    CAS  PubMed  Google Scholar 

  166. Irrthum, A., Karkkainen, M. J., Devriendt, K., Alitalo, K. & Vikkula, M. Congenital hereditary lymphedema caused by a mutation that inactivates VEGFR3 tyrosine kinase. Am. J. Hum. Genet. 67, 295–301 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Ghalamkarpour, A. et al. Hereditary lymphedema type I associated with VEGFR3 mutation: the first de novo case and atypical presentations. Clin. Genet. 70, 330–335 (2006).

    CAS  PubMed  Google Scholar 

  168. Ghalamkarpour, A. et al. Recessive primary congenital lymphoedema caused by a VEGFR3 mutation. J. Med. Genet. 46, 399–404 (2009).

    CAS  PubMed  Google Scholar 

  169. Gordon, K. et al. Mutation in vascular endothelial growth factor-C, a ligand for vascular endothelial growth factor receptor-3, is associated with autosomal dominant Milroy-like primary lymphedema. Circ. Res. 112, 956–960 (2013).

    CAS  PubMed  Google Scholar 

  170. Balboa-Beltran, E. et al. A novel stop mutation in the vascular endothelial growth factor-C gene (VEGFC) results in Milroy-like disease. J. Med. Genet. 51, 475–478 (2014).

    CAS  PubMed  Google Scholar 

  171. Fotiou, E. et al. Novel mutations in PIEZO1 cause an autosomal recessive generalized lymphatic dysplasia with non-immune hydrops fetalis. Nat. Commun. 6, 8085 (2015).

    PubMed  Google Scholar 

  172. Lukacs, V. et al. Impaired PIEZO1 function in patients with a novel autosomal recessive congenital lymphatic dysplasia. Nat. Commun. 6, 8329 (2015).

    CAS  PubMed  Google Scholar 

  173. Li, J. et al. Piezo1 integration of vascular architecture with physiological force. Nature 515, 279–282 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Calabrese, C., Pironi, L. & Di Febo, G. Capsule endoscopy revealing small-intestinal lymphangiectasia and GI stromal tumor polyps in neurofibromatosis type 1. Gastrointest. Endosc. 64, 130–131 (2006).

    PubMed  Google Scholar 

  175. Desai, A. P., Guvenc, B. H. & Carachi, R. Evidence for medium chain triglycerides in the treatment of primary intestinal lymphangiectasia. Eur. J. Pediatr. Surg. 19, 241–245 (2009).

    CAS  PubMed  Google Scholar 

  176. Vignes, S. & Bellanger, J. Primary intestinal lymphangiectasia (Waldmann's disease). Orphanet J. Rare Dis. 3, 5–5 (2008).

    PubMed  PubMed Central  Google Scholar 

  177. Wen, J., Tang, Q., Wu, J., Wang, Y. & Cai, W. Primary intestinal lymphangiectasia: four case reports and a review of the literature. Dig. Dis. Sci. 55, 3466–3472 (2010).

    PubMed  Google Scholar 

  178. de Souza, H. S. P. & Fiocchi, C. Immunopathogenesis of IBD: current state of the art. Nat. Rev. Gastroenterol. Hepatol. 13, 13–27 (2016).

    CAS  PubMed  Google Scholar 

  179. Van Kruiningen, H. J. & Colombel, J.-F. The forgotten role of lymphangitis in Crohn's disease. Gut 57, 1–4 (2008).

    CAS  PubMed  Google Scholar 

  180. von der Weid, P.-Y., Rehal, S. & Ferraz, J. G. Role of the lymphatic system in the pathogenesis of Crohn's disease. Curr. Opin. Gastroenterol. 27, 335–341 (2011).

    CAS  PubMed  Google Scholar 

  181. von der Weid, P. Y. & Rainey, K. J. Lymphatic system and associated adipose tissue in the development of inflammatory bowel disease. Aliment. Pharmacol. Ther. 32, 697–711 (2010).

    PubMed  Google Scholar 

  182. Franke, A. et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nat. Genet. 42, 1118–1125 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Barrett, J. C. et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nat. Genet. 40, 955–962 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Haberman, Y. et al. Pediatric Crohn disease patients exhibit specific ileal transcriptome and microbiome signature. J. Clin. Invest. 124, 3617–3633 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Ganta, V. C. et al. Angiopoietin-2 in experimental colitis. Inflamm. Bowel Dis. 16, 1029–1039 (2010).

    PubMed  Google Scholar 

  186. D'Alessio, S. et al. VEGF-C-dependent stimulation of lymphatic function ameliorates experimental inflammatory bowel disease. J. Clin. Invest. 124, 3863–3878 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Jurisic, G., Sundberg, J. P. & Detmar, M. Blockade of VEGF receptor-3 aggravates inflammatory bowel disease and lymphatic vessel enlargement. Inflamm. Bowel Dis. 19, 1983–1989 (2013).

    PubMed  Google Scholar 

  188. Vetrano, S. et al. The lymphatic system controls intestinal inflammation and inflammation-associated colon cancer through the chemokine decoy receptor D6. Gut 59, 197–206 (2010).

    PubMed  Google Scholar 

  189. Yao, L. C., Baluk, P., Srinivasan, R. S., Oliver, G. & McDonald, D. M. Plasticity of button-like junctions in the endothelium of airway lymphatics in development and inflammation. Am. J. Pathol. 180, 2561–2575 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Alexander, J. S., Chaitanya, G. V., Grisham, M. B. & Boktor, M. Emerging roles of lymphatics in inflammatory bowel disease. Ann. NY Acad. Sci. 1207, E75–E85 (2010).

    PubMed  Google Scholar 

  191. D'Alessio, S., Tacconi, C., Fiocchi, C. & Danese, S. Advances in therapeutic interventions targeting the vascular and lymphatic endothelium in inflammatory bowel disease. Curr. Opin. Gastroenterol. 29, 608–613 (2013).

    CAS  PubMed  Google Scholar 

  192. Becker, F. et al. Downregulation of Foxc2 increased susceptibility to experimental colitis: influence of lymphatic drainage function? Inflamm. Bowel Dis. 21, 1282–1296 (2015).

    PubMed  Google Scholar 

  193. von der Weid, P.-Y. & Rehal, S. Lymphatic pump function in the inflamed gut. Ann. NY Acad. Sci. 1207, E69–E74 (2010).

    PubMed  Google Scholar 

  194. von der Weid, P.-Y. & Muthuchamy, M. Regulatory mechanisms in lymphatic vessel contraction under normal and inflammatory conditions. Pathophysiology 17, 263–276 (2010).

    PubMed  Google Scholar 

  195. Chakraborty, S., Davis, M. J. & Muthuchamy, M. Emerging trends in the pathophysiology of lymphatic contractile function. Semin. Cell Dev. Biol. 38, 55–66 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Mathias, R. & von der Weid, P.-Y. Involvement of the NO-cGMP-KATP channel pathway in the mesenteric lymphatic pump dysfunction observed in the guinea pig model of TNBS-induced ileitis. Am. J. Physiol. Gastrointest. Liver Physiol. 304, G623–G634 (2013).

    CAS  PubMed  Google Scholar 

  197. Lynskey, N. N. et al. Rapid lymphatic dissemination of encapsulated group a Streptococci via lymphatic vessel endothelial receptor-1 interaction. PLoS Pathog. 11, e1005137 (2015).

    PubMed  PubMed Central  Google Scholar 

  198. Gonzalez, R. J., Lane, M. C., Wagner, N. J., Weening, E. H. & Miller, V. L. Dissemination of a highly virulent pathogen: tracking the early events that define infection. PLoS Pathog. 11, e1004587 (2015).

    PubMed  PubMed Central  Google Scholar 

  199. Iannacone, M. et al. Subcapsular sinus macrophages prevent CNS invasion upon peripheral infection with a neurotropic virus. Nature 465, 1079–1083 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Lerner, T. R. et al. Lymphatic endothelial cells are a replicative niche for Mycobacterium tuberculosis. J. Clin. Invest. 126, 1093–1108 (2016).

    PubMed  PubMed Central  Google Scholar 

  201. Gavrilovskaya, I. N., Gorbunova, E. E. & Mackow, E. R. Pathogenic hantaviruses direct the adherence of quiescent platelets to infected endothelial cells. J. Virol. 84, 4832–4839 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Liu, L. et al. Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. Lancet 379, 2151–2161 (2012).

    PubMed  Google Scholar 

  203. Perez-Lopez, A., Behnsen, J., Nuccio, S. P. & Raffatellu, M. Mucosal immunity to pathogenic intestinal bacteria. Nat. Rev. Immunol. 16, 135–148 (2016).

    CAS  PubMed  Google Scholar 

  204. Morais da Fonseca, D. et al. Microbiota-dependent sequelae of acute infection compromise tissue-specific immunity. Cell 163, 354–366 (2015).

    CAS  Google Scholar 

  205. Peyrin-Biroulet, L. et al. Mesenteric fat as a source of C reactive protein and as a target for bacterial translocation in Crohn's disease. Gut 61, 78–85 (2012).

    CAS  PubMed  Google Scholar 

  206. Sartor, R. B. Microbial influences in inflammatory bowel diseases. Gastroenterology 134, 577–594 (2008).

    CAS  PubMed  Google Scholar 

  207. Collins, S. M., Chang, C. & Mearin, F. Postinfectious chronic gut dysfunction: from bench to bedside. Am. J. Gastroenterol. Suppl. 1, 2–8 (2012).

    CAS  Google Scholar 

  208. Pan, S. Y. & Morrison, H. Epidemiology of cancer of the small intestine. World J. Gastrointest. Oncol. 3, 33–42 (2011).

    PubMed  PubMed Central  Google Scholar 

  209. Ferlay, J. et al. GLOBOCAN 2012 v1.0, cancer incidence and mortality worldwide: IARC CancerBase No.11. International Agency for Research on Cancer http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx?cancer=colorectal (2013).

    Google Scholar 

  210. Cunningham, D. et al. Colorectal cancer. Lancet 375, 1030–1047 (2010).

    PubMed  Google Scholar 

  211. Baxter, N. N. et al. Lymph node evaluation in colorectal cancer patients: a population-based study. J. Natl Cancer Inst. 97, 219–225 (2005).

    PubMed  Google Scholar 

  212. Mescoli, C. et al. Isolated tumor cells in regional lymph nodes as relapse predictors in stage I and II colorectal cancer. J. Clin. Oncol. 30, 965–971 (2012).

    PubMed  Google Scholar 

  213. Rahbari, N. N. et al. Molecular detection of tumor cells in regional lymph nodes is associated with disease recurrence and poor survival in node-negative colorectal cancer: a systematic review and meta-analysis. J. Clin. Oncol. 30, 60–70 (2012).

    PubMed  Google Scholar 

  214. Akagi, K. et al. Vascular endothelial growth factor-C (VEGF-C) expression in human colorectal cancer tissues. Br. J. Cancer 83, 887–891 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. George, M. L. et al. VEGF-A, VEGF-C, and VEGF-D in colorectal cancer progression. Neoplasia 3, 420–427 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Royston, D. & Jackson, D. G. Mechanisms of lymphatic metastasis in human colorectal adenocarcinoma. J. Pathol. 217, 608–619 (2009).

    CAS  PubMed  Google Scholar 

  217. Mlecnik, B. et al. The tumor microenvironment and Immunoscore are critical determinants of dissemination to distant metastasis. Sci. Transl Med. 8, 327ra26 (2016).

    PubMed  Google Scholar 

  218. Bui, H. M. et al. Proteolytic activation defines distinct lymphangiogenic mechanisms for VEGFC and VEGFD. J. Clin. Invest. 126, 2167–2180 (2016).

    PubMed  PubMed Central  Google Scholar 

  219. He, Y. et al. Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling. J. Natl Cancer Inst. 94, 819–825 (2002).

    CAS  PubMed  Google Scholar 

  220. Tacconi, C. et al. Vascular endothelial growth factor c disrupts the endothelial lymphatic barrier to promote colorectal cancer invasion. Gastroenterology 148, 1438–1451.e8 (2015).

    CAS  PubMed  Google Scholar 

  221. Kawakami, M., Yanai, Y., Hata, F. & Hirata, K. Vascular endothelial growth factor c promotes lymph node metastasis in a rectal cancer orthotopic model. Surg. Today 35, 131–138 (2005).

    CAS  PubMed  Google Scholar 

  222. Guinney, J. et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 21, 1350–1356 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Dolcetti, R. et al. High prevalence of activated intraepithelial cytotoxic T lymphocytes and increased neoplastic cell apoptosis in colorectal carcinomas with microsatellite instability. Am. J. Pathol. 154, 1805–1813 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Smyrk, T. C., Watson, P., Kaul, K. & Lynch, H. T. Tumor-infiltrating lymphocytes are a marker for microsatellite instability in colorectal carcinoma. Cancer 91, 2417–2422 (2001).

    CAS  PubMed  Google Scholar 

  225. Sato, T. et al. Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).

    CAS  PubMed  Google Scholar 

  226. Planas-Paz, L. et al. Mechanoinduction of lymph vessel expansion. EMBO J. 31, 788–804 (2012).

    CAS  PubMed  Google Scholar 

  227. Karasov, W. H., Buddington, R. K. & Diamond, J. M. in Transport Processes, Iono- and Osmoregulation (eds Gilles, R. & Gilles-Baillien, M.) 227–239 (Springer, 1985).

    Google Scholar 

  228. Caviedes-Vidal, E. et al. The digestive adaptation of flying vertebrates: high intestinal paracellular absorption compensates for smaller guts. Proc. Natl Acad. Sci. USA 104, 19132–19137 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Wallace, K. N., Akhter, S., Smith, E. M., Lorent, K. & Pack, M. Intestinal growth and differentiation in zebrafish. Mech. Dev. 122, 157–173 (2005).

    CAS  PubMed  Google Scholar 

  230. Lametschwandtner, A., Lametschwandtner, U., Radner, C. & Minnich, B. Spatial growth and pattern formation in the small intestine microvascular bed from larval to adult Xenopus laevis: a scanning electron microscope study of microvascular corrosion casts. Anat. Embryol. (Berl.) 211, 535–547 (2006).

    CAS  Google Scholar 

  231. Krause, W. J. Intestinal mucosa of the platypus, Ornithorhynchus anatinus. Anat. Rec. 181, 251–265 (1975).

    CAS  PubMed  Google Scholar 

  232. Okuda, K. S. et al. lyve1 expression reveals novel lymphatic vessels and new mechanisms for lymphatic vessel development in zebrafish. Development 139, 2381–2391 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Reifel, C. W. & Travill, A. A. Structure and carbohydrate histochemistry of the intestine in 10 teleostean species. J. Morphol. 162, 343–359 (1979).

    PubMed  Google Scholar 

  234. Noyan, A., Brot, N., Chaikoff, I. L. & Lossow, W. J. Pathway + form of absorption of palmitic acid in chicken. J. Lipid Res. 5, 538–541 (1964).

    CAS  PubMed  Google Scholar 

  235. Fraser, R., Heslop, V. R., Murray, F. E. M. & Day, W. A. Ultrastructural studies of the portal transport of fat in chickens. Br. J. Exp. Pathol. 67, 783–791 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Harrop, C. & Hume, I. in Comparative Physiology: Primitive Mammals (eds Schmidt-Nielsen, K., Bolis, L. & Richard Taylor, C.) 63–78 (Cambridge Univ. Press, 2009).

    Google Scholar 

  237. Kawashima, Y., Sugimura, M., Hwang, Y. & Kudo, N. The lymph system in mice. Jpn. J. Vet. Res. 12, 69–78 (1964).

    Google Scholar 

  238. Carter, P. B. & Collins, F. M. The route of enteric infection in normal mice. J. Exp. Med. 139, 1189–1203 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Houston, S. A. et al. The lymph nodes draining the small intestine and colon are anatomically separate and immunologically distinct. Mucosal Immunol. 9, 468–478 (2016).

    CAS  PubMed  Google Scholar 

  240. Escobedo, N. & Oliver, G. Lymphangiogenesis: origin, specification, and cell fate determination. Annu. Rev. Cell Dev. Biol. 32, 677–691 (2016).

    CAS  PubMed  Google Scholar 

  241. Ulvmar, M. H. & Mäkinen, T. Heterogeneity in the lymphatic vascular system and its origin. Cardiovasc. Res. 111, 310–321 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Petrova, T. V. et al. Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor. EMBO J. 21, 4593–4599 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Wigle, J. T. et al. An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J. 21, 1505–1513 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Aspelund, A., Robciuc, M. R., Karaman, S., Makinen, T. & Alitalo, K. Lymphatic system in cardiovascular medicine. Circ. Res. 118, 515–530 (2016).

    CAS  PubMed  Google Scholar 

  245. Bos, F. L. et al. CCBE1 is essential for mammalian lymphatic vascular development and enhances the lymphangiogenic effect of vascular endothelial growth factor-C in vivo. Circ. Res. 109, 486–491 (2011).

    CAS  PubMed  Google Scholar 

  246. Janssen, L. et al. ADAMTS3 activity is mandatory for embryonic lymphangiogenesis and regulates placental angiogenesis. Angiogenesis 19, 53–65 (2016).

    CAS  PubMed  Google Scholar 

  247. Sweet, D. T. et al. Lymph flow regulates collecting lymphatic vessel maturation in vivo. J. Clin. Invest. 125, 2995–3007 (2015).

    PubMed  PubMed Central  Google Scholar 

  248. Kanady, J. D., Dellinger, M. T., Munger, S. J., Witte, M. H. & Simon, A. M. Connexin37 and Connexin43 deficiencies in mice disrupt lymphatic valve development and result in lymphatic disorders including lymphedema and chylothorax. Dev. Biol. 354, 253–266 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  249. Kazenwadel, J. et al. GATA2 is required for lymphatic vessel valve development and maintenance. J. Clin. Invest. 125, 2979–2994 (2015).

    PubMed  PubMed Central  Google Scholar 

  250. Murtomaki, A. et al. Notch signaling functions in lymphatic valve formation. Development 141, 2446–2451 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Zhang, G. et al. EphB4 forward signalling regulates lymphatic valve development. Nat. Commun. 6, 6625 (2015).

    CAS  PubMed  Google Scholar 

  252. Bazigou, E. et al. Genes regulating lymphangiogenesis control venous valve formation and maintenance in mice. J. Clin. Invest. 121, 2984–2992 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  253. Tatin, F. et al. Planar cell polarity protein Celsr1 regulates endothelial adherens junctions and directed cell rearrangements during valve morphogenesis. Dev. Cell 26, 31–44 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Danussi, C. et al. EMILIN1/α9β1 integrin interaction is crucial in lymphatic valve formation and maintenance. Mol. Cell. Biol. 33, 4381–4394 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  255. Bouvree, K. et al. Semaphorin3A, neuropilin-1, and plexinA1 are required for lymphatic valve formation. Circ. Res. 111, 437–445 (2012).

    CAS  PubMed  Google Scholar 

  256. Jurisic, G. et al. An unexpected role of semaphorin3A-neuropilin-1 signaling in lymphatic vessel maturation and valve formation. Circ. Res. 111, 426–436 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Trevaskis, N. L., Kaminskas, L. M. & Porter, C. J. H. From sewer to saviour-targeting the lymphatic system to promote drug exposure and activity. Nat. Rev. Drug Discov. 14, 781–803 (2015).

    CAS  PubMed  Google Scholar 

  258. Daggett, P. R., Wheeler, M. J. & Nabarro, J. D. N. Oral testosterone — reappraisal. Horm. Res. 9, 121–129 (1978).

    CAS  PubMed  Google Scholar 

  259. Coert, A., Geelen, J., de Visser, J. & van der Vies, J. The pharmacology and metabolism of testosterone undecanoate (TU), a new orally active androgen. Acta Endocrinol. (Copenh.) 79, 789–800 (1975).

    CAS  Google Scholar 

  260. Horst, H. J. et al. Lymphatic absorption and metabolism of orally-administered testosterone undecanoate in man. Klin. Wochenschr. 54, 875–879 (1976).

    CAS  PubMed  Google Scholar 

  261. Trevaskis, N. L., Shanker, R. M., Charman, W. N. & Porter, C. J. H. The mechanism of lymphatic access of two cholesteryl ester transfer protein inhibitors (CP524,515 and CP532,623) and evaluation of their impact on lymph lipoprotein profiles. Pharm. Res. 27, 1949–1964 (2010).

    CAS  PubMed  Google Scholar 

  262. Lawless, E., Griffin, B. T., O'Mahony, A. & O'Driscoll, C. M. Exploring the impact of drug properties on the extent of intestinal lymphatic transport — in vitro and in vivo studies. Pharm. Res. 32, 1817–1829 (2015).

    CAS  PubMed  Google Scholar 

  263. Khoo, S.-M., Shackleford, D. M., Porter, C. J. H., Edwards, G. A. & Charman, W. N. Intestinal lymphatic transport of halofantrine occurs after oral administration of a unit-dose lipid-based formulation to fasted dogs. Pharm. Res. 20, 1460–1465 (2003).

    CAS  PubMed  Google Scholar 

  264. Han, S. et al. Targeted delivery of a model immunomodulator to the lymphatic system: comparison of alkyl ester versus triglyceride mimetic lipid prodrug strategies. J. Control. Release 177, 1–10 (2014).

    CAS  PubMed  Google Scholar 

  265. Sugihara, J., Furuuchi, S., Nakano, K. & Harigaya, S. Studies on intestinal lymphatic absorption of drugs.1. Lymphatic absorption of alkyl ester derivatives and alpha-monoglyceride derivatives of drugs. J. Pharmacobiodyn. 11, 369–376 (1988).

    CAS  PubMed  Google Scholar 

  266. Lu, Y. et al. Biomimetic reassembled chylomicrons as novel association model for the prediction of lymphatic transportation of highly lipophilic drugs via the oral route. Int. J. Pharm. 483, 69–76 (2015).

    CAS  PubMed  Google Scholar 

  267. Hu, L. et al. Glyceride-mimetic prodrugs incorporating self-immolative spacers promote lymphatic transport, avoid first-pass metabolism, and enhance oral bioavailability. Angew. Chem. Int. Ed. 55, 13700–13705 (2016).

    CAS  Google Scholar 

  268. Herzog, D. B., Logan, R. & Kooistra, J. B. The Noonan syndrome with intestinal lymphangiectasia. J. Pediatr. 88, 270–272 (1976).

    CAS  PubMed  Google Scholar 

  269. Roberts, A. E., Allanson, J. E., Tartaglia, M. & Gelb, B. D. Noonan syndrome. Lancet 381, 333–342 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  270. Tatemichi, M., Nagata, H., Morinaga, S. & Kaneda, S. Protein-losing enteropathy caused by mesenteric vascular involvement of neurofibromatosis. Dig. Dis. Sci. 38, 1549–1553 (1993).

    CAS  PubMed  Google Scholar 

  271. Atton, G. et al. The lymphatic phenotype in Turner syndrome: an evaluation of nineteen patients and literature review. Eur. J. Hum. Genet. 23, 1634–1639 (2015).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to many colleagues whose contributions were not discussed because of space limitations. We thank A. Sabine (University of Lausanne, Switzerland) for the confocal image of mesenteric lymphatics and both A. Sabine and D. Velin (Lausanne University Hospital, Switzerland) for critical reading of the manuscript. The work in the author's laboratory is supported by the Swiss National Science Foundation (CRSII3-141811, 31003A-156266 and CR32I3_166326), MEDIC, Gebert Rüf, Novartis and Swiss Bridge foundations, TheraLymph ERA-NET E-Rare Research Programme (FNS 31ER30_160674), The Commission for Technology and Innovation, Fondazione San Salvatore, Swiss Cancer League (KLS 3406-02-2014), and the People Programme (Marie Curie Actions) of the EU's Seventh Framework Programme FP7/2007 to 2013 under REA grant agreement 317250.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of this manuscript.

Corresponding author

Correspondence to Tatiana V. Petrova.

Ethics declarations

Competing interests

T.V.P. received a research grant from Hoffman-La Roche to investigate angiogenesis inhibitors.

Supplementary information

Supplementary information S1 (table)

Intestinal lymphatic vascular defects in genetic mouse models (PDF 271 kb)

PowerPoint slides

Glossary

Lacteals

Central lymphatic capillaries in small intestinal villi.

Button junctions

Discontinuous specialized cell–cell junctions found in normal mature lymphatic capillaries that facilitate the passage of interstitial components and immune cells into the lymphatic vessel lumen while maintaining vessel integrity

Zipper junctions

Continuous and relatively impermeable junctions found in normal developing and mature lymphatic collecting vessels.

Lymphatic valves

Intraluminal bi-leaflet structures, covered on both sides with endothelial cells; valves are present in lymphatic collecting vessels and they ensure unidirectional lymph flow towards blood circulation.

Filopodia

Fine cytoplasmic, actin-rich cellular extensions usually observed in migrating cells, most often found in migrating blood or lymphatic endothelial cells.

Chylous ascites

Accumulation of intestinal lymph in the abdomen, which appears white because of the presence of chylomicrons.

Lymphangiectasia

Pathological dilation and malfunction of intestinal lymphatic vessels.

Chylomicrons

Largest lipoprotein particle secreted by enterocytes after dietary long-chain fatty acid absorption; chylomicrons can also transport cholesterol, fat-soluble vitamins and lipopolysaccharide from the intestinal microbiota.

Chyle

Fat-droplet rich, milky-white lymph draining from the intestine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernier-Latmani, J., Petrova, T. Intestinal lymphatic vasculature: structure, mechanisms and functions. Nat Rev Gastroenterol Hepatol 14, 510–526 (2017). https://doi.org/10.1038/nrgastro.2017.79

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2017.79

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing