Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Harnessing the plasticity of CD4+ T cells to treat immune-mediated disease

Key Points

  • CD4+ T cells are plastic, being able to both acquire distinct functions to combat specific pathogens and redirect their functions in response to changing circumstances or different pathogens.

  • T cell plasticity is an inherent characteristic of T cell responses that provides advantages to the host for protective immunity and immune control.

  • Extracellular cues from the environment drive T cell reprogramming, but they do so within the framework of cytosolic signalling, metabolic and epigenetic circuitry that is established in the cell to stabilize polarized T cell functions.

  • T cell plasticity is widely observed in immune-based diseases, such as autoimmunity and cancer, and may contribute to disease pathology.

  • There is potential to modulate immunity by targeting key regulatory nodes that programme inflammatory versus regulatory functions in T cells.

Abstract

CD4+ T cells differentiate and acquire distinct functions to combat specific pathogens but can also adapt their functions in response to changing circumstances. Although this phenotypic plasticity can be potentially deleterious, driving immune pathology, it also provides important benefits that have led to its evolutionary preservation. Here, we review CD4+ T cell plasticity by examining the molecular mechanisms that regulate it — from the extracellular cues that initiate and drive cells towards varying phenotypes, to the cytosolic signalling cascades that decipher these cues and transmit them into the cell and to the nucleus, where these signals imprint specific gene expression programmes. By understanding how this functional flexibility is achieved, we may open doors to new therapeutic approaches that harness this property of T cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Polarized CD4+ T cell subsets.
Figure 2: The integration of signals at many levels in T cells regulates plasticity.
Figure 3: Cytokine-driven T cell plasticity.
Figure 4: The PI3K–AKT–mTOR pathway and metabolic programmes converge to regulate the plasticity of inflammatory versus regulatory T cells.
Figure 5: Mechanisms of gene regulation in T cell plasticity.

Similar content being viewed by others

References

  1. Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A. & Coffman, R. L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136, 2348–2357 (1986).

    CAS  PubMed  Google Scholar 

  2. Del Prete, G. F. et al. Purified protein derivative of Mycobacterium tuberculosis and excretory-secretory antigen(s) of Toxocara canis expand in vitro human T cells with stable and opposite (type 1 T helper or type 2 T helper) profile of cytokine production. J. Clin. Invest. 88, 346–350 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Abbas, A. K., Murphy, K. M. & Sher, A. Functional diversity of helper T lymphocytes. Nature 383, 787–793 (1996).

    CAS  PubMed  Google Scholar 

  4. Burkett, P. R., Meyer zu Horste, G. & Kuchroo, V. K. Pouring fuel on the fire: Th17 cells, the environment, and autoimmunity. J. Clin. Invest. 125, 2211–2219 (2015).

    PubMed  PubMed Central  Google Scholar 

  5. Schmitt, E., Klein, M. & Bopp, T. Th9 cells, new players in adaptive immunity. Trends Immunol. 35, 61–68 (2014).

    CAS  PubMed  Google Scholar 

  6. Crotty, S. T. Follicular helper cell differentiation, function, and roles in disease. Immunity 41, 529–542 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Wing, J. B. & Sakaguchi, S. Multiple Treg suppressive modules and their adaptability. Front. Immunol. 3, 178 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Wilson, C. B., Rowell, E. & Sekimata, M. Epigenetic control of T-helper-cell differentiation. Nat. Rev. Immunol. 9, 91–105 (2009).

    CAS  PubMed  Google Scholar 

  9. Zhou, L., Chong, M. M. W. & Littman, D. R. Plasticity of CD4+ T cell lineage differentiation. Immunity 30, 646–655 (2009).

    CAS  PubMed  Google Scholar 

  10. O'Shea, J. J. & Paul, W. E. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science 327, 1098–1102 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Murphy, K. M. & Stockinger, B. Effector T cell plasticity: flexibility in the face of changing circumstances. Nat. Immunol. 11, 674–680 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Bluestone, J. A., Mackay, C. R., O'Shea, J. J. & Stockinger, B. The functional plasticity of T cell subsets. Nat. Rev. Immunol. 9, 811–816 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang, Y. H. et al. A novel subset of CD4+ TH2 memory/effector cells that produce inflammatory IL-17 cytokine and promote the exacerbation of chronic allergic asthma. J. Exp. Med. 207, 2479–2491 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Dominguez-Villar, M., Baecher-Allan, C. M. & Hafler, D. A. Identification of T helper type 1-like, Foxp3+ regulatory T cells in human autoimmune disease. Nat. Med. 17, 673–675 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Malmhäll, C. et al. Immunophenotyping of circulating T helper cells argues for multiple functions and plasticity of T cells in vivo in humans - possible role in asthma. PLoS ONE 7, e40012 (2012).

    PubMed  PubMed Central  Google Scholar 

  16. Perez, V. L., Lederer, J. A., Lichtman, A. H. & Abbas, A. K. Stability of Th1 and Th2 populations. Int. Immunol. 7, 869–875 (1995).

    CAS  PubMed  Google Scholar 

  17. Koenen, H. J. P. M. et al. Human CD25highFoxp3pos regulatory T cells differentiate into IL-17-producing cells. Blood 112, 2340–2352 (2008).

    CAS  PubMed  Google Scholar 

  18. Yang, X. O. et al. Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity 29, 44–56 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee, Y. K. et al. Late developmental plasticity in the T helper 17 lineage. Immunity 30, 92–107 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lohning, M. et al. Long-lived virus-reactive memory T cells generated from purified cytokine-secreting T helper type 1 and type 2 effectors. J. Exp. Med. 205, 53–61 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Bending, D. et al. Highly purified Th17 cells from BDC2.5NOD mice convert into Th1-like cells in NOD/SCID recipient mice. J. Clin. Invest. 119, 565–572 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Jager, A., Dardalhon, V., Sobel, R. A., Bettelli, E. & Kuchroo, V. K. Th1, Th17, and Th9 effector cells induce experimental autoimmune encephalomyelitis with different pathological phenotypes. J. Immunol. 183, 7169–7177 (2009).

    PubMed  Google Scholar 

  23. Lüthje, K. et al. The development and fate of follicular helper T cells defined by an IL-21 reporter mouse. Nat. Immunol. 13, 491–498 (2012).

    PubMed  Google Scholar 

  24. Panzer, M. et al. Rapid in vivo conversion of effector T cells into Th2 Cells during helminth infection. J. Immunol. 188, 615–623 (2012).

    CAS  PubMed  Google Scholar 

  25. Harbour, S. N., Maynard, C. L., Zindl, C. L., Schoeb, T. R. & Weaver, C. T. Th17 cells give rise to Th1 cells that are required for the pathogenesis of colitis. Proc. Natl Acad. Sci. USA 112, 7061–7066 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhou, X. et al. Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat. Immunol. 10, 1000–1007 (2009). This study uses fate mapping techniques in mice to show that T Reg cells can lose the expression of FOXP3 and that these 'ex-FOXP3' cells can drive autoimmune diabetes.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hirota, K. et al. Fate mapping of IL-17-producing T cells in inflammatory responses. Nat. Immunol. 12, 255–263 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wilhelm, C. et al. An IL-9 fate reporter demonstrates the induction of an innate IL-9 response in lung inflammation. Nat. Immunol. 12, 1071–1077 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ahlfors, H. et al. IL-22 fate reporter reveals origin and control of IL-22 production in homeostasis and infection. J. Immunol. 193, 4602–4613 (2014).

    CAS  PubMed  Google Scholar 

  30. Becattini, S. et al. T cell immunity. Functional heterogeneity of human memory CD4+ T cell clones primed by pathogens or vaccines. Science 347, 400–406 (2015).

    CAS  PubMed  Google Scholar 

  31. Han, A., Glanville, J., Hansmann, L. & Davis, M. M. Linking T-cell receptor sequence to functional phenotype at the single-cell level. Nat. Biotechnol. 32, 684–692 (2014). References 30 and 31 map the fate of human T cells by combining high-throughput sequencing of TCRs with T cell functional analyses.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang, C. et al. CD5L/AIM regulates lipid biosynthesis and restrains Th17 cell pathogenicity. Cell 163, 1413–1427 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Gaublomme, J. T. et al. Single-Cell genomics unveils critical regulators of Th17 cell pathogenicity. Cell 163, 1400–1412 (2015). References 32 and 33 use single-cell RNA sequencing to show that individual cells within the T H 17 cell subset exhibit heterogeneity in cellular functions from pathogenic to regulatory phenotypes.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. O'Shea, J. J. et al. The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu. Rev. Med. 66, 311–328 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hegazy, A. N. et al. Interferons direct Th2 cell reprogramming to generate a stable GATA-3+T-bet+ cell subset with combined Th2 and Th1 cell functions. Immunity 32, 116–128 (2010).

    CAS  PubMed  Google Scholar 

  36. Veldhoen, M. et al. Transforming growth factor-β 'reprograms' the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat. Immunol. 9, 1341–1346 (2008).

    CAS  PubMed  Google Scholar 

  37. Lu, K. T. et al. Functional and epigenetic studies reveal multistep differentiation and plasticity of in vitro-generated and in vivo-derived follicular T helper cells. Immunity 35, 622–632 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Knosp, C. A. & Johnston, J. A. Regulation of CD4+ T-cell polarization by suppressor of cytokine signalling proteins. Immunology 135, 101–111 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    CAS  PubMed  Google Scholar 

  40. Zhou, L. et al. TGF-β-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORγt function. Nature 453, 236–240 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Gagliani, N. et al. Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation. Nature 523, 221–225 (2015). In this study, fate mapping techniques in mice reveal that inflammatory cells can reprogramme into regulatory cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Stumhofer, J. S. et al. Interleukins 27 and 6 induce STAT3-mediated T cell production of interleukin 10. Nat. Immunol. 8, 1363–1371 (2007).

    CAS  PubMed  Google Scholar 

  43. Apetoh, L. et al. The aryl hydrocarbon receptor interacts with c-Maf to promote the differentiation of type 1 regulatory T cells induced by IL-27. Nat. Immunol. 11, 854–861 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hunter, C. A. & Kastelein, R. Interleukin-27: balancing protective and pathological immunity. Immunity 37, 960–969 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Laurence, A. et al. STAT3 transcription factor promotes instability of nTreg cells and limits generation of iTreg cells during acute murine graft-versus-host disease. Immunity 37, 209–222 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Oldenhove, G. et al. Decrease of Foxp3+ Treg cell number and acquisition of effector cell phenotype during lethal infection. Immunity 31, 772–786 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Koch, M. A. et al. The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat. Immunol. 10, 595–602 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. McClymont, S. A. et al. Plasticity of human regulatory T cells in healthy subjects and patients with type 1 diabetes. J. Immunol. 186, 3918–3926 (2011).

    CAS  PubMed  Google Scholar 

  49. Campbell, D. J. & Koch, M. A. Phenotypical and functional specialization of FOXP3+ regulatory T cells. Nat. Rev. Immunol. 11, 119–130 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Feng, T., Cao, A. T., Weaver, C. T., Elson, C. O. & Cong, Y. Interleukin-12 converts Foxp3+ regulatory T cells to interferon-γ-producing Foxp3+ T cells that inhibit colitis. Gastroenterology 140, 2031–2043 (2011).

    CAS  PubMed  Google Scholar 

  51. Fuhrman, C. A. et al. Divergent phenotypes of human regulatory T cells expressing the receptors TIGIT and CD226. J. Immunol. 195, 145–155 (2015).

    CAS  PubMed  Google Scholar 

  52. Tang, Q. et al. Central role of defective interleukin-2 production in the triggering of islet autoimmune destruction. Immunity 28, 687–697 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Feng, Y. et al. Control of the inheritance of regulatory T cell identity by a cis element in the Foxp3 locus. Cell 158, 749–763 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Klatzmann, D. & Abbas, A. K. The promise of low-dose interleukin-2 therapy for autoimmune and inflammatory diseases. Nat. Rev. Immunol. 15, 283–294 (2015).

    CAS  PubMed  Google Scholar 

  55. van Panhuys, N., Klauschen, F. & Germain, R. N. T-cell-receptor-dependent signal intensity dominantly controls CD4+ T cell polarization in vivo. Immunity 41, 63–74 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Yamane, H. & Paul, W. E. Early signaling events that underlie fate decisions of naive CD4+ T cells toward distinct T-helper cell subsets. Immunol. Rev. 252, 12–23 (2013).

    PubMed  PubMed Central  Google Scholar 

  57. Fazilleau, N., McHeyzer-Williams, L. J., Rosen, H. & McHeyzer-Williams, M. G. The function of follicular helper T cells is regulated by the strength of T cell antigen receptor binding. Nat. Immunol. 10, 375–384 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Tubo, N. J. et al. Single naive CD4+ T cells from a diverse repertoire produce different effector cell types during infection. Cell 153, 785–796 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Sauer, S. et al. T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc. Natl Acad. Sci. USA 105, 7797–7802 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Gottschalk, R. A., Corse, E. & Allison, J. P. TCR ligand density and affinity determine peripheral induction of Foxp3 in vivo. J. Exp. Med. 207, 1701–1711 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Hsieh, C. S., Lee, H. M. & Lio, C. W. Selection of regulatory T cells in the thymus. Nat. Rev. Immunol. 12, 157–167 (2012).

    CAS  PubMed  Google Scholar 

  62. Ohkura, N. et al. T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development. Immunity 37, 785–799 (2012). This study identifies key epigenetic features of T Reg cells driven by TCR signals and independent of FOXP3 expression.

    CAS  PubMed  Google Scholar 

  63. Nagaoka, M., Hatta, Y., Kawaoka, Y. & Malherbe, L. P. Antigen signal strength during priming determines effector CD4 T cell function and antigen sensitivity during influenza virus challenge. J. Immunol. 193, 2812–2820 (2014).

    CAS  PubMed  Google Scholar 

  64. Ahmadzadeh, M. & Farber, D. L. Functional plasticity of an antigen-specific memory CD4 T cell population. Proc. Natl Acad. Sci. USA 99, 11802–11807 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Martinez-Sanchez, M. E., Mendoza, L., Villarreal, C. & Alvarez-Buylla, E. R. A. Minimal regulatory network of extrinsic and intrinsic factors recovers observed patterns of CD4+ T cell differentiation and plasticity. PLoS Comput. Biol. 11, e1004324 (2015).

    PubMed  PubMed Central  Google Scholar 

  66. Moran, A. E. et al. T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse. J. Exp. Med. 208, 1279–1289 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Levine, A. G., Arvey, A., Jin, W. & Rudensky, A. Y. Continuous requirement for the TCR in regulatory T cell function. Nat. Immunol. 15, 1070–1078 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Vahl, J. C. et al. Continuous T cell receptor signals maintain a functional regulatory T cell pool. Immunity 41, 722–736 (2014).

    CAS  PubMed  Google Scholar 

  69. Tang, Q. et al. Cutting edge: CD28 controls peripheral homeostasis of CD4+ CD25+ regulatory T cells. J. Immunol. 171, 3348 (2003).

    CAS  PubMed  Google Scholar 

  70. Zhang, R. et al. An obligate cell-intrinsic function for CD28 in Tregs. J. Clin. Invest. 123, 580–593 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Bailey-Bucktrout, S. L. et al. Self-antigen-driven activation induces instability of regulatory T cells during an inflammatory autoimmune response. Immunity 39, 949–962 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Gratz, I. K. et al. Cutting edge: self-antigen controls the balance between effector and regulatory T cells in peripheral tissues. J. Immunol. 192, 1351–1355 (2014).

    CAS  PubMed  Google Scholar 

  73. Laky, K., Evans, S., Perez-Diez, A. & Fowlkes, B. J. Notch signaling regulates antigen sensitivity of naive CD4+ T cells by tuning co-stimulation. Immunity 42, 80–94 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Bensinger, S. J. et al. Distinct IL-2 receptor signaling pattern in CD4+CD25+ regulatory T cells. J. Immunol. 172, 5287–5296 (2004).

    CAS  PubMed  Google Scholar 

  75. Buckler, J. L., Liu, X. & Turka, L. A. Regulation of T-cell responses by PTEN. Immunol. Rev. 224, 239–248 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Crellin, N. K., Garcia, R. V. & Levings, M. K. Altered activation of AKT is required for the suppressive function of human CD4+CD25+ T regulatory cells. Blood 109, 2014–2022 (2007).

    CAS  PubMed  Google Scholar 

  77. Walsh, P. T. et al. PTEN inhibits IL-2 receptor-mediated expansion of CD4+ CD25+ Tregs. J. Clin. Invest. 116, 2521–2531 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Patterson, S. J. et al. Cutting edge: PHLPP regulates the development, function, and molecular signaling pathways of regulatory T cells. J. Immunol. 186, 5533–5537 (2011).

    CAS  PubMed  Google Scholar 

  79. Huynh, A. et al. Control of PI(3) kinase in Treg cells maintains homeostasis and lineage stability. Nat. Immunol. 16, 188–196 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Shrestha, S. et al. Treg cells require the phosphatase PTEN to restrain TH1 and TFH cell responses. Nat. Immunol. 16, 178–187 (2015). References 79 and 80 show that uncontrolled AKT activation in T Reg cells drives the instability of FOXP3 expression.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Ouyang, W. et al. Novel Foxo1-dependent transcriptional programs control Treg cell function. Nature 491, 554–559 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Delgoffe, G. M. et al. Stability and function of regulatory T cells is maintained by a neuropilin-1-semaphorin-4a axis. Nature 501, 252–256 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Yang, K. et al. T cell exit from quiescence and differentiation into Th2 cells depend on Raptor-mTORC1-mediated metabolic reprogramming. Immunity 39, 1043–1056 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Delgoffe, G. M. et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat. Immunol. 12, 295–303 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Delgoffe, G. M. et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 30, 832–844 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Lee, K. et al. Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity 32, 743–753 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Kurebayashi, Y. et al. PI3K-Akt-mTORC1-S6K1/2 axis controls Th17 differentiation by regulating Gfi1 expression and nuclear translocation of RORγ. Cell Rep. 1, 360–373 (2012).

    CAS  PubMed  Google Scholar 

  88. Zeng, H. et al. mTORC1 couples immune signals and metabolic programming to establish Treg-cell function. Nature 499, 485–490 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Yurchenko, E. et al. Inflammation-driven reprogramming of CD4+Foxp3+ regulatory T cells into pathogenic Th1/Th17 T effectors is abrogated by mTOR inhibition in vivo. PLoS ONE 7, e35572 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Park, Y. et al. TSC1 regulates the balance between effector and regulatory T cells. J. Clin. Invest. 123, 5165–5178 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Miskov-Zivanov, N., Turner, M. S., Kane, L. P., Morel, P. A. & Faeder, J. R. The duration of T cell stimulation is a critical determinant of cell fate and plasticity. Sci. Signal. 6, ra97 (2013).

    PubMed  PubMed Central  Google Scholar 

  92. Pearce, E. L., Poffenberger, M. C., Chang, C. H. & Jones, R. G. Fueling immunity: insights into metabolism and lymphocyte function. Science 342, 1242454–1242454 (2013).

    PubMed  PubMed Central  Google Scholar 

  93. Frauwirth, K. A. et al. The CD28 signaling pathway regulates glucose metabolism. Immunity 16, 769–777 (2002).

    CAS  PubMed  Google Scholar 

  94. Macintyre, A. N. et al. The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell. Metab. 20, 61–72 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Basu, S., Hubbard, B. & Shevach, E. M. Foxp3-mediated inhibition of Akt inhibits Glut1 (glucose transporter 1) expression in human T regulatory cells. J. Leukocyte Biol. 97, 279–283 (2015).

    PubMed  Google Scholar 

  96. Michalek, R. D. et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J. Immunol. 186, 3299–3303 (2011).

    CAS  PubMed  Google Scholar 

  97. Gerriets, V. A. et al. Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation. J. Clin. Invest. 125, 194–207 (2014). References 96 and 97 show that distinct metabolic programmes are required for the functional capacities of T cells and reveal key differences between the metabolic programmes of inflammatory and regulatory T cells.

    PubMed  PubMed Central  Google Scholar 

  98. Furusawa, Y. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450 (2013).

    CAS  PubMed  Google Scholar 

  99. Arpaia, N. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451–455 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Klysz, D. et al. Glutamine-dependent α-ketoglutarate production regulates the balance between T helper 1 cell and regulatory T cell generation. Sci. Signal. 8, ra97 (2015). This study links the disruption in proper control of glycolytic metabolism in T Reg cells to FOXP3 instability.

    PubMed  Google Scholar 

  101. Nakamura, H. et al. TCR engagement increases hypoxia-inducible factor-1 protein synthesis via rapamycin-sensitive pathway under hypoxic conditions in human peripheral T cells. J. Immunol. 174, 7592–7599 (2005).

    CAS  PubMed  Google Scholar 

  102. Shi, L. Z. et al. HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J. Exp. Med. 208, 1367–1376 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Lee, J. H., Elly, C., Park, Y. & Liu, Y.-C. E3 ubiquitin ligase VHL regulates hypoxia-inducible factor-1α to maintain regulatory T cell stability and suppressive capacity. Immunity 42, 1062–1074 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Dang, E. V. et al. Control of TH17/Treg balance by hypoxia-inducible factor 1. Cell 146, 772–784 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Oestreich, K. J. et al. Bcl-6 directly represses the gene program of the glycolysis pathway. Nat. Immunol. 15, 957–964 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Tamas, P. Regulation of the energy sensor AMP-activated protein kinase by antigen receptor and Ca2+ in T lymphocytes. J. Exp. Med. 203, 1665–1670 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. MacIver, N. J. et al. The liver kinase B1 is a central regulator of T cell development, activation, and metabolism. J. Immunol. 187, 4187–4198 (2011).

    CAS  PubMed  Google Scholar 

  108. Blagih, J. et al. The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo. Immunity 42, 41–54 (2015).

    CAS  PubMed  Google Scholar 

  109. Faubert, B. et al. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell. Metab. 17, 113–124 (2013).

    CAS  PubMed  Google Scholar 

  110. Chang, C.-H. et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153, 1239–1251 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Berod, L. et al. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat. Med. 20, 1327–1333 (2014).

    CAS  PubMed  Google Scholar 

  112. Williams, C. L. et al. STAT4 and T-bet are required for the plasticity of IFN-γ expression across Th2 ontogeny and influence changes in Ifng promoter DNA methylation. J. Immunol. 191, 678–687 (2013).

    CAS  PubMed  Google Scholar 

  113. Vahedi, G. et al. STATs shape the active enhancer landscape of T cell populations. Cell 151, 981–993 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Goswami, R. et al. STAT6-dependent regulation of Th9 development. J. Immunol. 188, 968–975 (2012).

    CAS  PubMed  Google Scholar 

  115. Samstein, R. M. et al. Foxp3 exploits a pre-existent enhancer landscape for regulatory T cell lineage specification. Cell 151, 153–166 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Oestreich, K. J. & Weinmann, A. S. Master regulators or lineage-specifying? Changing views on CD4+ T cell transcription factors. Nat. Rev. Immunol. 12, 799–804 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Wei, G. et al. Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity 30, 155–167 (2009).

    PubMed  PubMed Central  Google Scholar 

  118. Shih, H. Y. et al. Transcriptional and epigenetic networks of helper T and innate lymphoid cells. Immunol. Rev. 261, 23–49 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Fu, W. et al. A multiply redundant genetic switch 'locks in' the transcriptional signature of regulatory T cells. Nat. Immunol. 13, 972–980 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Lee, T. I. & Young, R. A. Transcriptional regulation and its misregulation in disease. Cell 152, 1237–1251 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Roychoudhuri, R. et al. BACH2 represses effector programs to stabilize Treg-mediated immune homeostasis. Nature 498, 506–510 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Wang, Y. et al. The transcription factors T-bet and Runx are required for the ontogeny of pathogenic interferon-γ-producing T helper 17 cells. Immunity 40, 355–366 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Sekiya, T. et al. Suppression of Th2 and Tfh immune reactions by Nr4a receptors in mature T reg cells. J. Exp. Med. 212, 1623–1640 (2015). This paper reveals the essential role of additional transcription factors that collaborate with FOXP3 to maintain the T Reg cell transcriptional programme.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Brown, C. C. et al. Retinoic acid is essential for Th1 cell lineage stability and prevents transition to a Th17 cell program. Immunity 42, 499–511 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Park, B. V. & Pan, F. The role of nuclear receptors in regulation of Th17/Treg biology and its implications for diseases. Cell. Mol. Immunol. 12, 533–542 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Bird, J. et al. Helper T cell differentiation is controlled by the cell cycle. Immunity 9, 229–237 (1998).

    CAS  PubMed  Google Scholar 

  127. Agarwal, S. & Rao, A. Modulation of chromatin structure regulates cytokine gene expression during T cell differentiation. Immunity 9, 765–775 (1998).

    CAS  PubMed  Google Scholar 

  128. Grogan, J. L. et al. Early transcription and silencing of cytokine genes underlie polarization of T helper cell subsets. Immunity 14, 205–215 (2001).

    CAS  PubMed  Google Scholar 

  129. Avni, O. et al. TH cell differentiation is accompanied by dynamic changes in histone acetylation of cytokine genes. Nat. Immunol. 3, 643–651 (2002).

    CAS  PubMed  Google Scholar 

  130. Hojfeldt, J. W., Agger, K. & Helin, K. Histone lysine demethylases as targets for anticancer therapy. Nat. Rev. Drug Discov. 12, 917–930 (2013).

    CAS  PubMed  Google Scholar 

  131. Pastor, W. A., Aravind, L. & Rao, A. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat. Rev. Mol. Cell Biol. 14, 341–356 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Zhang, F. T helper type 1-specific Brg1 recruitment and remodeling of nucleosomes positioned at the IFN-γ promoter are Stat4 dependent. J. Exp. Med. 203, 1493–1505 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Schones, D. E. et al. Dynamic regulation of nucleosome positioning in the human genome. Cell 132, 887–898 (2008).

    CAS  PubMed  Google Scholar 

  134. Wang, Z. et al. Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138, 1019–1031 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Ichiyama, K. et al. The methylcytosine dioxygenase Tet2 promotes DNA demethylation and activation of cytokine gene expression in T Cells. Immunity 42, 613–626 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Onodera, A. & Nakayama, T. Epigenetics of T cells regulated by Polycomb/Trithorax molecules. Trends Mol. Med. 21, 330–340 (2015).

    CAS  PubMed  Google Scholar 

  137. Miller, S. A., Huang, A. C., Miazgowicz, M. M., Brassil, M. M. & Weinmann, A. S. Coordinated but physically separable interaction with H3K27- demethylase and H3K4-methyltransferase activities are required for T-box protein-mediated activation of developmental gene expression. Genes Dev. 22, 2980–2993 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Bettini, M. L. et al. Loss of epigenetic modification driven by the Foxp3 transcription factor leads to regulatory T cell insufficiency. Immunity 36, 717–730 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Wang, L. et al. Mbd2 promotes Foxp3 demethylation and T-regulatory-cell function. Mol. Cell. Biol. 33, 4106–4115 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Yang, R. et al. Hydrogen sulfide promotes Tet1- and Tet2-mediated Foxp3 demethylation to drive regulatory T cell differentiation and maintain immune homeostasis. Immunity 43, 251–263 (2015). References 139 and 140 reveal that DNA demethylation by TET proteins is crucial for the maintenance of FOXP3 expression and T Reg cell stability.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Liu, Y. et al. Two histone/protein acetyltransferases, CBP and p300, are indispensable for Foxp3+ T-regulatory cell development and function. Mol. Cell. Biol. 34, 3993–4007 (2014).

    PubMed  PubMed Central  Google Scholar 

  142. Yamashita, M. et al. Crucial role of MLL for the maintenance of memory T helper type 2 cell responses. Immunity 24, 611–622 (2006).

    CAS  PubMed  Google Scholar 

  143. Collier, S. P., Collins, P. L., Williams, C. L., Boothby, M. R. & Aune, T. M. Cutting edge: influence of Tmevpg1, a long intergenic noncoding RNA, on the expression of Ifng by Th1 cells. J. Immunol. 189, 2084–2088 (2012).

    CAS  PubMed  Google Scholar 

  144. Gomez, J. A. et al. The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-γ locus. Cell 152, 743–754 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Satpathy, A. T. & Chang, H. Y. Long noncoding RNA in hematopoiesis and immunity. Immunity 42, 792–804 (2015).

    CAS  PubMed  Google Scholar 

  146. van den Ham, H. J. & de Boer, R. J. Cell division curtails helper phenotype plasticity and expedites helper T-cell differentiation. Immunol. Cell Biol. 90, 860–868 (2012).

    CAS  PubMed  Google Scholar 

  147. Thomas, R. M., Gamper, C. J., Ladle, B. H., Powell, J. D. & Wells, A. D. De novo DNA methylation is required to restrict T helper lineage plasticity. J. Biol. Chem. 287, 22900–22909 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Liu, B., Tahk, S., Yee, K. M., Fan, G. & Shuai, K. The ligase PIAS1 restricts natural regulatory T cell differentiation by epigenetic repression. Science 330, 521–525 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Busslinger, M. & Tarakhovsky, A. Epigenetic control of immunity. Cold Spring Harb. Perspect. Biol. 6, a019307 (2014).

    PubMed  PubMed Central  Google Scholar 

  150. Wang, L. et al. FOXP3+ regulatory T cell development and function require histone/protein deacetylase 3. J. Clin. Invest. 125, 1111–1123 (2015).

    PubMed  PubMed Central  Google Scholar 

  151. Arvey, A. et al. Inflammation-induced repression of chromatin bound by the transcription factor Foxp3 in regulatory T cells. Nat. Immunol. 15, 580–587 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. DuPage, M. et al. The chromatin-modifying enzyme Ezh2 is critical for the maintenance of regulatory T cell identity after activation. Immunity 42, 227–238 (2015). References 151 and 152 together show that EZH2 activity in activated T Reg cells is required for T Reg cell function and stability by maintaining the FOXP3-driven transcriptional programme.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Tumes, D. J. et al. The polycomb protein Ezh2 regulates differentiation and plasticity of CD4+ T helper type 1 and type 2 cells. Immunity 39, 819–832 (2013).

    CAS  PubMed  Google Scholar 

  154. Zhang, Y. et al. The polycomb repressive complex 2 governs life and death of peripheral T cells. Blood 124, 737–749 (2014).

    CAS  PubMed  Google Scholar 

  155. Escobar, T. M. et al. miR-155 activates cytokine gene expression in Th17 cells by regulating the DNA-binding protein Jarid2 to relieve polycomb-mediated repression. Immunity 40, 865–879 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Li, Q. et al. Critical role of histone demethylase Jmjd3 in the regulation of CD4+ T-cell differentiation. Nat. Commun. 5, 5780 (2014).

    CAS  PubMed  Google Scholar 

  157. Allan, R. S. et al. An epigenetic silencing pathway controlling T helper 2 cell lineage commitment. Nature 487, 249–253 (2012).

    CAS  PubMed  Google Scholar 

  158. Antignano, F. et al. Methyltransferase G9A regulates T cell differentiation during murine intestinal inflammation. J. Clin. Invest. 124, 1945–1955 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Huang, C. et al. Cutting edge: a novel, human-specific interacting protein couples FOXP3 to a chromatin-remodeling complex that contains KAP1/TRIM28. J. Immunol. 190, 4470–4473 (2013).

    CAS  PubMed  Google Scholar 

  160. Xu, K. et al. EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent. Science 338, 1465–1469 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Kim, E. et al. Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells. Cancer Cell 23, 839–852 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Badeaux, A. I. & Shi, Y. Emerging roles for chromatin as a signal integration and storage platform. Nat. Rev. Mol. Cell Biol. 14, 211–224 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Baumjohann, D. & Ansel, K. M. MicroRNA-mediated regulation of T helper cell differentiation and plasticity. Nat. Rev. Immunol. 13, 666–678 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Long, S. A. et al. Defects in IL-2R signaling contribute to diminished maintenance of FOXP3 expression in CD4+CD25+ regulatory T-cells of type 1 diabetic subjects. Diabetes 59, 407–415 (2010).

    CAS  PubMed  Google Scholar 

  165. Carbone, F. et al. Regulatory T cell proliferative potential is impaired in human autoimmune disease. Nat. Med. 20, 69–74 (2013).

    PubMed  Google Scholar 

  166. Bending, D. et al. Hypomethylation at the regulatory T cell-specific demethylated region in CD25hi T cells is decoupled from FOXP3 expression at the inflamed site in childhood arthritis. J. Immunol. 193, 2699–2708 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Rivas, M. N. et al. Regulatory T cell reprogramming toward a Th2-cell-like lineage impairs oral tolerance and promotes food allergy. Immunity 42, 512–523 (2015).

    PubMed Central  Google Scholar 

  168. Komatsu, N. et al. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat. Med. 20, 62–68 (2014).

    CAS  PubMed  Google Scholar 

  169. Blatner, N. R. et al. Expression of RORγt marks a pathogenic regulatory T cell subset in human colon cancer. Sci. Transl Med. 4, 164ra159 (2012). This paper shows that selectively targeting the RORγt+ T Reg cell subset that promoted cancer was a successful strategy to treat the disease.

    PubMed  PubMed Central  Google Scholar 

  170. McGeachy, M. J. et al. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat. Immunol. 10, 314–324 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Hirota, K. et al. Plasticity of TH17 cells in Peyer's patches is responsible for the induction of T cell–dependent IgA responses. Nat. Immunol. 14, 372–379 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Araya, N. et al. HTLV-1 induces a Th1-like state in CD4+CCR4+ T cells. J. Clin. Invest. 124, 3431–3442 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Bluestone, J. A., Crellin, N. & Trotta, E. IL-2: change structure... change function. Immunity 42, 779–781 (2015).

    CAS  PubMed  Google Scholar 

  174. Herold, K. C. et al. Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N. Engl. J. Med. 346, 1692–1698 (2002).

    CAS  PubMed  Google Scholar 

  175. Penaranda, C., Tang, Q. & Bluestone, J. A. Anti-CD3 therapy promotes tolerance by selectively depleting pathogenic cells while preserving regulatory T cells. J. Immunol. 187, 2015–2022 (2011).

    CAS  PubMed  Google Scholar 

  176. Littman, D. R. Releasing the brakes on cancer immunotherapy. Cell 162, 1186–1190 (2015).

    CAS  PubMed  Google Scholar 

  177. Long, S. A. et al. Rapamycin/IL-2 combination therapy in patients with type 1 diabetes augments Tregs yet transiently impairs β-cell function. Diabetes 61, 2340–2348 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Ali, K. et al. Inactivation of PI(3)K p110δ breaks regulatory T-cell-mediated immune tolerance to cancer. Nature 510, 407–411 (2014). This study shows that targeting a specific PI3K isoform used in T Reg cells selectively destabilizes T Reg cells and promotes antitumour T cell responses.

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Putnam, A. L. et al. Expansion of human regulatory T-cells from patients with type 1 diabetes. Diabetes 58, 652–662 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Fischbach, M. A., Bluestone, J. A. & Lim, W. A. Cell-based therapeutics: the next pillar of medicine. Sci. Transl Med. 5, 179ps177 (2013).

    Google Scholar 

  181. Guedan, S. et al. ICOS-based chimeric antigen receptors program bipolar TH17/TH1 cells. Blood 124, 1070–1080 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Yin, Y. et al. Normalization of CD4+ T cell metabolism reverses lupus. Sci. Transl Med. 7, 274ra218 (2015). In this paper, broadly inhibiting glycolytic metabolism is shown to reverse autoimmune lupus.

    Google Scholar 

  183. Chen, Z. et al. The ubiquitin ligase Stub1 negatively modulates regulatory T cell suppressive activity by promoting degradation of the transcription factor Foxp3. Immunity 39, 272–285 (2013).

    CAS  PubMed  Google Scholar 

  184. Yang, J. et al. Cutting edge: ubiquitin-specific protease 4 promotes Th17 cell function under inflammation by deubiquitinating and stabilizing RORγt. J. Immunol. 194, 4094–4097 (2015).

    CAS  PubMed  Google Scholar 

  185. Jang, E. J., Park, H. R., Hong, J. H. & Hwang, E. S. Lysine 313 of T-box is crucial for modulation of protein stability, DNA binding, and threonine phosphorylation of T-bet. J. Immunol. 190, 5764–5770 (2013).

    CAS  PubMed  Google Scholar 

  186. Beier, U. H. et al. Sirtuin-1 targeting promotes Foxp3+ T-regulatory cell function and prolongs allograft survival. Mol. Cell. Biol. 31, 1022–1029 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Kwon, H. S. et al. Three novel acetylation sites in the Foxp3 transcription factor regulate the suppressive activity of regulatory T cells. J. Immunol. 188, 2712–2721 (2012).

    CAS  PubMed  Google Scholar 

  188. Lim, H. W. et al. SIRT1 deacetylates RORγt and enhances Th17 cell generation. J. Exp. Med. 212, 607–617 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Peng, D. et al. Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature 527, 249–253 (2015). This paper reveals that EZH2 activity in tumour cells can shape the immune microenvironment of tumours by controlling the expression of chemokines.

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Liu, Y. et al. Inhibition of p300 impairs Foxp3+ T regulatory cell function and promotes antitumor immunity. Nat. Med. 19, 1173–1177 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Bandukwala, H. S. et al. Selective inhibition of CD4+ T-cell cytokine production and autoimmunity by BET protein and c-Myc inhibitors. Proc. Natl Acad. Sci. USA 109, 14532–14537 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Fu, W. et al. Epigenetic modulation of type-1 diabetes via a dual effect on pancreatic macrophages and β cells. eLife 3, e04631 (2014). References 190–192 collectively show that targeting epigenetic enzymes with systemic drugs can have selective immunomodulatory activities to ameliorate cancer or autoimmune disease.

    PubMed  PubMed Central  Google Scholar 

  193. Tsuji, M. et al. Preferential generation of follicular B helper T cells from Foxp3+ T cells in gut Peyer's patches. Science 323, 1488–1492 (2009).

    CAS  PubMed  Google Scholar 

  194. Sharma, M. D. et al. An inherently bifunctional subset of Foxp3+ T helper cells is controlled by the transcription factor Eos. Immunity 38, 998–1012 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Neumann, C. et al. Role of Blimp-1 in programing Th effector cells into IL-10 producers. J. Exp. Med. 211, 1807–1819 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Esplugues, E. et al. Control of TH17 cells occurs in the small intestine. Nature 475, 514–518 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Califano, D. et al. Diverting T helper cell trafficking through increased plasticity attenuates autoimmune encephalomyelitis. J. Clin. Invest. 124, 174–187 (2013).

    PubMed  Google Scholar 

  198. Heinemann, C. et al. IL-27 and IL-12 oppose pro-inflammatory IL-23 in CD4+ T cells by inducing Blimp1. Nat. Commun. 5, 1–13 (2014).

    Google Scholar 

  199. Umetsu, D. T. et al. Functional heterogeneity among human inducer T cell clones. J. Immunol. 140, 4211–4216 (1988).

    CAS  PubMed  Google Scholar 

  200. Maggi, E. et al. Profiles of lymphokine activities and helper function for IgE in human T cell clones. Eur. J. Immunol. 18, 1045–1050 (1988).

    CAS  PubMed  Google Scholar 

  201. Murphy, E. et al. Reversibility of T helper 1 and 2 populations is lost after long-term stimulation. J. Exp. Med. 183, 901–913 (1996).

    CAS  PubMed  Google Scholar 

  202. Komatsu, N. et al. Heterogeneity of natural Foxp3+ T cells: a committed regulatory T-cell lineage and an uncommitted minor population retaining plasticity. Proc. Natl Acad. Sci. USA 106, 1903–1908 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Duarte, J. H., Zelenay, S., Bergman, M.-L., Martins, A. C. & Demengeot, J. Natural Treg cells spontaneously differentiate into pathogenic helper cells in lymphopenic conditions. Eur. J. Immunol. 39, 948–955 (2009).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank A. Abbas, K. M. Ansel, R. Locksley, L. Turka and members of the laboratory for their helpful comments and feedback during the preparation of this Review. This work was supported by the Sean N. Parker Autoimmune Research Laboratory, the Juvenile Diabetes Research Foundation (JDRF; 2-SRA-2014-150), the US National Institutes of Health (NIH; R01 AI046643, U01 AI102011) and the Helen Hay Whitney Foundation (to M.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey A. Bluestone.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

mTOR complex 1

(mTORC1). A complex consisting of: mammalian target of rapamycin (mTOR), which is a serine/threonine kinase; regulatory-associated protein of mTOR (RAPTOR); proline-rich AKT1 substrate of 40 kDa (PRAS40), which is an mTORC1 inhibitor; mLST8, which is of unknown function; and DEP domain-containing mTOR-interacting protein (DEPTOR), which is an mTOR inhibitor.

mTORC2

A complex composed of mammalian target of rapamycin (mTOR), mLST8 and the adaptor proteins rapamycin-insensitive companion of mTOR (RICTOR) and stress-activated MAP kinase-interacting protein 1 (SIN1).

Tricarboxylic acid cycle

(TCA cycle). This pathway (also known as the Krebs cycle or citric acid cycle) catalyses the oxidation of acetyl-CoA (from glucose or fatty acids or indirectly from amino acids) to generate NADH and FADH, which fuel the electron transport chain and thereby oxidative phosphorylation and ATP production. It also serves as a source of precursors for amino acid and lipid synthesis.

Innate lymphoid cells

Lymphoid cells that do not express unique antigen receptors derived from gene rearrangement or cell-surface markers that are characteristic of other immune cell lineages. However, in response to innate tissue-derived signals, they secrete cytokines that are associated with T helper cell subsets. They have important roles in innate immune responses to infectious microorganisms and in lymphoid tissue formation.

Long non-coding RNAs

(lncRNAs). A subset of non-coding RNAs that are greater than 200 nucleotides in length and distinct from other non-coding RNAs, such as tRNAs, rRNAs, snRNAs, small nucleolar RNAs (snoRNAs), and microRNAs. Although they are known to regulate gene expression, the mechanisms by which this is achieved is an active area of investigation.

Chimeric antigen receptor

(CAR). An artificial T cell receptor construct that consists of an extracellular single-chain antibody fragment that functions as the antigen-binding domain, together with transmembrane and intracellular signalling domains from the T cell receptor CD3 ζ-chain and/or from a co-stimulatory molecule such as CD28.

BET inhibitors

Inhibitors that bind the bromodomain and extraterminal (BET) motif of several bromodomain-containing proteins (BRDs), blocking their interaction with acetylated lysines on histones and preventing their promotion of transcription.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DuPage, M., Bluestone, J. Harnessing the plasticity of CD4+ T cells to treat immune-mediated disease. Nat Rev Immunol 16, 149–163 (2016). https://doi.org/10.1038/nri.2015.18

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri.2015.18

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing