Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging roles of p53 and other tumour-suppressor genes in immune regulation

Key Points

  • The role of tumour suppressors in immunity is strongly linked to maintenance of genomic integrity.

  • Impaired expression of tumour suppressor genes such as those that encode p53, retinoblastoma-associated gene 1 (RB1), phosphatase and tensin homologue (PTEN) and ARF results in susceptibility to chronic inflammatory responses triggered by pathogens and environmental stress.

  • The tumour suppressor p53 and its transcriptional targets are involved in crucial aspects of tumour and pathogen immunology and in homeostatic regulation of immune responses. This pathway has an important role in host immunity influencing both innate and adaptive immune responses.

  • A link between the tumour suppressor p53 and immune checkpoint regulators, including programmed cell death 1 (PD1), PD1 ligand 1 (PDL1) and DD1α, has been identified in cancer cells.

  • Several tumour suppressor genes including those encoding p53, ARF, RB1 and PTEN influence T cell fate by modulating the immune synapse through pattern recognition receptors, cytokine production and expression of MHC and co-inhibitory molecules.

  • Tumour suppressor gene function is emerging as a potential 'guardian of immune integrity'.

Abstract

Tumour-suppressor genes are indispensable for the maintenance of genomic integrity. Recently, several of these genes, including those encoding p53, PTEN, RB1 and ARF, have been implicated in immune responses and inflammatory diseases. In particular, the p53 tumour- suppressor pathway is involved in crucial aspects of tumour immunology and in homeostatic regulation of immune responses. Other studies have identified roles for p53 in various cellular processes, including metabolism and stem cell maintenance. Here, we discuss the emerging roles of p53 and other tumour-suppressor genes in tumour immunology, as well as in additional immunological settings, such as virus infection. This relatively unexplored area could yield important insights into the homeostatic control of immune cells in health and disease and facilitate the development of more effective immunotherapies. Consequently, tumour-suppressor genes are emerging as potential guardians of immune integrity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Roles of tumour suppressor p53 in antiviral immunity.
Figure 2: Roles of tumour-suppressor genes at the immune synapse.
Figure 3: p53 as a guardian of immune integrity.

Similar content being viewed by others

References

  1. Chaffer, C. L. & Weinberg, R. A. How does multistep tumorigenesis really proceed? Cancer Discov. 5, 22–24 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  3. Weinberg, R. A. Coming full circle-from endless complexity to simplicity and back again. Cell 157, 267–271 (2014).

    CAS  PubMed  Google Scholar 

  4. Zitvogel, L., Tesniere, A. & Kroemer, G. Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat. Rev. Immunol. 6, 715–727 (2006).

    CAS  PubMed  Google Scholar 

  5. Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 331, 1565–1570 (2011).

    CAS  PubMed  Google Scholar 

  6. Kroemer, G., Senovilla, L., Galluzzi, L., Andre, F. & Zitvogel, L. Natural and therapy-induced immunosurveillance in breast cancer. Nat. Med. 21, 1128–1138 (2015).

    CAS  PubMed  Google Scholar 

  7. Lesokhin, A. M., Callahan, M. K., Postow, M. A. & Wolchok, J. D. On being less tolerant: enhanced cancer immunosurveillance enabled by targeting checkpoints and agonists of T cell activation. Sci. Transl. Med. 7, 280sr1 (2015).

    PubMed  Google Scholar 

  8. Iannello, A., Thompson, T. W., Ardolino, M., Marcus, A. & Raulet, D. H. Immunosurveillance and immunotherapy of tumors by innate immune cells. Curr. Opin. Immunol. 38, 52–58 (2016).

    CAS  PubMed  Google Scholar 

  9. Miciak, J. & Bunz, F. Long story short: 53 mediates innate immunity. Biochim. Biophys. Acta 1865, 220–227 (2016). This study summarizes the coordinated responses of p53 to viral infection, and outlines a model that would explain how p53 evolved to mediate immune surveillance.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Zitvogel, L., Galluzzi, L., Kepp, O., Smyth, M. J. & Kroemer, G. Type I interferons in anticancer immunity. Nat. Rev. Immunol. 15, 405–414 (2015).

    CAS  PubMed  Google Scholar 

  11. Berkers, C. R., Maddocks, O. D., Cheung, E. C., Mor, I. & Vousden, K. H. Metabolic regulation by p53 family members. Cell. Metab. 18, 617–633 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Bursac, S., Brdovcak, M. C., Donati, G. & Volarevic, S. Activation of the tumor suppressor p53 upon impairment of ribosome biogenesis. Biochim. Biophys. Acta 1842, 817–830 (2014).

    CAS  PubMed  Google Scholar 

  13. Golomb, L. Volarevic, S. and Oren, M. p53 and ribosome biogenesis stress: the essentials. FEBS Lett. 588, 2571–2579 (2014).

    CAS  PubMed  Google Scholar 

  14. Iurlaro, R., Leon-Annicchiarico, C. L. & Munoz-Pinedo, C. Regulation of cancer metabolism by oncogenes and tumor suppressors. Methods Enzymol. 542, 59–80 (2014).

    CAS  PubMed  Google Scholar 

  15. Jones, R. G. et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol. Cell 18, 283–293 (2005).

    CAS  PubMed  Google Scholar 

  16. Kruiswijk, F., Labuschagne, C. F. & Vousden, K. H. p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nat. Rev. Mol. Cell. Biol. 16, 393–405 (2015).

    CAS  PubMed  Google Scholar 

  17. Lane, D. & Levine, A. p53 Research: the past thirty years and the next thirty years. Cold Spring Harb. Perspect. Biol. 2, a000893 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Maddocks, O. D. et al. Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature 493, 542–546 (2013).

    CAS  PubMed  Google Scholar 

  19. Maiuri, M. C. et al. Autophagy regulation by p53. Curr. Opin. Cell Biol. 22, 181–185 (2010).

    CAS  PubMed  Google Scholar 

  20. Vousden, K. H. & Prives, C. Blinded by the light: The growing complexity of p53. Cell 137, 413–431 (2009).

    CAS  PubMed  Google Scholar 

  21. Vousden, K. H. & Ryan, K. M. p53 and metabolism. Nat. Rev. Cancer 9, 691–700 (2009).

    CAS  PubMed  Google Scholar 

  22. Wang, S. J. & Gu, W. To be, or not to be: functional dilemma of p53 metabolic regulation. Curr. Opin. Oncol. 26, 78–85 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Alimonti, A. et al. Subtle variations in Pten dose determine cancer susceptibility. Nat. Genet. 42, 454–458 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Antico Arciuch, V. G., Russo, M. A., Kang, K. S. & Di Cristofano, A. Inhibition of AMPK and Krebs cycle gene expression drives metabolic remodeling of Pten-deficient preneoplastic thyroid cells. Cancer Res. 73, 5459–5472 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Carracedo, A. & Pandolfi, P. P. The PTEN-PI3K pathway: of feedbacks and cross-talks. Oncogene 27, 5527–5541 (2008).

    CAS  PubMed  Google Scholar 

  26. Cooks, T., Harris, C. C. & Oren, M. Caught in the cross fire: 53 in inflammation. Carcinogenesis 35, 1680–1690 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Dasgupta, B. & Milbrandt, J. AMP-activated protein kinase phosphorylates retinoblastoma protein to control mammalian brain development. Dev. Cell 16, 256–270 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Garcia-Cao, I. et al. Systemic elevation of PTEN induces a tumor-suppressive metabolic state. Cell 149, 49–62 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Guo, G. & Cui, Y. New perspective on targeting the tumor suppressor p53 pathway in the tumor microenvironment to enhance the efficacy of immunotherapy. J. Immunother. Cancer 3, 9 (2015).

    PubMed  PubMed Central  Google Scholar 

  30. Menendez, D., Inga, A. & Resnick, M. A. The expanding universe of p53 targets. Nat. Rev. Cancer 9, 724–737 (2009).

    CAS  PubMed  Google Scholar 

  31. Nicolay, B. N. & Dyson, N. J. The multiple connections between pRB and cell metabolism. Curr. Opin. Cell Biol. 25, 735–740 (2013).

    CAS  PubMed  Google Scholar 

  32. Tandon, P. et al. Requirement for ribosomal protein S6 kinase 1 to mediate glycolysis and apoptosis resistance induced by Pten deficiency. Proc. Natl Acad. Sci. USA 108, 2361–2365 (2011).

    CAS  PubMed  Google Scholar 

  33. Watanabe, M., Moon, K. D., Vacchio, M. S., Hathcock, K. S., & Hodes, R. J. Downmodulation of tumour suppressor p53 by T cell receptor signalling is critical for antigen-specific CD4+T cell responses. Immunity 40, 681–691 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Bi, X. et al. Deletion of Irf5 protects hematopoietic stem cells from DNA damage-induced apoptosis and suppresses γ-irradiation-induced thymic lymphomagenesis. Oncogene 33, 3288–3297 (2014).

    CAS  PubMed  Google Scholar 

  35. Bueter, M., Gasser, M., Lebedeva, T., Benichou, G. & Waaga-Gasser, A. M. Influence of p53 on anti-tumor immunity. Int. J. Oncol. 28, 519–525 (2006).

    PubMed  Google Scholar 

  36. Li, L. et al. A unique role for p53 in the regulation of M2 macrophage polarization. Cell Death Differ. 22, 1081–1093 (2015).

    CAS  PubMed  Google Scholar 

  37. Menendez, D., Shatz, M. & Resnick, M. A. Interactions between the tumor suppressor p53 and immune responses. Curr. Opin. Oncol. 25, 85–92 (2013). This review explores the relationship between p53 and the innate immune response with particular emphasis on the TLR pathway and its implications for cancer therapy.

    CAS  PubMed  Google Scholar 

  38. Rivas, C., Aaronson, S. A. & Munoz-Fontela, C. Dual Role of p53 in innate antiviral immunity. Viruses 2, 298–313 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Forys, J. T. et al. ARF and p53 coordinate tumor suppression of an oncogenic IFN-β-STAT1-ISG15 signaling axis. Cell Rep. 7, 514–526 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Huang, Y. F., Wee, S., Gunaratne, J., Lane, D. P. & Bulavin, D. V. Isg15 controls p53 stability and functions. Cell Cycle 13, 2200–2210 (2014).

    PubMed  Google Scholar 

  41. Menendez, D. & Anderson, C. W. p53 versus ISG15: stop, you're killing me. Cell Cycle 13, 2160–2161 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Mori, T. et al. Identification of the interferon regulatory factor 5 gene (IRF-5) as a direct target for p53. Oncogene 21, 2914–2918 (2002).

    CAS  PubMed  Google Scholar 

  43. Munoz-Fontela, C. et al. Transcriptional role of p53 in interferon-mediated antiviral immunity. J. Exp. Med. 205, 1929–1938 (2008). This paper identifies a positive feedback loop between the transcriptional programme of p53 and the induction of type I IFN during viral infection.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Shatz, M., Menendez, D. & Resnick, M. A. The human TLR innate immune gene family is differentially influenced by DNA stress and p53 status in cancer cells. Cancer Res. 72, 3948–3957 (2012). This work provides evidence that several TLRs are directly transactivated by p53.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Takaoka, A. et al. Integration of interferon-alpha/beta signalling to p53 responses in tumour suppression and antiviral defence. Nature 424, 516–523 (2003). The first identification of crosstalk between p53 and type I IFN. This study provides the first evidence that p53 is transcriptionally activated by IFN in response to both oncogenic stress and viral infection.

    CAS  PubMed  Google Scholar 

  46. Taura, M. et al. p53 regulates Toll-like receptor 3 expression and function in human epithelial cell lines. Mol. Cell. Biol. 28, 6557–6567 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Yanai, H. et al. Role of IFN regulatory factor 5 transcription factor in antiviral immunity and tumor suppression. Proc. Natl Acad. Sci. USA 104, 3402–3407 (2007).

    CAS  PubMed  Google Scholar 

  48. Jung, D. J. et al. Foxp3 expression in p53-dependent DNA damage responses. J. Biol. Chem. 285, 7995–8002 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kawashima, H. et al. Tumor suppressor p53 inhibits systemic autoimmune diseases by inducing regulatory T cells. J. Immunol. 191, 3614–3623 (2013).

    CAS  PubMed  Google Scholar 

  50. Singh, N. et al. CD4(+)CD25(+) regulatory T cells resist a novel form of CD28- and Fas-dependent p53-induced T cell apoptosis. J. Immunol. 184, 94–104 (2010).

    CAS  PubMed  Google Scholar 

  51. Takatori, H., Kawashima, H., Suzuki, K. & Nakajima, H. Role of p53 in systemic autoimmune diseases. Crit. Rev. Immunol. 34, 509–516 (2014).

    CAS  PubMed  Google Scholar 

  52. He, X. Y. et al. p53 in the myeloid lineage modulates an inflammatory microenvironment limiting initiation and invasion of intestinal tumors. Cell Rep. 13, 888–897 (2015).

    CAS  PubMed  Google Scholar 

  53. Lujambio, A. et al. Non-cell-autonomous tumor suppression by p53. Cell 153, 449–460 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Raj, N. & Attardi, L. D. Tumor suppression: 53 alters immune surveillance to restrain liver cancer. Curr. Biol. 23, R527–R530 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Levine, A. J., Tomasini, R., McKeon, F. D., Mak, T. W. & Melino, G. The p53 family: guardians of maternal reproduction. Nat. Rev. Mol. Cell. Biol. 12, 259–265 (2011).

    CAS  PubMed  Google Scholar 

  56. Munoz-Fontela, C. et al. Resistance to viral infection of super p53 mice. Oncogene 24, 3059–3562 (2005).

    CAS  PubMed  Google Scholar 

  57. Turpin, E. et al. Influenza virus infection increases p53 activity: role of p53 in cell death and viral replication. J. Virol. 79, 8802–8811 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Munoz-Fontela, C. et al. p53 serves as a host antiviral factor that enhances innate and adaptive immune responses to influenza A virus. J. Immunol. 187, 6428–6436 (2011). This study provides the first evidence that p53 affects not only innate but also adaptive immune responses.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Iannello, A., Thompson, T. W., Ardolino, M., Lowe, S. W. & Raulet, D. H. p53-dependent chemokine production by senescent tumor cells supports NKG2D-dependent tumor elimination by natural killer cells. J. Exp. Med. 210, 2057–2069 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Yan, W. et al. Transcriptional analysis of immune-related gene expression in p53-deficient mice with increased susceptibility to influenza A virus infection. BMC Med. Genom. 8, 52 (2015).

    Google Scholar 

  61. O'Shea, C. C. & Fried, M. Modulation of the ARF-p53 pathway by the small DNA tumor viruses. Cell Cycle 4, 449–452 (2005).

    CAS  PubMed  Google Scholar 

  62. Pampin, M., Simonin, Y., Blondel, B., Percherancier, Y. & Chelbi-Alix, M. K. Cross talk between PML and p53 during poliovirus infection: implications for antiviral defense. J. Virol. 80, 8582–8592 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Gay, N. J., Symmons, M. F., Gangloff, M. & Bryant, C. E. Assembly and localization of Toll-like receptor signalling complexes. Nat. Rev. Immunol. 14, 546–558 (2014).

    CAS  PubMed  Google Scholar 

  64. Mills, K. H. TLR-dependent T cell activation in autoimmunity. Nat. Rev. Immunol. 11, 807–822 (2011).

    CAS  PubMed  Google Scholar 

  65. O'Neill, L. A., Golenbock, D. & Bowie, A. G. The history of Toll-like receptors — redefining innate immunity. Nat. Rev. Immunol. 13, 453–460 (2013).

    CAS  PubMed  Google Scholar 

  66. Textor, S. et al. Human NK cells are alerted to induction of p53 in cancer cells by upregulation of the NKG2D ligands ULBP1 and ULBP2. Cancer Res. 71, 5998–6009 (2011).

    CAS  PubMed  Google Scholar 

  67. Balikova, A., Jaager, K., Viil, J., Maimets, T. & Kadaja-Saarepuu, L. Leukocyte marker CD43 promotes cell growth in co-operation with β-catenin in non-hematopoietic cancer cells. Int. J. Oncol. 41, 299–309 (2012).

    CAS  PubMed  Google Scholar 

  68. Clark, M. C. & Baum, L. G. T cells modulate glycans on CD43 and CD45 during development and activation, signal regulation, and survival. Ann. NY Acad. Sci. 1253, 58–67 (2012).

    CAS  PubMed  Google Scholar 

  69. Kadaja-Saarepuu, L. et al. CD43 promotes cell growth and helps to evade FAS-mediated apoptosis in non-hematopoietic cancer cells lacking the tumor suppressors p53 or ARF. Oncogene 27, 1705–1715 (2008).

    CAS  PubMed  Google Scholar 

  70. Kadaja-Saarepuu, L., Looke, M., Balikova, A. & Maimets, T. Tumor suppressor p53 down-regulates expression of human leukocyte marker CD43 in non-hematopoietic tumor cells. Int. J. Oncol. 40, 567–576 (2012).

    CAS  PubMed  Google Scholar 

  71. Herkel, J. et al. Autoimmunity to the p53 protein is a feature of systemic lupus erythematosus (SLE) related to anti-DNA antibodies. J. Autoimmun. 17, 63–69 (2001).

    CAS  PubMed  Google Scholar 

  72. Leech, M. et al. The tumour suppressor gene p53 modulates the severity of antigen-induced arthritis and the systemic immune response. Clin. Exp. Immunol. 152, 345–353 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Okuda, Y., Okuda, M. & Bernard, C. C. Regulatory role of p53 in experimental autoimmune encephalomyelitis. J. Neuroimmunol. 135, 29–37 (2003).

    CAS  PubMed  Google Scholar 

  74. Simelyte, E. et al. Regulation of arthritis by p53: critical role of adaptive immunity. Arthritis Rheum. 52, 1876–1884 (2005).

    CAS  PubMed  Google Scholar 

  75. Yamanishi, Y. et al. Regulation of joint destruction and inflammation by p53 in collagen-induced arthritis. Am. J. Pathol. 160, 123–130 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Yamanishi, Y. et al. Regional analysis of p53 mutations in rheumatoid arthritis synovium. Proc. Natl Acad. Sci. USA 99, 10025–10030 (2002).

    CAS  PubMed  Google Scholar 

  77. Kovacs, B. et al. Antibodies against p53 in sera from patients with systemic lupus erythematosus and other rheumatic diseases. Arthritis Rheum. 40, 980–982 (1997).

    CAS  PubMed  Google Scholar 

  78. Chauhan, R., Handa, R., Das, T. P. & Pati, U. Over-expression of TATA binding protein (TBP) and p53 and autoantibodies to these antigens are features of systemic sclerosis, systemic lupus erythematosus and overlap syndromes. Clin. Exp. Immunol. 136, 574–584 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Hara, T. et al. Anti-p53 autoantibody in systemic sclerosis: association with limited cutaneous systemic sclerosis. J. Rheumatol. 35, 451–457 (2008).

    CAS  PubMed  Google Scholar 

  80. Kuhn, H. M. et al. p53 autoantibodies in patients with autoimmune diseases: a quantitative approach. Autoimmunity 31, 229–235 (1999).

    CAS  PubMed  Google Scholar 

  81. Mimura, Y. et al. Anti-p53 antibodies in patients with dermatomyositis/polymyositis. Clin. Rheumatol. 26, 1328–1331 (2007).

    PubMed  Google Scholar 

  82. Balomenos, D. et al. The cell cycle inhibitor p21 controls T-cell proliferation and sex-linked lupus development. Nat. Med. 6, 171–176 (2000).

    CAS  PubMed  Google Scholar 

  83. Salvador, J. M. et al. Mice lacking the p53-effector gene Gadd45a develop a lupus-like syndrome. Immunity 16, 499–508 (2002).

    CAS  PubMed  Google Scholar 

  84. Santiago-Raber, M. L. et al. Role of cyclin kinase inhibitor p21 in systemic autoimmunity. J. Immunol. 167, 4067–4074 (2001).

    CAS  PubMed  Google Scholar 

  85. Cheon, H., Borden, E. C. & Stark, G. R. Interferons and their stimulated genes in the tumor microenvironment. Semin. Oncol. 41, 156–173 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. McDermott, U. et al. Effect of p53 status and STAT1 on chemotherapy-induced, Fas-mediated apoptosis in colorectal cancer. Cancer Res. 65, 8951–8960 (2005).

    CAS  PubMed  Google Scholar 

  87. Youlyouz-Marfak, I. et al. Identification of a novel p53-dependent activation pathway of STAT1 by antitumour genotoxic agents. Cell Death Differ. 15, 376–385 (2008).

    CAS  PubMed  Google Scholar 

  88. Lowe, J. M. et al. p53 and NF-κB coregulate proinflammatory gene responses in human macrophages. Cancer Res. 74, 2182–2192 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Margulies, L. & Sehgal, P. B. Modulation of the human interleukin-6 promoter (IL-6) and transcription factor C/EBP β (NF-IL6) activity by p53 species. J. Biol. Chem. 268, 15096–15100 (1993).

    CAS  PubMed  Google Scholar 

  90. Santhanam, U., Ray, A. & Sehgal, P. B. Repression of the interleukin 6 gene promoter by p53 and the retinoblastoma susceptibility gene product. Proc. Natl Acad. Sci. USA 88, 7605–7609 (1991).

    CAS  PubMed  Google Scholar 

  91. Gudkov, A. V., Gurova, K. V. & Komarova, E. A. Inflammation and p53: a tale of two stresses. Genes Cancer 2, 503–516 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Komarova, E. A. et al. p53 is a suppressor of inflammatory response in mice. FASEB J. 19, 1030–1032 (2005).

    CAS  PubMed  Google Scholar 

  93. Park, J. S. et al. p53 controls autoimmune arthritis via STAT-mediated regulation of the Th17 cell/Treg cell balance in mice. Arthritis Rheum. 65, 949–959 (2013).

    CAS  PubMed  Google Scholar 

  94. Zheng, S. J., Lamhamedi-Cherradi, S. E., Wang, P., Xu, L. & Chen, Y. H. Tumor suppressor p53 inhibits autoimmune inflammation and macrophage function. Diabetes 54, 1423–1428 (2005).

    CAS  PubMed  Google Scholar 

  95. Arandjelovic, S. & Ravichandran, K. S. Phagocytosis of apoptotic cells in homeostasis. Nat. Immunol. 16, 907–917 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Elliott, M. R. & Ravichandran, K. S. Clearance of apoptotic cells: implications in health and disease. J. Cell Biol. 189, 1059–1070 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Fuchs, Y. & Steller, H. Programmed cell death in animal development and disease. Cell 147, 742–758 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Nagata, S. Apoptosis and autoimmune diseases. Ann. NY Acad. Sci. 1209, 10–16 (2010).

    CAS  PubMed  Google Scholar 

  99. Nagata, S., Hanayama, R. & Kawane, K. Autoimmunity and the clearance of dead cells. Cell 140, 619–630 (2010).

    CAS  PubMed  Google Scholar 

  100. Kobayashi, N. et al. TIM-1 and TIM-4 glycoproteins bind phosphatidylserine and mediate uptake of apoptotic cells. Immunity 27, 927–940 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Medina, C. B. & Ravichandran, K. S. Do not let death do us part: 'find-me' signals in communication between dying cells and the phagocytes. Cell Death Differ. 23, 979–989 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Penberthy, K. K. & Ravichandran, K. S. Apoptotic cell recognition receptors and scavenger receptors. Immunol. Rev. 269, 44–59 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Hochreiter-Hufford, A. & Ravichandran, K. S. Clearing the dead: apoptotic cell sensing, recognition, engulfment, and digestion. Cold Spring Harb. Perspect. Biol. 5, a008748 (2013).

    PubMed  PubMed Central  Google Scholar 

  104. Miyanishi, M. et al. Identification of Tim4 as a phosphatidylserine receptor. Nature 450, 435–439 (2007).

    CAS  PubMed  Google Scholar 

  105. Rodriguez-Manzanet, R. et al. T and B cell hyperactivity and autoimmunity associated with niche-specific defects in apoptotic body clearance in TIM-4-deficient mice. Proc. Natl Acad. Sci. USA 107, 8706–8711 (2010).

    CAS  PubMed  Google Scholar 

  106. Chipuk, J. E. & Green, D. R. Dissecting p53-dependent apoptosis. Cell Death Differ. 13, 994–1002 (2006).

    CAS  PubMed  Google Scholar 

  107. Green, D. R. & Kroemer, G. Cytoplasmic functions of the tumour suppressor p53. Nature 458, 1127–1130 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Oren, M. Decision making by p53: life, death and cancer. Cell Death Differ. 10, 431–442 (2003).

    CAS  PubMed  Google Scholar 

  109. Yoon, K. W. et al. Control of signaling-mediated clearance of apoptotic cells by the tumor suppressor p53. Science 349, 1261669 (2015). This study demonstrates that p53-induced expression of DD1 α is a vital phase for the phagocytic engulfment process of dead cells, which then facilitates the stepwise priming of immune surveillance.

    PubMed  PubMed Central  Google Scholar 

  110. Zitvogel, L. & Kroemer, G. Cancer. A p53-regulated immune checkpoint relevant to cancer. Science 349, 476–477 (2015). This review summarizes a previously unrecognized function of p53: p53-induced expression of DD1 α promotes the clearance of dead cells by promoting engulfment by macrophages. Expression of DD1 α on T cells inhibits T cell function. Thus, p53 offers protection from inflammatory disease caused by the accumulation of apoptotic cells, and its suppression of T cells might help cancer cells to escape immune detection.

    CAS  PubMed  Google Scholar 

  111. Flies, D. B. et al. Coinhibitory receptor PD-1H preferentially suppresses CD4(+) T cell-mediated immunity. J. Clin. Invest. 124, 1966–1975 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Flies, D. B., Wang, S., Xu, H. & Chen, L. Cutting edge: a monoclonal antibody specific for the programmed death-1 homolog prevents graft-versus-host disease in mouse models. J. Immunol. 187, 1537–1541 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Sakr, M. A. et al. GI24 enhances tumor invasiveness by regulating cell surface membrane-type 1 matrix metalloproteinase. Cancer Sci. 101, 2368–2374 (2010).

    CAS  PubMed  Google Scholar 

  114. Wang, L. et al. VISTA, a novel mouse Ig superfamily ligand that negatively regulates T cell responses. J. Exp. Med. 208, 577–592 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Sharma, P. & Allison, J. P. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 161, 205–214 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Zou, W., Wolchok, J. D. & Chen, L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci. Transl. Med. 8, 328rv4 (2016).

    PubMed  PubMed Central  Google Scholar 

  118. Chen, P. L. et al. Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov. 6, 827–837 (2016).

    PubMed  PubMed Central  Google Scholar 

  119. Baksh, K. & Weber, J. Immune checkpoint protein inhibition for cancer: preclinical justification for CTLA-4 and PD-1 blockade and new combinations. Semin. Oncol. 42, 363–377 (2015).

    CAS  PubMed  Google Scholar 

  120. Baumeister, S. H., Freeman, G. J., Dranoff, G. & Sharpe, A. H. Coinhibitory pathways in immunotherapy for cancer. Annu. Rev. Immunol. 34, 539–573 (2016).

    CAS  PubMed  Google Scholar 

  121. Haymaker, C., Wu, R., Bernatchez, C. & Radvanyi, L. PD-1 and BTLA and CD8(+) T-cell “exhaustion” in cancer: “exercising” an alternative viewpoint. Oncoimmunology 1, 735–738 (2012).

    PubMed  PubMed Central  Google Scholar 

  122. Le Mercier, I., Lines, J. L. & Noelle, R. J. Beyond CTLA-4 and PD-1, the generation Z of negative checkpoint regulators. Front. Immunol. 6, 418 (2015).

    PubMed  PubMed Central  Google Scholar 

  123. Deng, L. et al. Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J. Clin. Invest. 124, 687–695 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Ngiow, S. F., Teng, M. W. & Smyth, M. J. Prospects for TIM3-targeted antitumor immunotherapy. Cancer Res. 71, 6567–6571 (2011).

    CAS  PubMed  Google Scholar 

  125. Huang, R. Y. et al. LAG3 and PD1 co-inhibitory molecules collaborate to limit CD8+ T cell signaling and dampen antitumor immunity in a murine ovarian cancer model. Oncotarget 6, 27359–27377 (2015).

    PubMed  PubMed Central  Google Scholar 

  126. Nguyen, L. T. & Ohashi, P. S. Clinical blockade of PD1 and LAG3—potential mechanisms of action. Nat. Rev. Immunol. 15, 45–56 (2015).

    CAS  PubMed  Google Scholar 

  127. Nittner, D. et al. Synthetic lethality between Rb, 53 and Dicer or miR-17-92 in retinal progenitors suppresses retinoblastoma formation. Nat. Cell Biol. 14, 958–965 (2012).

    CAS  PubMed  Google Scholar 

  128. Sachdeva, M. et al. p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc. Natl Acad. Sci. USA 106, 3207–3212 (2009).

    CAS  PubMed  Google Scholar 

  129. Suzuki, H. I. et al. Modulation of microRNA processing by p53. Nature 460, 529–533 (2009).

    CAS  PubMed  Google Scholar 

  130. Cortez, M. A. et al. PDL1 Regulation by p53 via miR-34. J. Natl Cancer Inst. 108, djv303 (2016).

    PubMed  Google Scholar 

  131. Banchereau, J. & Steinman, R. M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    CAS  PubMed  Google Scholar 

  132. Hashimoto, D., Miller, J. & Merad, M. Dendritic cell and macrophage heterogeneity in vivo. Immunity 35, 323–335 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Ballesteros-Tato, A., Leon, B., Lee, B. O., Lund, F. E. & Randall, T. D. Epitope-specific regulation of memory programming by differential duration of antigen presentation to influenza-specific CD8(+) T cells. Immunity 41, 127–140 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Gasparini, C., Tommasini, A. & Zauli, G. The MDM2 inhibitor Nutlin-3 modulates dendritic cell-induced T cell proliferation. Hum. Immunol. 73, 342–345 (2012).

    CAS  PubMed  Google Scholar 

  135. Herzer, K. et al. Upregulation of major histocompatibility complex class I on liver cells by hepatitis C virus core protein via p53 and TAP1 impairs natural killer cell cytotoxicity. J. Virol. 77, 8299–8309 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Wang, B., Niu, D., Lai, L. & Ren, E. C. p53 increases MHC class I expression by upregulating the endoplasmic reticulum aminopeptidase ERAP1. Nat. Commun. 4, 2359 (2013).

    PubMed  PubMed Central  Google Scholar 

  137. Yu, X., Harris, S. L. & Levine, A. J. The regulation of exosome secretion: a novel function of the p53 protein. Cancer Res. 66, 4795–4801 (2006).

    CAS  PubMed  Google Scholar 

  138. Chaput, N. et al. Dendritic cell derived-exosomes: biology and clinical implementations. J. Leukoc. Biol. 80, 471–478 (2006).

    CAS  PubMed  Google Scholar 

  139. Sobo-Vujanovic, A., Munich, S. & Vujanovic, N. L. Dendritic-cell exosomes cross-present Toll-like receptor-ligands and activate bystander dendritic cells. Cell. Immunol. 289, 119–127 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Nguyen, M. L. et al. p53 and hTERT determine sensitivity to viral apoptosis. J. Virol. 81, 12985–12995 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Liu, G. & Park, Y. J., Tsuruta, Y., Lorne, E. & Abraham, E. p53 Attenuates lipopolysaccharide-induced NF-κB activation and acute lung injury. J. Immunol. 182, 5063–5071 (2009).

    CAS  PubMed  Google Scholar 

  142. Madenspacher, J. H. et al. p53 Integrates host defense and cell fate during bacterial pneumonia. J. Exp. Med. 210, 891–904 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Barre, B. & Perkins, N. D. The Skp2 promoter integrates signaling through the NF-κB, 53, and Akt/GSK3β pathways to regulate autophagy and apoptosis. Mol. Cell 38, 524–538 (2010).

    CAS  PubMed  Google Scholar 

  144. Gorgoulis, V. G. et al. p53 activates ICAM-1 (CD54) expression in an NF-κB-independent manner. EMBO J. 22, 1567–1578 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Garcia, M. A. et al. Antiviral action of the tumor suppressor ARF. EMBO J. 25, 4284–4292 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Garcia, M. A. et al. Activation of NF-κB pathway by virus infection requires Rb expression. PLoS ONE 4, e6422 (2009).

    PubMed  PubMed Central  Google Scholar 

  147. Li, S. et al. The tumor suppressor PTEN has a critical role in antiviral innate immunity. Nat. Immunol. 17, 241–249 (2016).

    CAS  PubMed  Google Scholar 

  148. Knudsen, E. S., Sexton, C. R. & Mayhew, C. N. Role of the retinoblastoma tumor suppressor in the maintenance of genome integrity. Curr. Mol. Med. 6, 749–757 (2006).

    CAS  PubMed  Google Scholar 

  149. Manning, A. L. & Dyson, N. J. RB: mitotic implications of a tumour suppressor. Nat. Rev. Cancer 12, 220–226 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Markey, M. P. et al. Loss of the retinoblastoma tumor suppressor: differential action on transcriptional programs related to cell cycle control and immune function. Oncogene 26, 6307–6318 (2007).

    CAS  PubMed  Google Scholar 

  151. van den Heuvel, S. & Dyson, N. J. Conserved functions of the pRB and E2F families. Nat. Rev. Mol. Cell. Biol. 9, 713–724 (2008).

    CAS  PubMed  Google Scholar 

  152. Knudsen, E. S. & Knudsen, K. E. Tailoring to RB: tumour suppressor status and therapeutic response. Nat. Rev. Cancer 8, 714–724 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Chen, H. Z., Tsai, S. Y. & Leone, G. Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nat. Rev. Cancer 9, 785–797 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Dick, F. A. & Rubin, S. M. Molecular mechanisms underlying RB protein function. Nat. Rev. Mol. Cell. Biol. 14, 297–306 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Hutcheson, J., Witkiewicz, A. K. & Knudsen, E. S. The RB tumor suppressor at the intersection of proliferation and immunity: relevance to disease immune evasion and immunotherapy. Cell Cycle 14, 3812–3829 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Taura, M. et al. Rb/E2F1 regulates the innate immune receptor Toll-like receptor 3 in epithelial cells. Mol. Cell. Biol. 32, 1581–1590 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Ferrari, R. et al. Adenovirus small E1A employs the lysine acetylases p300/CBP and tumor suppressor Rb to repress select host genes and promote productive virus infection. Cell Host Microbe 16, 663–676 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Hutcheson, J. et al. Retinoblastoma protein potentiates the innate immune response in hepatocytes: significance for hepatocellular carcinoma. Hepatology 60, 1231–1240 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Zheng, Y., Stamminger, T. & Hearing, P. E2F/Rb family proteins mediate interferon induced repression of adenovirus immediate early transcription to promote persistent viral infection. PLoS Pathog. 12, e1005415 (2016).

    PubMed  PubMed Central  Google Scholar 

  160. Buckler, J. L., Liu, X. & Turka, L. A. Regulation of T-cell responses by PTEN. Immunol. Rev. 224, 239–248 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Huang, Y. H. & Sauer, K. Lipid signaling in T-cell development and function. Cold Spring Harb. Perspect. Biol. 2, a002428 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Di Cristofano, A. et al. Impaired Fas response and autoimmunity in Pten+/− mice. Science 285, 2122–2125 (1999).

    CAS  PubMed  Google Scholar 

  163. Hagenbeek, T. J. et al. The loss of PTEN allows TCR αβlineage thymocytes to bypass IL-7 and pre-TCR-mediated signaling. J. Exp. Med. 200, 883–894 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Podsypanina, K. et al. Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc. Natl Acad. Sci. USA 96, 1563–1568 (1999).

    CAS  PubMed  Google Scholar 

  165. Suzuki, A. et al. High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice. Curr. Biol. 8, 1169–1178 (1998).

    CAS  PubMed  Google Scholar 

  166. Suzuki, A. et al. T cell-specific loss of Pten leads to defects in central and peripheral tolerance. Immunity 14, 523–534 (2001).

    CAS  PubMed  Google Scholar 

  167. Bluml, S. et al. Phosphatase and tensin homolog (PTEN) in antigen-presenting cells controls Th17- mediated autoimmune arthritis. Arthritis Res. Ther. 17, 230 (2015).

    PubMed  PubMed Central  Google Scholar 

  168. Liu, X. et al. Distinct roles for PTEN in prevention of T cell lymphoma and autoimmunity in mice. J. Clin. Invest. 120, 2497–2507 (2010). This study strongly suggests multiple and distinct regulatory roles for PTEN in the molecular pathogenesis of lymphoma and autoimmunity.

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Hawse, W. F. et al. Cutting edge: differential regulation of PTEN by TCR, Akt, and FoxO1 controls CD4+ T cell fate decisions. J. Immunol. 194, 4615–4619 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Peng, W. et al. Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov. 6, 202–216 (2016).

    CAS  PubMed  Google Scholar 

  171. Dominguez-Brauer, C., Brauer, P. M., Chen, Y. J., Pimkina, J. & Raychaudhuri, P. Tumor suppression by ARF: gatekeeper and caretaker. Cell Cycle 9, 86–89 (2010).

    CAS  PubMed  Google Scholar 

  172. Lowe, S. W. & Sherr, C. J. Tumor suppression by Ink4a-Arf: progress and puzzles. Curr. Opin. Genet. Dev. 13, 77–83 (2003).

    CAS  PubMed  Google Scholar 

  173. Ginsberg, D. E2F3-a novel repressor of the ARF/p53 pathway. Dev. Cell 6, 742–743 (2004).

    CAS  PubMed  Google Scholar 

  174. Sherr, C. J. Divorcing ARF and p53: an unsettled case. Nat. Rev. Cancer 6, 663–673 (2006).

    CAS  PubMed  Google Scholar 

  175. Matheu, A., Maraver, A. & Serrano, M. The Arf/p53 pathway in cancer and aging. Cancer Res. 68, 6031–6034 (2008).

    CAS  PubMed  Google Scholar 

  176. Traves, P. G., Luque, A. & Hortelano, S. Macrophages, inflammation, and tumor suppressors: ARF, a new player in the game. Mediators Inflamm. 2012, 568783 (2012).

    PubMed  PubMed Central  Google Scholar 

  177. Gonzalez-Navarro, H. et al. p19(ARF) deficiency reduces macrophage and vascular smooth muscle cell apoptosis and aggravates atherosclerosis. J. Am. Coll. Cardiol. 55, 2258–2268 (2010).

    CAS  PubMed  Google Scholar 

  178. Ries, S. J. et al. Loss of p14ARF in tumor cells facilitates replication of the adenovirus mutant dl1520 (ONYX-015). Nat. Med. 6, 1128–1233 (2000).

    CAS  PubMed  Google Scholar 

  179. Sandoval, R. et al. Different requirements for the cytostatic and apoptotic effects of type I interferons. Induction of apoptosis requires ARF but not p53 in osteosarcoma cell lines. J. Biol. Chem. 279, 32275–32280 (2004).

    CAS  PubMed  Google Scholar 

  180. Traves, P. G., Lopez-Fontal, R., Luque, A. & Hortelano, S. The tumor suppressor ARF regulates innate immune responses in mice. J. Immunol. 187, 6527–6538 (2011).

    CAS  PubMed  Google Scholar 

  181. Jasin, M. & Rothstein, R. Repair of strand breaks by homologous recombination. Cold Spring Harb. Perspect. Biol. 5, a012740 (2013).

    PubMed  PubMed Central  Google Scholar 

  182. King, M. C. “The race” to clone BRCA1. Science 343, 1462–1465 (2014).

    CAS  PubMed  Google Scholar 

  183. King, M. C., Marks, J. H., Mandell, J. B. & New York Breast Cancer Study Group. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science 302, 643–646 (2003).

    CAS  PubMed  Google Scholar 

  184. Prakash, R., Zhang, Y., Feng, W. & Jasin, M. Homologous recombination and human health: the roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harb. Perspect. Biol. 7, a016600 (2015).

    PubMed  PubMed Central  Google Scholar 

  185. Buckley, N. E. et al. BRCA1 regulates IFN-γ signaling through a mechanism involving the type I IFNs. Mol. Cancer Res. 5, 261–270 (2007).

    CAS  PubMed  Google Scholar 

  186. Higuchi, T. et al. CTLA-4 blockade synergizes therapeutically with PARP inhibition in BRCA1-deficient ovarian cancer. Cancer Immunol. Res. 3, 1257–1268 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Jeong, J. H., Jo, A., Park, P., Lee, H. & Lee, H. O. Brca2 deficiency leads to T cell loss and immune dysfunction. Mol. Cells 38, 251–258 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Strickland, K. C. et al. Association and prognostic significance of BRCA1/2-mutation status with neoantigen load, number of tumor-infiltrating lymphocytes and expression of PD-1/PD-L1 in high grade serous ovarian cancer. Oncotarget 7, 13587–13598 (2016).

    PubMed  PubMed Central  Google Scholar 

  189. Spranger, S., Bao, R. & Gajewski, T. F. Melanoma-intrinsic β-catenin signaling prevents anti-tumour immunity. Nature 523, 231–235 (2015).

    CAS  PubMed  Google Scholar 

  190. Casey, S. C. et al. MYC regulates the antitumor immune responses through CD47 and PD-L1. Science 352, 227–231 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Spranger, S., Gajewski, T. F. & Kline, J. MYC - a thorn in the side of cancer immunity. Cell Res. 26, 639–640 (2016).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the members of the Lee laboratory for their helpful discussions. This work is supported by the grants 1RO1CA195534, 1R01CA203552, PO1CA80058, MGH ECOR funding, and the Breast Cancer Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stuart A. Aaronson or Sam W. Lee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

ARF–p53 tumour suppressor pathway

ARF regulates p53 activity through the direct binding to MDM2 to neutralize its function, which initiates transcription factor activity of p53. The ARF–p53 axis is essential for the detection and removal of damaged cells, and the inactivation of ARF and p53 occurs in a mutually exclusive manner in human cancers.

Immune checkpoint pathways

Immune checkpoints are used by the host to regulate immune responses and prevent immune hyperactivation from harming normal tissues.

'Eat-me' signal

Apoptotic cells expose markers known as eat-me signals on their surface that are recognized by phagocytes through specific engulfment receptors.

Congenital retinoblastoma

Congenital retinoblastoma is the most common eye tumour in children and the third most common cancer overall affecting children; it is caused by a germline mutation in RB1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muñoz-Fontela, C., Mandinova, A., Aaronson, S. et al. Emerging roles of p53 and other tumour-suppressor genes in immune regulation. Nat Rev Immunol 16, 741–750 (2016). https://doi.org/10.1038/nri.2016.99

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri.2016.99

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer