Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Multi-receptor detection of individual bacterial products by the innate immune system

This article has been updated

Key Points

  • The innate immune system can detect bacteria by sensing their cell-wall-associated molecules, including lipopolysaccharide, lipoproteins, peptidoglycan and flagellin. Each of these types of molecules is defined as a pathogen-associated molecular pattern (PAMP) and has the capacity to induce inflammatory responses to ensure host defence.

  • Three common themes govern innate immune responses to bacteria. These themes include the use of multiple host receptors to detect individual PAMPs, the use of cytosolic supramolecular organizing centres (SMOCs) to promote inflammation and the use of complementary SMOC-dependent activities to ensure host defence.

  • The best-defined SMOCs are the myddosome, which is assembled on bacterial detection by Toll-like receptors, and the inflammasome, which is assembled on bacterial detection by various cytosolic receptors.

  • Pathogenic and commensal bacteria have evolved mechanisms to avoid recognition by pattern-recognition receptors, particularly by altering the structure of their PAMPs. Multiple evasion strategies are shared by commensals and pathogens alike.

Abstract

The receptors of the innate immune system detect specific microbial ligands to promote effective inflammatory and adaptive immune responses. Although this idea is well appreciated, studies in recent years have highlighted the complexity of innate immune detection, with multiple host receptors recognizing the same microbial ligand. Understanding the collective actions of diverse receptors that recognize common microbial signatures represents a new frontier in the study of innate immunity, and is the focus of this Review. Here, we discuss examples of individual bacterial cell wall components that are recognized by at least two and as many as four different receptors of the innate immune system. These receptors survey the extracellular or cytosolic spaces for their cognate ligands and operate in a complementary manner to induce distinct cellular responses. We further highlight that, despite this genetic diversity in receptors and pathways, common features exist to explain the operation of these receptors. These common features may help to provide unifying organizing principles associated with host defence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Four receptors induce five lipopolysaccharide response pathways to promote inflammation.
Figure 2: Three receptors stimulate two pathways to induce inflammatory responses to flagellin.
Figure 3: Three receptors and pathways induce inflammatory responses to lipoproteins.
Figure 4: Three receptors and pathways induce inflammatory responses to peptidoglycan.

Similar content being viewed by others

Change history

  • 15 May 2017

    In the version of this article initially published online, several instances of 'acetylated' have been corrected to 'acylated'. In addition, the definition of 'AIM (absent in melanoma)' has been corrected to 'absent in melanoma 2 (AIM2)'. These errors have been corrected in the HTML and PDF versions of the article.

References

  1. Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. & Medzhitov, R. Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cell 118, 229–241 (2004).

    CAS  PubMed  Google Scholar 

  2. Slack, E. et al. Innate and adaptive immunity cooperate flexibly to maintain host-microbiota mutualism. Science 325, 617–620 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Janeway, C. A. Pillars article: approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol. 54, 1–13 (1989).

    CAS  PubMed  Google Scholar 

  4. Medzhitov, R. Approaching the asymptote: 20 years later. Immunity 30, 766–775 (2009).

    CAS  PubMed  Google Scholar 

  5. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M. & Hoffmann, J. A. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973–983 (1996).

    CAS  PubMed  Google Scholar 

  6. Medzhitov, R., Preston-Hurlburt, P. & Janeway, C. A. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394–397 (1997).

    CAS  PubMed  Google Scholar 

  7. Hayashi, F. et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099–1103 (2001).

    CAS  PubMed  Google Scholar 

  8. Smith, K. D. et al. Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nat. Immunol. 4, 1247–1253 (2003).

    CAS  PubMed  Google Scholar 

  9. Gioannini, T. L. et al. Isolation of an endotoxin-MD-2 complex that produces Toll-like receptor 4-dependent cell activation at picomolar concentrations. Proc. Natl Acad. Sci. USA 101, 4186–4191 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Zanoni, I. et al. CD14 controls the LPS-induced endocytosis of Toll-like receptor 4. Cell 147, 868–880 (2011). This work was the first to demonstrate a broadly utilized TLR4-independent response to LPS, mediated by CD14.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Tan, Y., Zanoni, I., Cullen, T. W., Goodman, A. L. & Kagan, J. C. Mechanisms of Toll-like receptor 4 endocytosis reveal a common immune-evasion strategy used by pathogenic and commensal bacteria. Immunity 43, 909–922 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Takeuchi, O. et al. Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J. Immunol. 169, 10–14 (2002).

    CAS  PubMed  Google Scholar 

  13. Takeuchi, O. et al. Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int. Immunol. 13, 933–940 (2001).

    CAS  PubMed  Google Scholar 

  14. Brubaker, S. W., Bonham, K. S., Zanoni, I. & Kagan, J. C. Innate immune pattern recognition: a cell biological perspective. Annu. Rev. Immunol. 33, 257–290 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wright, S. D., Ramos, R. A., Tobias, P. S., Ulevitch, R. J. & Mathison, J. C. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249, 1431–1433 (1990).

    CAS  PubMed  Google Scholar 

  16. Park, B. S. et al. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 458, 1191–1195 (2009).

    CAS  PubMed  Google Scholar 

  17. Miyake, K. Innate recognition of lipopolysaccharide by CD14 and toll-like receptor 4-MD-2: unique roles for MD-2. Int. Immunopharmacol. 3, 119–128 (2003).

    CAS  PubMed  Google Scholar 

  18. Song, D. H. & Lee, J.-O. Sensing of microbial molecular patterns by Toll-like receptors. Immunol. Rev. 250, 216–229 (2012).

    PubMed  Google Scholar 

  19. Mellman, I. Dendritic cells: master regulators of the immune response. Cancer Immunol. Res. 1, 145–149 (2013).

    CAS  PubMed  Google Scholar 

  20. Medzhitov, R. et al. MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol. Cell 2, 253–258 (1998).

    CAS  PubMed  Google Scholar 

  21. Yamamoto, M. et al. Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN- promoter in the Toll-like receptor signaling. J. Immunol. 169, 6668–6672 (2002).

    CAS  PubMed  Google Scholar 

  22. Oshiumi, H., Matsumoto, M., Funami, K., Akazawa, T. & Seya, T. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3–mediated interferon-β induction. Nat. Immunol. 4, 161–167 (2003).

    CAS  PubMed  Google Scholar 

  23. Horng, T., Barton, G. M. & Medzhitov, R. TIRAP: an adapter molecule in the Toll signaling pathway. Nat. Immunol. 2, 835–841 (2001).

    CAS  PubMed  Google Scholar 

  24. Fitzgerald, K. A., Palsson-McDermott, E. M. & Bowie, A. G. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 413, 78–83 (2001). References 23 and 24 report the discovery of TIRAP, a major factor that regulates TLR signalling. These papers demonstrated that additional factors regulate TLR signalling, leading to successive discoveries of other TLR adaptor proteins.

    CAS  PubMed  Google Scholar 

  25. Fitzgerald, K. A. et al. LPS-TLR4 signaling to IRF-3/7 and NF-kappaB involves the toll adapters TRAM and TRIF. J. Exp. Med. 198, 1043–1055 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Gay, N. J., Symmons, M. F., Gangloff, M. & Bryant, C. E. Assembly and localization of Toll-like receptor signalling complexes. Nat. Rev. Immunol. 14, 546–558 (2014).

    CAS  PubMed  Google Scholar 

  27. Bonham, K. S. et al. A promiscuous lipid-binding protein diversifies the subcellular sites of Toll-like receptor signal transduction. Cell 156, 705–716 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Motshwene, P. G. et al. An oligomeric signaling platform formed by the Toll-like receptor signal transducers MyD88 and IRAK-4. J. Biol. Chem. 284, 25404–25411 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Lin, S.-C., Lo, Y.-C. & Wu, H. Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature 465, 885–890 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kagan, J. C., Magupalli, V. G. & Wu, H. SMOCs: supramolecular organizing centres that control innate immunity. Nat. Rev. Immunol. 14, 821–826 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Yamamoto, M. et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301, 640–643 (2003).

    CAS  PubMed  Google Scholar 

  32. Kagan, J. C. et al. TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-β. Nat. Immunol. 9, 361–368 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol. Cell 10, 417–426 (2002). This report identified the first inflammasome complex and initiated the field of inflammasome biology.

    CAS  PubMed  Google Scholar 

  34. Broz, P. & Dixit, V. M. Inflammasomes: mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 16, 407–420 (2016).

    CAS  PubMed  Google Scholar 

  35. Moltke, von, J., Ayres, J. S., Kofoed, E. M., Chavarría-Smith, J. & Vance, R. E. Recognition of bacteria by inflammasomes. Annu. Rev. Immunol. 31, 73–106 (2013).

    Google Scholar 

  36. Das, S. et al. Brain angiogenesis inhibitor 1 (BAI1) is a pattern recognition receptor that mediates macrophage binding and engulfment of Gram-negative bacteria. Proc. Natl Acad. Sci. USA 108, 2136–2141 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Billings, E. A. et al. The adhesion GPCR BAI1 mediates macrophage ROS production and microbicidal activity against Gram-negative bacteria. Sci. Signal. 9, ra14 (2016).

    PubMed  PubMed Central  Google Scholar 

  38. Nakamura, N. et al. Endosomes are specialized platforms for bacterial sensing and NOD2 signalling. Nature 509, 240–244 (2014).

    CAS  PubMed  Google Scholar 

  39. Park, J. H. et al. RICK/RIP2 mediates innate immune responses induced through Nod1 and Nod2 but not TLRs. J. Immunol. 178, 2380–2386 (2007).

    CAS  PubMed  Google Scholar 

  40. Sorbara, M. T. et al. The protein ATG16L1 suppresses inflammatory cytokines induced by the intracellular sensors Nod1 and Nod2 in an autophagy-independent manner. Immunity 39, 858–873 (2013).

    CAS  PubMed  Google Scholar 

  41. Tan, Y. & Kagan, J. C. A. Cross-disciplinary perspective on the innate immune responses to bacterial lipopolysaccharide. Mol. Cell 54, 212–223 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Hagar, J. A., Powell, D. A., Aachoui, Y., Ernst, R. K. & Miao, E. A. Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science 341, 1250–1253 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kayagaki, N. et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341, 1246–1249 (2013).

    CAS  PubMed  Google Scholar 

  44. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998). References 6 and 44 identified TLR4 as the first human TLR and defined TLR4 as the receptor for LPS, respectively, laying the groundwork for the hypothesis that dedicated receptors for PAMP recognition exist.

    CAS  PubMed  Google Scholar 

  45. Kagan, J. C. & Medzhitov, R. Phosphoinositide-mediated adaptor recruitment controls Toll-like receptor signaling. Cell 125, 943–955 (2006).

    CAS  PubMed  Google Scholar 

  46. Yamamoto, M. et al. TRAM is specifically involved in the Toll-like receptor 4–mediated MyD88-independent signaling pathway. Nat. Immunol. 4, 1144–1150 (2003).

    CAS  PubMed  Google Scholar 

  47. Dunzendorfer, S., Lee, H.-K., Soldau, K. & Tobias, P. S. TLR4 is the signaling but not the lipopolysaccharide uptake receptor. J. Immunol. 173, 1166–1170 (2004).

    CAS  PubMed  Google Scholar 

  48. Chiang, C. Y., Veckman, V., Limmer, K. & David, M. Phospholipase C -2 and intracellular calcium are required for lipopolysaccharide-induced Toll-like receptor 4 (TLR4) endocytosis and interferon regulatory factor 3 (IRF3) activation. J. Biol. Chem. 287, 3704–3709 (2012).

    CAS  PubMed  Google Scholar 

  49. Shi, J. et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514, 187–192 (2014).

    CAS  PubMed  Google Scholar 

  50. Kayagaki, N. et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526, 666–671 (2015).

    CAS  PubMed  Google Scholar 

  51. Shi, J. et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526, 660–665 (2015). References 50 and 51 identified GSDMD as the effector of pyroptosis, one of the main pathways of cell death.

    CAS  PubMed  Google Scholar 

  52. Aglietti, R. A. et al. GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes. Proc. Natl Acad. Sci. USA 113, 7858–7863 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu, X. et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535, 153–158 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ding, J. et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535, 111–116 (2016).

    CAS  PubMed  Google Scholar 

  55. Rühl, S. & Broz, P. Caspase-11 activates a canonical NLRP3 inflammasome by promoting K +efflux. Eur. J. Immunol. 45, 2927–2936 (2015).

    PubMed  Google Scholar 

  56. Aachoui, Y. et al. Caspase-11 protects against bacteria that escape the vacuole. Science 339, 975–978 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kofoed, E. M. & Vance, R. E. Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 477, 592–595 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhao, Y. et al. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477, 596–600 (2011).

    CAS  PubMed  Google Scholar 

  59. Choi, Y. J., Jung, J., Chung, H. K., Im, E. & Rhee, S. H. PTEN regulates TLR5-induced intestinal inflammation by controlling Mal/TIRAP recruitment. FASEB J. 27, 243–254 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Choi, Y. J., Im, E., Chung, H. K., Pothoulakis, C. & Rhee, S. H. TRIF mediates Toll-like receptor 5-induced signaling in intestinal epithelial cells. J. Biol. Chem. 285, 37570–37578 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Parker, D. & Prince, A. Epithelial uptake of flagella initiates proinflammatory signaling. PLoS ONE 8, e59932 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Eaves-Pyles, T. et al. Luminal-applied flagellin is internalized by polarized intestinal epithelial cells and elicits immune responses via the TLR5 dependent mechanism. PLoS ONE 6, e24869 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Kim, Y.-M., Brinkmann, M. M., Paquet, M.-E. & Ploegh, H. L. UNC93B1 delivers nucleotide-sensing toll-like receptors to endolysosomes. Nature 452, 234–238 (2008).

    CAS  PubMed  Google Scholar 

  64. Huh, J. W. et al. UNC93B1 is essential for the plasma membrane localization and signaling of Toll-like receptor 5. Proc. Natl Acad. Sci. USA 111, 7072–7077 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Franchi, L. et al. Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1β in salmonella-infected macrophages. Nat. Immunol. 7, 576–582 (2006).

    CAS  PubMed  Google Scholar 

  66. Miao, E. A. et al. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1β via Ipaf. Nat. Immunol. 7, 569–575 (2006).

    CAS  PubMed  Google Scholar 

  67. Matusiak, M. et al. Flagellin-induced NLRC4 phosphorylation primes the inflammasome for activation by NAIP5. Proc. Natl Acad. Sci. USA 112, 1541–1546 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Case, C. L., Shin, S. & Roy, C. R. Asc and Ipaf inflammasomes direct distinct pathways for caspase-1 activation in response to Legionella pneumophila. Infect. Immun. 77, 1981–1991 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Yoon, S.-I. et al. Structural basis of TLR5-flagellin recognition and signaling. Science 335, 859–864 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Andersen-Nissen, E. et al. Evasion of Toll-like receptor 5 by flagellated bacteria. Proc. Natl Acad. Sci. USA 102, 9247–9252 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Tenthorey, J. L., Kofoed, E. M., Daugherty, M. D., Malik, H. S. & Vance, R. E. Molecular basis for specific recognition of bacterial ligands by NAIP/NLRC4 inflammasomes. Mol. Cell 54, 17–29 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Qu, Y. et al. Phosphorylation of NLRC4 is critical for inflammasome activation. Nature 490, 539–542 (2012).

    CAS  PubMed  Google Scholar 

  73. Suzuki, S. et al. Shigella type III secretion protein MxiI is recognized by Naip2 to induce Nlrc4 inflammasome activation independently of Pkcδ. PLoS Pathog. 10, e1003926 (2014).

    PubMed  PubMed Central  Google Scholar 

  74. Miao, E. A. et al. Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc. Natl Acad. Sci. USA 107, 3076–3080 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Yang, J., Zhao, Y., Shi, J. & Shao, F. Human NAIP and mouse NAIP1 recognize bacterial type III secretion needle protein for inflammasome activation. Proc. Natl Acad. Sci. USA 110, 14408–14403 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Blocker, A., Komoriya, K. & Aizawa, S.-I. Type III secretion systems and bacterial flagella: insights into their function from structural similarities. Proc. Natl Acad. Sci. USA 100, 3027–3030 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Cole, L. E. et al. Toll-like receptor 2-mediated signaling requirements for francisella tularensis live vaccine strain infection of murine macrophages. Infect. Immun. 75, 4127–4137 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Brightbill, H. D. et al. Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science 285, 732–736 (1999).

    CAS  PubMed  Google Scholar 

  79. Aliprantis, A. O. et al. Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science 285, 736–739 (1999).

    CAS  PubMed  Google Scholar 

  80. Khare, S. et al. An NLRP7-containing inflammasome mediates recognition of microbial lipopeptides in human macrophages. Immunity 36, 464–476 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Nakata, T. et al. CD14 directly binds to triacylated lipopeptides and facilitates recognition of the lipopeptides by the receptor complex of Toll-like receptors 2 and 1 without binding to the complex. Cell. Microbiol. 8, 1899–1909 (2006).

    CAS  PubMed  Google Scholar 

  82. Raby, A.-C. et al. Targeting the TLR co-receptor CD14 with TLR2-derived peptides modulates immune responses to pathogens. Sci. Transl Med. 5, 185ra64 (2013).

    PubMed  Google Scholar 

  83. Stuart, L. M. et al. Response to Staphylococcus aureus requires CD36-mediated phagocytosis triggered by the COOH-terminal cytoplasmic domain. J. Cell Biol. 170, 477–485 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Hoebe, K. et al. CD36 is a sensor of diacylglycerides. Nature 433, 523–527 (2005).

    CAS  PubMed  Google Scholar 

  85. Jiang, Z. et al. CD14 is required for MyD88-independent LPS signaling. Nat. Immunol. 6, 565–570 (2005).

    CAS  PubMed  Google Scholar 

  86. Takeuchi, O. et al. Cutting edge: preferentially the R-stereoisomer of the mycoplasmal lipopeptide macrophage-activating lipopeptide-2 activates immune cells through a toll-like receptor 2- and MyD88-dependent signaling pathway. J. Immunol. 164, 554–557 (2000).

    CAS  PubMed  Google Scholar 

  87. Horng, T., Barton, G. M., Flavell, R. A. & Medzhitov, R. The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors. Nature 420, 329–333 (2002).

    CAS  PubMed  Google Scholar 

  88. Yamamoto, M. et al. Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature 420, 324–329 (2002).

    CAS  PubMed  Google Scholar 

  89. Hirschfeld, M. et al. Signaling by toll-like receptor 2 and 4 agonists results in differential gene expression in murine macrophages. Infect. Immun. 69, 1477–1482 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Toshchakov, V. et al. TLR4, but not TLR2, mediates IFN-β–induced STAT1α/β-dependent gene expression in macrophages. Nat. Immunol. 3, 392–398 (2002).

    CAS  PubMed  Google Scholar 

  91. Barbalat, R., Lau, L., Locksley, R. M. & Barton, G. M. Toll-like receptor 2 on inflammatory monocytes induces type I interferon in response to viral but not bacterial ligands. Nat. Immunol. 10, 1200–1207 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Cervantes, J. L. & Dunham-Ems, S. M. Phagosomal signaling by Borrelia burgdorferi in human monocytes involves Toll-like receptor (TLR) 2 and TLR8 cooperativity and TLR8-mediated induction of IFN-β. Proc. Natl Acad. Sci. USA 108, 3683–3688 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Dietrich, N., Lienenklaus, S., Weiss, S. & Gekara, N. O. Murine Toll-like receptor 2 activation induces type I interferon responses from endolysosomal compartments. PLoS ONE 5, e10250 (2010).

    PubMed  PubMed Central  Google Scholar 

  94. Nilsen, N. J. et al. A role for the adaptor proteins TRAM and TRIF in toll-like receptor 2 signaling. J. Biol. Chem. 290, 3209–3222 (2015).

    CAS  PubMed  Google Scholar 

  95. Stack, J. et al. TRAM is required for TLR2 endosomal signaling to type I IFN induction. J. Immunol. 193, 6090–6102 (2014).

    CAS  PubMed  Google Scholar 

  96. Triantafilou, M. et al. Lipoteichoic acid and Toll-like receptor 2 internalization and targeting to the Golgi are lipid raft-dependent. J. Biol. Chem. 279, 40882–40889 (2004).

    CAS  PubMed  Google Scholar 

  97. Motoi, Y. et al. Lipopeptides are signaled by Toll-like receptor 1, 2 and 6 in endolysosomes. Int. Immunol. 26, 563–573 (2014).

    CAS  PubMed  Google Scholar 

  98. Heit, B. et al. Multimolecular signaling complexes enable Syk-mediated signaling of CD36 internalization. Dev. Cell 24, 372–383 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Underhill, D. M. et al. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401, 811–815 (1999).

    CAS  PubMed  Google Scholar 

  100. O'Connell, C. M., Ionova, I. A., Quayle, A. J., Visintin, A. & Ingalls, R. R. Localization of TLR2 and MyD88 to Chlamydia trachomatis inclusions. Evidence for signaling by intracellular TLR2 during infection with an obligate intracellular pathogen. J. Biol. Chem. 281, 1652–1659 (2006).

    CAS  PubMed  Google Scholar 

  101. Radian, A. D., Khare, S., Chu, L. H., Dorfleutner, A. & Stehlik, C. ATP binding by NLRP7 is required for inflammasome activation in response to bacterial lipopeptides. Mol. Immunol. 67, 294–302 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Ozören, N. et al. Distinct roles of TLR2 and the adaptor ASC in IL-1beta/IL-18 secretion in response to Listeria monocytogenes. J. Immunol. 176, 4337–4342 (2006).

    PubMed  Google Scholar 

  103. Zhou, Y. et al. Virulent Mycobacterium bovis Beijing strain activates the NLRP7 inflammasome in THP-1 macrophages. PLoS ONE 11, e0152853 (2016).

    PubMed  PubMed Central  Google Scholar 

  104. Mariathasan, S. et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430, 213–218 (2004).

    CAS  PubMed  Google Scholar 

  105. Wang, L. et al. Enterococcus faecalis lipoteichoic acid-induced NLRP3 inflammasome via the activation of the nuclear factor kappa B pathway. J. Endod. 42, 1093–1100 (2016).

    PubMed  Google Scholar 

  106. Kieser, K. J. & Rubin, E. J. How sisters grow apart: mycobacterial growth and division. Nat. Rev. Microbiol. 12, 550–562 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Chen, G., Shaw, M. H., Kim, Y.-G. & Núñez, G. NOD-like receptors: role in innate immunity and inflammatory disease. Annu. Rev. Pathol. 4, 365–398 (2009).

    CAS  PubMed  Google Scholar 

  108. Wolf, A. J. et al. Hexokinase is an innate immune receptor for the detection of bacterial peptidoglycan. Cell 166, 624–636 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Irving, A. T. et al. The immune receptor NOD1 and kinase RIP2 interact with bacterial peptidoglycan on early endosomes to promote autophagy and inflammatory signaling. Cell Host Microbe 15, 623–635 (2014).

    CAS  PubMed  Google Scholar 

  110. Tanabe, T. et al. Regulatory regions and critical residues of NOD2 involved in muramyl dipeptide recognition. EMBO J. 23, 1587–1597 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Philpott, D. J., Sorbara, M. T., Robertson, S. J., Croitoru, K. & Girardin, S. E. NOD proteins: regulators of inflammation in health and disease. Nat. Rev. Immunol. 14, 9–23 (2013).

    PubMed  Google Scholar 

  112. Martinon, F., Agostini, L., Meylan, E. & Tschopp, J. Identification of bacterial muramyl dipeptide as activator of the NALP3/cryopyrin inflammasome. Curr. Biol. 14, 1929–1934 (2004).

    CAS  PubMed  Google Scholar 

  113. Shimada, T. et al. Staphylococcus aureus evades lysozyme-based peptidoglycan digestion that links phagocytosis, inflammasome activation, and IL-1beta secretion. Cell Host Microbe 7, 38–49 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Vance, R. E., Isberg, R. R. & Portnoy, D. A. Patterns of pathogenesis: discrimination of pathogenic and nonpathogenic microbes by the innate immune system. Cell Host Microbe 6, 10–21 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Blander, J. M. & Sander, L. E. Beyond pattern recognition: five immune checkpoints for scaling the microbial threat. Nat. Rev. Immunol. 12, 215–225 (2012).

    CAS  PubMed  Google Scholar 

  116. Kawahara, K., Tsukano, H., Watanabe, H., Lindner, B. & Matsuura, M. Modification of the structure and activity of lipid A in Yersinia pestis lipopolysaccharide by growth temperature. Infect. Immun. 70, 4092–4098 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Paciello, I. et al. Intracellular Shigella remodels its LPS to dampen the innate immune recognition and evade inflammasome activation. Proc. Natl Acad. Sci. USA 110, E4345–E4354 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Gewirtz, A. T. et al. Helicobacter pylori flagellin evades toll-like receptor 5-mediated innate immunity. J. Infect. Dis. 189, 1914–1920 (2004).

    CAS  PubMed  Google Scholar 

  119. Kao, C.-Y., Sheu, B.-S. & Wu, J.-J. Helicobacter pylori infection: an overview of bacterial virulence factors and pathogenesis. Biomed. J. 39, 14–23 (2016).

    PubMed  PubMed Central  Google Scholar 

  120. Yang, J. et al. Flagellins of Salmonella Typhi and nonpathogenic Escherichia coli are differentially recognized through the NLRC4 pathway in macrophages. J. Innate Immun. 6, 47–57 (2014).

    CAS  PubMed  Google Scholar 

  121. Bera, A., Biswas, R., Herbert, S. & Götz, F. The presence of peptidoglycan O-acetyltransferase in various staphylococcal species correlates with lysozyme resistance and pathogenicity. Infect. Immun. 74, 4598–4604 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Cullen, T. W. et al. Gut microbiota. Antimicrobial peptide resistance mediates resilience of prominent gut commensals during inflammation. Science 347, 170–175 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Maeshima, N. & Fernandez, R. C. Recognition of lipid A variants by the TLR4-MD-2 receptor complex. Front. Cell. Infect. Microbiol. 3, 3 (2013).

    PubMed  PubMed Central  Google Scholar 

  124. Rosadini, C. V. & Kagan, J. C. Microbial strategies for antagonizing Toll-like-receptor signal transduction. Curr. Opin. Immunol. 32, 61–70 (2015).

    CAS  PubMed  Google Scholar 

  125. Baxt, L. A., Garza-Mayers, A. C. & Goldberg, M. B. Bacterial subversion of host innate immune pathways. Science 340, 697–701 (2013).

    CAS  PubMed  Google Scholar 

  126. Mazmanian, S. K., Liu, C. H., Tzianabos, A. O. & Kasper, D. L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122, 107–118 (2005).

    CAS  PubMed  Google Scholar 

  127. Round, J. L. et al. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 332, 974–977 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Komai-Koma, M., Jones, L., Ogg, G. S., Xu, D. & Liew, F. Y. TLR2 is expressed on activated T cells as a costimulatory receptor. Proc. Natl Acad. Sci. USA 101, 3029–3034 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Reynolds, J. M. et al. Toll-like receptor 2 signaling in CD4+ T lymphocytes promotes T helper 17 responses and regulates the pathogenesis of autoimmune disease. Immunity 32, 692–702 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Saraiva, M. & O'Garra, A. The regulation of IL-10 production by immune cells. Nat. Rev. Immunol. 10, 170–181 (2010).

    CAS  PubMed  Google Scholar 

  131. Lage, S. L., Buzzo, C. L. & Amaral, E. P. Cytosolic flagellin-induced lysosomal pathway regulates inflammasome-dependent and-independent macrophage responses. Proc. Natl Acad. Sci. USA 110, E3321–E3330 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Case, C. L. & Roy, C. R. Asc modulates the function of NLRC4 in response to infection of macrophages by Legionella pneumophila. mBio 2, e00117-11 (2011).

    PubMed  PubMed Central  Google Scholar 

  133. Belkaid, Y. & Hand, T. W. Role of the microbiota in immunity and inflammation. Cell 157, 121–141 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Geijtenbeek, T. B. H. & Gringhuis, S. I. Signalling through C-type lectin receptors: shaping immune responses. Nat. Rev. Immunol. 9, 465–479 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Rogers, N. C. et al. Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity 22, 507–517 (2005).

    CAS  PubMed  Google Scholar 

  136. Zhu, L.-L. et al. C-Type lectin receptors Dectin-3 and Dectin-2 form a heterodimeric pattern-recognition receptor for host defense against fungal infection. Immunity 39, 324–334 (2013).

    CAS  PubMed  Google Scholar 

  137. Gringhuis, S. I. et al. Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1β via a noncanonical caspase-8 inflammasome. Nat. Immunol. 13, 246–254 (2012).

    CAS  PubMed  Google Scholar 

  138. Barbalat, R., Ewald, S. E., Mouchess, M. L. & Barton, G. M. Nucleic acid recognition by the innate immune system. Annu. Rev. Immunol. 29, 185–214 (2011).

    CAS  PubMed  Google Scholar 

  139. Lund, J., Sato, A., Akira, S., Medzhitov, R. & Iwasaki, A. Toll-like receptor 9–mediated recognition of herpes simplex virus-2 by plasmacytoid dendritic cells. J. Exp. Med. 198, 513–520 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Ewald, S. E. et al. The ectodomain of Toll-like receptor 9 is cleaved to generate a functional receptor. Nature 456, 658–662 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Ewald, S. E. et al. Nucleic acid recognition by Toll-like receptors is coupled to stepwise processing by cathepsins and asparagine endopeptidase. J. Exp. Med. 208, 643–651 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Oldenburg, M. et al. TLR13 recognizes bacterial 23S rRNA devoid of erythromycin resistance-forming modification. Science 337, 1111–1115 (2012).

    CAS  PubMed  Google Scholar 

  143. Liu, S. et al. MAVS recruits multiple ubiquitin E3 ligases to activate antiviral signaling cascades. eLife 2, e00785 (2013).

    PubMed  PubMed Central  Google Scholar 

  144. Liu, S. et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 347, aaa2630 (2015).

    PubMed  Google Scholar 

  145. Yoneyama, M. et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 5, 730–737 (2004).

    CAS  PubMed  Google Scholar 

  146. Satoh, T. et al. LGP2 is a positive regulator of RIG-I and MDA5-mediated antiviral responses. Proc. Natl Acad. Sci. USA 107, 1512–1517 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Bruns, A. M., Leser, G. P., Lamb, R. A. & Horvath, C. M. The innate immune sensor LGP2 activates antiviral signaling by regulating MDA5- RNA interaction and filament assembly. Mol. Cell 55, 771–781 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Chiu, Y.-H., MacMillan, J. B. & Chen, Z. J. RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 138, 576–591 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Burdette, D. L. et al. STING is a direct innate immune sensor of cyclic di-GMP. Nature 478, 515–518 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Sun, L., Wu, J., Du, F., Chen, X. & Chen, Z. J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339, 786–791 (2013).

    CAS  PubMed  Google Scholar 

  151. Chen, Q., Sun, L. & Chen, Z. J. Regulation and function of the cGAS–STING pathway of cytosolic DNA sensing. Nat. Immunol. 17, 1142–1149 (2016).

    CAS  PubMed  Google Scholar 

  152. Schaefer, L. Complexity of danger: the diverse nature of damage-associated molecular patterns. J. Biol. Chem. 289, 35237–35245 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Zanoni, I. et al. An endogenous caspase-11 ligand elicits interleukin-1 release from living dendritic cells. Science 352, 1232–1236 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Bochkov, V. N. et al. Protective role of phospholipid oxidation products in endotoxin-induced tissue damage. Nature 419, 77–81 (2002).

    CAS  PubMed  Google Scholar 

  155. Yeon, S. H., Yang, G., Lee, H. E. & Lee, J. Y. Oxidized phosphatidylcholine induces the activation of NLRP3 inflammasome in macrophages. J. Leukoc. Biol. 101, 205–215 (2017).

    CAS  PubMed  Google Scholar 

  156. Rathinam, V. A. K. et al. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat. Immunol. 11, 395–402 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Vladimer, G. I. et al. The NLRP12 inflammasome recognizes Yersinia pestis. Immunity 37, 96–107 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Kagan laboratory for helpful discussions and the anonymous referees for insightful critiques. The US National Institutes of Health (grants AI116550, AI093589 and P30 DK34854), the Burroughs Wellcome Fund (Investigator of the Pathogenesis of Infectious Disease Award) and an unrestricted gift from Mead Johnson & Company support research in the laboratory of J.C.K. K.J.K. is supported by a Life Sciences Research Foundation postdoctoral fellowship (Good Ventures Fellow).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan C. Kagan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Pyroptosis

A form of cell death that is inflammatory and is executed by the inflammatory caspase 1 and caspase 11, as opposed to the apoptotic caspases (for example, caspase 8). During pyroptosis, the plasma membrane blebs, the cell lyses and pro-inflammatory cytokines are released.

Myddosome

A supramolecular organizing centre that forms to initiate Toll-like receptor (TLR)-dependent inflammatory responses. It is comprised of Toll/interleukin-1 receptor domain-containing adaptor protein (TIRAP) bound to the TIR domain of the TLR, to which myeloid differentiation primary response protein 88 (MYD88) binds. The interleukin-1 receptor-associated kinase (IRAK) kinases IRAK4 and IRAK2 or IRAK1 then associate to initiate a pro-inflammatory signalling cascade. The myddosome can form at the plasma or endosomal membrane.

Inflammasome

A supramolecular organizing centre that forms to initiate inflammatory responses to cytosolic bacterial products. It is formed by a pattern- recognition receptor, the adaptor protein ASC and caspase 1. It results in the production of interleukin-1β and cleavage of gasdermin D.

Supramolecular organizing centres

(SMOCs). Multi-protein complexes that are assembled on detection of microorganisms, either at the plasma membrane or on intracellular organelles. These large complexes activate enzymes that initiate inflammatory responses to promote host defence.

Triffosome

A putative supramolecular organizing centre that assembles on the endosomal membrane in response to activated Toll-like receptor 4 (TLR4) and TLR3. Its main constituent is TIR domain-containing adaptor protein inducing IFNβ (TRIF), which through TNF receptor-associated factor 3 (TRAF3) or TRAF6 can activate interferon regulatory factor 3 (IRF3) or IRF7, respectively, for interferon production. Apart from TRIF-related adaptor molecule (TRAM), which bridges TRIF to TLR4, the adaptor molecules used to assemble the triffosome remain unknown.

Inflammatory caspases

This group of caspases is composed of caspase 1, caspase 11 and caspase 12. These proteases are involved in the inflammasome pathway and promote an inflammatory form of cell death (pyroptosis). Caspase 1 cleaves immature pro-interleukin-1β (pro-IL-1β) and pro-IL-18 to their mature forms. Caspase 1 and caspase 11 cleave gasdermin D, which is required for pyroptosis. Caspase 4 and caspase 5 are the human homologues of caspase 11. Inflammatory caspases are distinct from apoptotic caspases, which promote the programmed cell death pathway called apoptosis and include caspase 2, caspase 3 and caspase 6 to caspase 10.

Flagellum

A helical filament that extends from the bacterial cell surface. It promotes bacterial movement and is often essential for flagellated pathogens to be able to colonize their respective hosts.

Lipoteichoic acid

(LTA). A polymer found in the cell wall of Gram-positive bacteria that is embedded in the bacterial plasma membrane by a glycerol head group. Attached to the head group are long chains of either ribitol or glycerol phosphate. It is a Toll-like receptor 2 ligand.

Pam3CSK4

A synthetic lipoprotein containing three palmitoyl (Pam) chains that are glycerol-linked to the short peptide CSKKKK (CSK4). It is a classic ligand for Toll-like receptor 2 (TLR2)–TLR1 activity. Pam2CSK4 stimulates TLR2–TLR6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kieser, K., Kagan, J. Multi-receptor detection of individual bacterial products by the innate immune system. Nat Rev Immunol 17, 376–390 (2017). https://doi.org/10.1038/nri.2017.25

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri.2017.25

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing