Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Antigen-specific tolerance strategies for the prevention and treatment of autoimmune disease

Key Points

  • The development of antigen-specific therapies for the treatment of autoimmune disease will allow for the tolerization of autoreactive immune cells, while maintaining the ability of the host's immune system to recognize foreign antigen.

  • Human trials are often designed to parallel experiences in animal models of the disease; however, the transition between outcomes in experimental animal models and human trials is often not straight forward.

  • There are currently four different protocols employed for inducing peptide-specific immune tolerance — soluble-peptide-induced and DNA-vaccination-induced tolerance, mucosal (oral or nasal)-induced tolerance, coupled-cell-induced tolerance, and altered peptide ligand (APL)-induced tolerance — that work by various different mechanisms.

  • Three of the protocols for the induction of antigen-specific tolerance have been tested in initial clinical trails: soluble-peptide-induced and DNA-vaccination-induced tolerance, mucosal (oral or nasal)-induced tolerance and APL-induced tolerance.

  • A Phase I and II clinical trial has been awarded provisional support by the Immune Tolerance Network pending US Food and Drug Administration (FDA) approval, to test the safety and efficacy of antigen-coupled-cell-induced tolerance in early relapsing–remitting MS.

  • The clinical efficacy of antigen- or peptide-specific immunotherapies for the treatment of pre-existing autoimmune disease is still uncertain.

Abstract

The development of safe and effective antigen-specific therapies is needed to treat patients with autoimmune diseases. These therapies must allow for the specific tolerization of self-reactive immune cells without altering host immunity to infectious insults. Experimental models and clinical trials for the treatment of autoimmune disease have identified putative mechanisms by which antigen-specific therapies induce tolerance. Although advances have been made in the development of efficient antigen-specific therapies, translating these therapies from bench to bedside has remained difficult. Here, we discuss the recent advances in our understanding of antigen-specific therapies for the treatment of autoimmune diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CD4+ T-cell activation and tolerogenic strategies.
Figure 2: Proposed mechanisms of peptide-induced tolerance.
Figure 3: Epitope spreading.
Figure 4: Signal transduction pathways involved in T-cell anergy.

Similar content being viewed by others

References

  1. Nikolich-Žugich, J., Slifka, M. K. & Messaoudi, I. The many important facets of T-cell repertoire diversity. Nature Rev. Immunol. 4, 123–132 (2004).

    Article  CAS  Google Scholar 

  2. Hafler, D. A. et al. Multiple sclerosis. Immunol. Rev. 204, 208–231 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Burstein, H. J., Shea, C. M. & Abbas, A. K. Aqueous antigens induce in vivo tolerance selectively in IL-2- and IFN-γ-producing (Th1) cells. J. Immunol. 148, 3687–3691 (1992).

    CAS  PubMed  Google Scholar 

  4. Critchfield, J. M. et al. T cell deletion in high antigen dose therapy of autoimmune encephalomyelitis. Science 263, 1139–1143 (1994). This study shows that high-dose peptide-induced tolerance leads to clonal deletion.

    Article  CAS  PubMed  Google Scholar 

  5. Gaur, A., Wiers, B., Liu, A., Rothbard, J. & Fathman, C. G. Amelioration of autoimmune encephalomyelitis by myelin basic protein synthetic peptide-induced anergy. Science 258, 1491–1494 (1992). This study shows that high-dose peptide tolerance induces anergy in EAE.

    Article  CAS  PubMed  Google Scholar 

  6. Racke, M. K. et al. Intravenous antigen administration as a therapy for autoimmune demyelinating disease. Ann. Neurol. 39, 46–56 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Pipeleers, D. et al. A view on β cell transplantation in diabetes. Ann. NY Acad. Sci. 958, 69–76 (2002).

    Article  PubMed  Google Scholar 

  8. Judkowski, V. et al. Peptide specific amelioration of T cell mediated pathogenesis in murine type 1 diabetes. Clin. Immunol. 113, 29–37 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Lieberman, S. M. et al. Identification of the β cell antigen targeted by a prevalent population of pathogenic CD8+ T cells in autoimmune diabetes. Proc. Natl Acad. Sci. USA 100, 8384–8388 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mukherjee, R., Chaturvedi, P., Qin, H. Y. & Singh, B. CD4+CD25+ regulatory T cells generated in response to insulin B:9–23 peptide prevent adoptive transfer of diabetes by diabetogenic T cells. J. Autoimmun. 21, 221–237 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Coon, B., An, L. L., Whitton, J. L. & von Herrath, M. G. DNA immunization to prevent autoimmune diabetes. J. Clin. Invest. 104, 189–194 (1999). This paper reports the inhibition of type 1 diabetes by vaccination with insulin-encoding DNA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Weaver, D. J. Jr, Liu, B. & Tisch, R. Plasmid DNAs encoding insulin and glutamic acid decarboxylase 65 have distinct effects on the progression of autoimmune diabetes in nonobese diabetic mice. J. Immunol. 167, 586–592 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Chang, Y. et al. DNA vaccination with an insulin construct and a chimeric protein binding to both CTLA4 and CD40 ameliorates type 1 diabetes in NOD mice. Gene Ther. 12, 1679–1685 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Smith, C. E., Eagar, T. N., Strominger, J. L. & Miller, S. D. Differential induction of IgE-mediated anaphylaxis after soluble vs. cell-bound tolerogenic peptide therapy of autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA 102, 9595–9600 (2005). This paper shows that high-dose intravenous peptide-induced tolerance can induce fatal anaphylaxis in various EAE models.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Genain, C. P. et al. Late complications of immune deviation therapy in a nonhuman primate. Science 274, 2054–2057 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Katz, D. H., Bargatze, R. F., Bogowitz, C. A. & Katz, L. R. Regulation of IgE antibody production by serum molecules. IV. Complete Freund's adjuvant induces both enhancing and suppressive activities detectable in the serum of low and high responder mice. J. Immunol. 122, 2184–2190 (1979).

    CAS  PubMed  Google Scholar 

  17. Warren, K. G., Catz, I. & Wucherpfennig, K. W. Tolerance induction to myelin basic protein by intravenous synthetic peptides containing epitope P85 VVHFFKNIVTP96 in chronic progressive multiple sclerosis. J. Neurol. Sci. 152, 31–38 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Pedotti, R. et al. An unexpected version of horror autotoxicus: anaphylactic shock to a self-peptide. Nature Immunol. 2, 216–222 (2001).

    Article  CAS  Google Scholar 

  19. Mayer, L. & Shao, L. Therapeutic potential of oral tolerance. Nature Rev. Immunol. 4, 407–419 (2004).

    Article  CAS  Google Scholar 

  20. Mowat, A. M., Strobel, S., Drummond, H. E. & Ferguson, A. Immunological responses to fed protein antigens in mice. I. Reversal of oral tolerance to ovalbumin by cyclophosphamide. Immunology 45, 105–113 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Faria, A. M. & Weiner, H. L. Oral tolerance: mechanisms and therapeutic applications. Adv. Immunol. 73, 153–264 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Friedman, A. & Weiner, H. L. Induction of anergy or active suppression following oral tolerance is determined by antigen dosage. Proc. Natl Acad. Sci. USA 91, 6688–6692 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bitar, D. M. & Whitacre, C. C. Suppression of experimental autoimmune encephalomyelitis by the oral administration of myelin basic protein. Cell. Immunol. 112, 364–370 (1988). This paper provides the first demonstration of oral tolerance for the prevention of EAE.

    Article  CAS  PubMed  Google Scholar 

  24. Whitacre, C. C., Gienapp, I. E., Orosz, C. G. & Bitar, D. M. Oral tolerance in experimental autoimmune encephalomyelitis: III. Evidence for clonal anergy. J. Immunol. 147, 2155–2163 (1991).

    CAS  PubMed  Google Scholar 

  25. Khoury, S. J., Hancock, W. W. & Weiner, H. L. Oral tolerance to myelin basic protein and natural recovery from experimental autoimmune encephalomyelitis are associated with downregulation of inflammatory cytokines and differential upregulation of transforming growth factor beta, interleukin 4, and prostaglandin E expression in the brain. J. Exp. Med. 176, 1355–1364 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Chen, Y., Kuchroo, V. K., Inobe, J., Hafler, D. A. & Weiner, H. L. Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 265, 1237–1240 (1994). This study reports that oral tolerance induces TGFβ-producing T H 3 cells.

    Article  CAS  PubMed  Google Scholar 

  27. Miller, A., Lider, O., Roberts, A. B., Sporn, M. B. & Weiner, H. L. Suppressor T cells generated by oral tolerization to myelin basic protein suppress both in vitro and in vivo immune responses by the release of transforming growth factor β after antigen-specific triggering. Proc. Natl Acad. Sci. USA 89, 421–425 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mowat, A. M., Parker, L. A., Beacock-Sharp, H., Millington, O. R. & Chirdo, F. Oral tolerance: overview and historical perspectives. Ann. NY Acad. Sci. 1029, 1–8 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Weiner, H. L. Current issues in the treatment of human diseases by mucosal tolerance. Ann. NY Acad. Sci. 1029, 211–224 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Meyer, A. L., Benson, J. M., Gienapp, I. E., Cox, K. L. & Whitacre, C. C. Suppression of murine chronic relapsing experimental autoimmune encephalomyelitis by the oral administration of myelin basic protein. J. Immunol. 157, 4230–4238 (1996).

    CAS  PubMed  Google Scholar 

  31. Benson, J. M. et al. Oral administration of myelin basic protein is superior to myelin in suppressing established relapsing experimental autoimmune encephalomyelitis. J. Immunol. 162, 6247–6254 (1999).

    CAS  PubMed  Google Scholar 

  32. Bai, X. F. et al. Complexities of applying nasal tolerance induction as a therapy for ongoing relapsing experimental autoimmune encephalomyelitis (EAE) in DA rats. Clin. Exp. Immunol. 111, 205–210 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kennedy, K. J., Smith, W. S., Miller, S. D. & Karpus, W. J. Induction of antigen-specific tolerance for the treatment of ongoing, relapsing autoimmune encephalomyelitis: a comparison between oral and peripheral tolerance. J. Immunol. 159, 1036–1044 (1997).

    CAS  PubMed  Google Scholar 

  34. Karpus, W. J., Kennedy, K. J., Smith, W. S. & Miller, S. D. Inhibition of relapsing experimental autoimmune encephalomyelitis in SJL mice by feeding the immunodominant PLP139–151 molecule. J. Neurosci. Res. 45, 410–423 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Bai, X. F. et al. Nasal administration of myelin basic protein prevents relapsing experimental autoimmune encephalomyelitis in DA rats by activating regulatory cells expressing IL-4 and TGF-β mRNA. J. Neuroimmunol. 80, 65–75 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Slavin, A. J., Maron, R. & Weiner, H. L. Mucosal administration of IL-10 enhances oral tolerance in autoimmune encephalomyelitis and diabetes. Int. Immunol. 13, 825–833 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Maron, R., Slavin, A. J., Hoffmann, E., Komagata, Y. & Weiner, H. L. Oral tolerance to copolymer 1 in myelin basic protein (MBP) TCR transgenic mice: cross-reactivity with MBP-specific TCR and differential induction of anti-inflammatory cytokines. Int. Immunol. 14, 131–138 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Metzler, B. & Wraith, D. C. Inhibition of experimental autoimmune encephalomyelitis by inhalation but not oral administration of the encephalitogenic peptide: influence of MHC binding affinity. Int. Immunol. 5, 1159–1165 (1993). This is a comparison of oral and nasal routes of peptide administration for the prevention of EAE.

    Article  CAS  PubMed  Google Scholar 

  39. Weiner, H. L. et al. Double-blind pilot trial of oral tolerization with myelin antigens in multiple sclerosis. Science 259, 1321–1324 (1993). This paper provides a description of the initial clinical trial that used orally administered myelin in patients with MS.

    Article  CAS  PubMed  Google Scholar 

  40. Miller, S. D., Wetzig, R. P. & Claman, H. N. The induction of cell-mediated immunity and tolerance with protein antigens coupled to syngeneic lymphoid cells. J. Exp. Med. 149, 758–773 (1979). This is the initial demonstration that antigen-pulsed, ECDI-fixed splenic APCs induce T-cell tolerance.

    Article  CAS  PubMed  Google Scholar 

  41. Sriram, S., Schwartz, G. & Steinman, L. Administration of myelin basic protein-coupled spleen cells prevents experimental allergic encephalitis. Cell. Immunol. 75, 378–382 (1983).

    Article  CAS  PubMed  Google Scholar 

  42. Miller, S. D. et al. Evolution of the T cell repertoire during the course of experimental autoimmune encephalomyelitis. Immunol. Rev. 144, 225–244 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Vandenbark, A. A. et al. Differential susceptibility of human Th1 versus Th2 cells to induction of anergy and apoptosis by ECDI/antigen-coupled antigen-presenting cells. Int. Immunol. 12, 57–66 (2000). This paper shows that peptide-pulsed, ECDI-fixed PBLs induce anergy in MBP-specific human T-cell lines.

    Article  CAS  PubMed  Google Scholar 

  44. Lehmann, P. V., Forsthuber, T., Miller, A. & Sercarz, E. E. Spreading of T-cell autoimmunity to cryptic determinants of an autoantigen. Nature 358, 155–157 (1992). This is the initial description of epitope spreading in autoimmunity.

    Article  CAS  PubMed  Google Scholar 

  45. Vanderlugt, C. L. et al. Pathologic role and temporal appearance of newly emerging autoepitopes in relapsing experimental autoimmune encephalomyelitis. J. Immunol. 164, 670–678 (2000). This reference demonstrates that tolerance to spread epitopes is required to inhibit progression of established relapsing EAE.

    Article  CAS  PubMed  Google Scholar 

  46. Smith, C. E. & Miller, S. D. Multi-peptide coupled-cell tolerance ameliorates ongoing relapsing EAE associated with multiple pathogenic autoreactivities. J. Autoimmunity 27, 218–231 (2006).

    Article  CAS  Google Scholar 

  47. Kennedy, M. K., Tan, L. J., Dal Canto, M. C. & Miller, S. D. Regulation of the effector stages of experimental autoimmune encephalomyelitis via neuroantigen-specific tolerance induction. J. Immunol. 145, 117–126 (1990).

    CAS  PubMed  Google Scholar 

  48. Kennedy, M. K. et al. Inhibition of murine relapsing experimental autoimmune encephalomyelitis by immune tolerance to proteolipid protein and its encephalitogenic peptides. J. Immunol. 144, 909–915 (1990). This is the initial demonstration that myelin-peptide-coupled cells can inhibit EAE induction.

    CAS  PubMed  Google Scholar 

  49. Vandenbark, A. A., Vainiene, M., Ariail, K., Miller, S. D. & Offner, H. Prevention and treatment of relapsing autoimmune encephalomyelitis with myelin peptide-coupled splenocytes. J. Neurosci. Res. 45, 430–438 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Su, X. M. & Sriram, S. Treatment of chronic relapsing experimental allergic encephalomyelitis with the intravenous administration of splenocytes coupled to encephalitogenic peptide 91–103 of myelin basic protein. J. Neuroimmunol. 34, 181–190 (1991).

    Article  CAS  PubMed  Google Scholar 

  51. Tan, L. J., Kennedy, M. K. & Miller, S. D. Regulation of the effector stages of experimental autoimmune encephalomyelitis via neuroantigen-specific tolerance induction. II. Fine specificity of effector T cell inhibition. J. Immunol. 148, 2748–2755 (1992).

    CAS  PubMed  Google Scholar 

  52. Miller, S. D., Tan, L. J., Pope, L., McRae, B. L. & Karpus, W. J. Antigen-specific tolerance as a therapy for experimental autoimmune encephalomyelitis. Int. Rev. Immunol. 9, 203–222 (1992).

    Article  CAS  PubMed  Google Scholar 

  53. Miller, S. D. & Karpus, W. J. The immunopathogenesis and regulation of T-cell mediated demyelinating diseases. Immunol. Today 15, 356–361 (1994).

    Article  CAS  PubMed  Google Scholar 

  54. McRae, B. L., Vanderlugt, C. L., Dal Canto, M. C. & Miller, S. D. Functional evidence for epitope spreading in the relapsing pathology of experimental autoimmune encephalomyelitis. J. Exp. Med. 182, 75–85 (1995). This study provides the initial description of the functional pathological significance of epitope spreading to disease progression in relapsing EAE.

    Article  CAS  PubMed  Google Scholar 

  55. Miller, S. D. et al. Blockade of CD28/B7-1 interaction prevents epitope spreading and clinical relapses of murine EAE. Immunity 3, 739–745 (1995).

    Article  CAS  PubMed  Google Scholar 

  56. Tan, L. J., Kennedy, M. K., Dal Canto, M. C. & Miller, S. D. Successful treatment of paralytic relapses in adoptive experimental autoimmune encephalomyelitis via neuroantigen-specific tolerance. J. Immunol. 147, 1797–1802 (1991).

    CAS  PubMed  Google Scholar 

  57. Vanderlugt, C. L. & Miller, S. D. Epitope spreading. Curr. Opin. Immunol. 8, 831–836 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. McMahon, E. J., Bailey, S. L., Castenada, C. V., Waldner, H. & Miller, S. D. Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nature Med. 11, 335–339 (2005). This reference shows that epitope spreading initiates in the CNS.

    Article  CAS  PubMed  Google Scholar 

  59. Bailey, S. L., Schreiner, B., McMahon, E. J. & Miller, S. D. CNS myeloid DCs presenting endogenous myelin peptides 'preferentially' polarize CD4+ TH-17 cells in relapsing EAE. Nature Immunol. 8, 172–180 (2007). This study shows that epitope spreading in the CNS is driven primarily by peripherally derived myeloid APCs presenting endogenous myelin antigens.

    Article  CAS  Google Scholar 

  60. Braley-Mullen, H., Tompson, J. G., Sharp, G. C. & Kyriakos, M. Suppression of experimental autoimmune thyroiditis in guinea pigs by pretreatment with thyroglobulin-coupled spleen cells. Cell. Immunol. 51, 408–413 (1980).

    Article  CAS  PubMed  Google Scholar 

  61. Dua, H. S., Gregerson, D. S. & Donoso, L. A. Inhibition of experimental autoimmune uveitis by retinal photoreceptor antigens coupled to spleen cells. Cell. Immunol. 139, 292–305 (1992).

    Article  CAS  PubMed  Google Scholar 

  62. Gregorian, S. K., Clark, L., Heber-Katz, E., Amento, E. P. & Rostami, A. Induction of peripheral tolerance with peptide-specific anergy in experimental autoimmune neuritis. Cell. Immunol. 150, 298–310 (1993).

    Article  CAS  PubMed  Google Scholar 

  63. Fife, B. T. et al. Insulin-induced remission in new-onset NOD mice is maintained by the PD-1–PD-L1 pathway. J. Exp. Med. 203, 2737–2747 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jenkins, M. K. & Schwartz, R. H. Antigen presentation by chemically modified splenocytes induces antigen-specific T cell unresponsiveness in vitro and in vivo. J. Exp. Med. 165, 302–319 (1987).

    Article  CAS  PubMed  Google Scholar 

  65. Eagar, T. N., Karandikar, N. J., Bluestone, J. & Miller, S. D. The role of CTLA-4 in induction and maintenance of peripheral T cell tolerance. Eur. J. Immunol. 32, 972–981 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Turley, D. M. & Miller, S. D. Peripheral tolerance Induction using ethylenecarbodiimide-fixed APCs uses both direct and indirect mechanisms of antigen presentation for prevention of experimental autoimmune encephalomyelitis. J. Immunol. 178, 2212–2220 (2007). This study shows that ECDI-fixed-cell-induced tolerance works primarily by an indirect pathway of antigen re-presentation by host APCs.

    Article  CAS  PubMed  Google Scholar 

  67. Pope, L., Paterson, P. Y. & Miller, S. D. Antigen-specific inhibition of the adoptive transfer of experimental autoimmune encephalomyelitis in Lewis rats. J. Neuroimmunol. 37, 177–190 (1992).

    Article  CAS  PubMed  Google Scholar 

  68. Bilsborough, J., George, T. C., Norment, A. & Viney, J. L. Mucosal CD8alpha+ DC, with a plasmacytoid phenotype, induce differentiation and support function of T cells with regulatory properties. Immunology 108, 481–492 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Martin, P. et al. Characterization of a new subpopulation of mouse CD8α+B220+ dendritic cells endowed with type 1 interferon production capacity and tolerogenic potential. Blood 100, 383–390 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Young, D. A. et al. IL-4, IL-10, IL-13, and TGF-β from an altered peptide ligand-specific Th2 cell clone down-regulate adoptive transfer of experimental autoimmune encephalomyelitis. J. Immunol. 164, 3563–3572 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Nicholson, L. B., Murtaza, A., Hafler, B. P., Sette, A. & Kuchroo, V. K. A T cell receptor antagonist peptide induces T cells that mediate bystander suppression and prevent autoimmune encephalomyelitis induced with multiple myelin antigens. Proc. Natl Acad. Sci. USA 94, 9279–9284 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Samson, M. F. & Smilek, D. E. Reversal of acute experimental autoimmune encephalomyelitis and prevention of relapses by treatment with a myelin basic protein peptide analogue modified to form long-lived peptide-MHC complexes. J. Immunol. 155, 2737–2746 (1995).

    CAS  PubMed  Google Scholar 

  73. Wraith, D. C., Smilek, D. E., Mitchell, D. J., Steinman, L. & McDevitt, H. O. Antigen recognition in autoimmune encephalomyelitis and the potential for peptide-mediated immunotherapy. Cell 59, 247–255 (1989).

    Article  CAS  PubMed  Google Scholar 

  74. Nicholson, L. B. & Kuchroo, V. K. T cell recognition of self and altered self antigens. Crit. Rev. Immunol. 17, 449–462 (1997).

    CAS  PubMed  Google Scholar 

  75. Karin, N., Mitchell, D. J., Brocke, S., Ling, N. & Steinman, L. Reversal of experimental autoimmune encephalomyelitis by a soluble peptide variant of a myelin basic protein epitope: T cell receptor antagonism and reduction of interferon γ and tumor necrosis factor α production. J. Exp. Med. 180, 2227–2237 (1994).

    Article  CAS  PubMed  Google Scholar 

  76. Nicholson, L. B., Greer, J. M., Sobel, R. A., Lees, M. B. & Kuchroo, V. K. An altered peptide ligand mediates immune deviation and prevents autoimmune encephalomyelitis. Immunity 3, 397–405 (1995). This study shows that APL therapy induces immune deviation in prevention of EAE.

    Article  CAS  PubMed  Google Scholar 

  77. Aharoni, R., Teitelbaum, D., Arnon, R. & Sela, M. Copolymer 1 acts against the immunodominant epitope 82–100 of myelin basic protein by T cell receptor antagonism in addition to major histocompatibility complex blocking. Proc. Natl Acad. Sci. USA 96, 634–639 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ruiz, P. J. et al. Immunomodulation of experimental autoimmune encephalomyelitis with ordered peptides based on MHC–TCR binding motifs. J. Immunol. 167, 2688–2693 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Illes, Z. et al. Modified amino acid copolymers suppress myelin basic protein 85–99-induced encephalomyelitis in humanized mice through different effects on T cells. Proc. Natl Acad. Sci. USA 101, 11749–11754 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Stern, J. N. et al. Peptide 15-mers of defined sequence that substitute for random amino acid copolymers in amelioration of experimental autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA 102, 1620–1625 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Skyler, J. S. et al. Effects of oral insulin in relatives of patients with type 1 diabetes: the diabetes prevention trial—type 1. Diabetes Care 28, 1068–1076 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Chaillous, L. et al. Oral insulin administration and residual β-cell function in recent-onset type 1 diabetes: a multicentre randomised controlled trial. Diabete Insuline Orale group. Lancet 356, 545–549 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Ergun-Longmire, B. et al. Oral insulin therapy to prevent progression of immune-mediated (type 1) diabetes. Ann. NY Acad. Sci. 1029, 260–277 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Monetini, L. et al. Cytokine profile and insulin antibody IgG subclasses in patients with recent onset type 1 diabetes treated with oral insulin. Diabetologia 47, 1795–1802 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Staeva-Vieira, T., Peakman, M. & von Herrath, M. Translational mini-review series on type 1 diabetes: Immune-based therapeutic approaches for type 1 diabetes. Clin. Exp. Immunol. 148, 17–31 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Faria, A. M. & Weiner, H. L. Oral tolerance: therapeutic implications for autoimmune diseases. Clin. Dev. Immunol. 13, 143–157 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Barnett, M. L. et al. Treatment of rheumatoid arthritis with oral type II collagen. Results of a multicenter, double-blind, placebo-controlled trial. Arthritis Rheum. 41, 290–297 (1998).

    Article  CAS  PubMed  Google Scholar 

  88. Prakken, B. J. et al. Epitope-specific immunotherapy induces immune deviation of proinflammatory T cells in rheumatoid arthritis. Proc. Natl Acad. Sci. USA 101, 4228–4233 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bielekova, B. et al. Encephalitogenic potential of the myelin basic protein peptide (amino acids 83–99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand. Nature Med. 6, 1167–1175 (2000). This paper demonstrates that an MBP APL leads to exacerbated clinical MS.

    Article  CAS  PubMed  Google Scholar 

  90. Kappos, L. et al. Induction of a non-encephalitogenic type 2 T helper-cell autoimmune response in multiple sclerosis after administration of an altered peptide ligand in a placebo-controlled, randomized phase II trial. The Altered Peptide Ligand in Relapsing MS Study Group. Nature Med. 6, 1176–1182 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Johnson, K. P. et al. Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind placebo-controlled trial. The Copolymer 1 Multiple Sclerosis Study Group. Neurology 45, 1268–1276 (1995).

    Article  CAS  PubMed  Google Scholar 

  92. Cohen, J. A. et al. Randomized, double-blind, dose-comparison study of glatiramer acetate in relapsing-remitting MS. Neurology 68, 939–944 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Alleva, D. G. et al. Immunomodulation in type 1 diabetes by NBI-6024, an altered peptide ligand of the insulin B epitope. Scand. J. Immunol. 63, 59–69 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Bielekova, B. et al. Expansion and functional relevance of high-avidity myelin-specific CD4+ T cells in multiple sclerosis. J. Immunol. 172, 3893–3904 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Chatenoud, L., Thervet, E., Primo, J. & Bach, J. F. Anti-CD3 antibody induces long-term remission of overt autoimmunity in nonobese diabetic mice. Proc. Natl Acad. Sci. USA 91, 123–127 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chatenoud, L. CD3-specific antibody-induced active tolerance: from bench to bedside. Nature Rev. Immunol. 3, 123–132 (2003).

    Article  CAS  Google Scholar 

  97. Kohm, A. P. et al. Treatment with nonmitogenic anti-CD3 monoclonal antibody induces CD4+ T cell unresponsiveness and functional reversal of established experimental autoimmune encephalomyelitis. J. Immunol. 174, 4525–4534 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Herold, K. C. et al. Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N. Engl. J. Med. 346, 1692–1698 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Pozzilli, P. et al. No effect of oral insulin on residual β-cell function in recent-onset type I diabetes (the IMDIAB VII). IMDIAB Group. Diabetologia 43, 1000–1004 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Keymeulen, B. et al. Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes. N. Engl. J. Med. 352, 2598–2608 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Utset, T. O. et al. Modified anti-CD3 therapy in psoriatic arthritis: a phase I/II clinical trial. J. Rheumatol. 29, 1907–1913 (2002).

    CAS  PubMed  Google Scholar 

  102. Herold, K. C. et al. Activation of human T cells by FcR nonbinding anti-CD3 mAb, hOKT3γ1(Ala-Ala). J. Clin. Invest. 111, 409–418 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Belghith, M. et al. TGF-β-dependent mechanisms mediate restoration of self-tolerance induced by antibodies to CD3 in overt autoimmune diabetes. Nature Med. 9, 1202–1208 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Yednock, T. A. et al. Prevention of experimental autoimmune encephalomyelitis by antibodies against α4β1 integrin. Nature 356, 63–66 (1992).

    Article  CAS  PubMed  Google Scholar 

  105. Miller, D. H. et al. A controlled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med. 348, 15–23 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Karpus, W. J. et al. An important role for the chemokine macrophage inflammatory protein-1 α in the pathogenesis of the T cell-mediated autoimmune disease, experimental autoimmune encephalomyelitis. J. Immunol. 155, 5003–5010 (1995).

    CAS  PubMed  Google Scholar 

  107. Ruddle, N. H. et al. An antibody to lymphotoxin and tumor necrosis factor prevents transfer of experimental allergic encephalomyelitis. J. Exp. Med. 172, 1193–1200 (1990).

    Article  CAS  PubMed  Google Scholar 

  108. Khalili, K., White, M. K., Lublin, F., Ferrante, P. & Berger, J. R. Reactivation of JC virus and development of PML in patients with multiple sclerosis. Neurology 68, 985–990 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Macián, F., Lopéz-Rodríguez, C. & Rao, A. Partners in transcription: NFAT and AP-1. Oncogene 20, 2476–2489 (2001).

    Article  PubMed  Google Scholar 

  110. Heissmeyer, V. & Rao, A. E3 ligases in T cell anergy—turning immune responses into tolerance. Sci. STKE 2004, pe29 (2004).

    PubMed  Google Scholar 

  111. Wu, Y. et al. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 126, 375–387 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Jeon, M. S. et al. Essential role of the E3 ubiquitin ligase Cbl-b in T cell anergy induction. Immunity. 21, 167–177 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Seroogy, C. M. et al. The gene related to anergy in lymphocytes, an E3 ubiquitin ligase, is necessary for anergy induction in CD4 T cells. J. Immunol. 173, 79–85 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Anandasabapathy, N. et al. GRAIL: an E3 ubiquitin ligase that inhibits cytokine gene transcription is expressed in anergic CD4+ T cells. Immunity. 18, 535–547 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Naramura, M., Kole, H. K., Hu, R. J. & Gu, H. Altered thymic positive selection and intracellular signals in Cbl-deficient mice. Proc. Natl Acad. Sci. USA 95, 15547–15552 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ohashi, P. S. T-cell signalling and autoimmunity: molecular mechanisms of disease. Nature Rev. Immunol. 2, 427–438 (2002).

    Article  CAS  Google Scholar 

  117. Raz, I. et al. β-cell function in new-onset type 1 diabetes and immunomodulation with a heat-shock protein peptide (DiaPep277): a randomised, double-blind, phase II trial. Lancet 358, 1749–1753 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Raz, I. et al. Treatment of new-onset type 1 diabetes with peptide DiaPep277 is safe and associated with preserved β-cell function: extension of a randomized, double-blind, phase II trial. Diabetes. Metab. Res. Rev. 23, 292–298 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Bourdette, D. N. et al. A highly immunogenic trivalent T cell receptor peptide vaccine for multiple sclerosis. Mult. Scler. 11, 552–561 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the Miller laboratory is supported by National Institutes of Health, USA, Grants P01 NS-030871, R01 NS-026543, R01 NS-030871; R01 NS-040460, R01 NS-048411; National Multiple Sclerosis Society Grants RG-3489, RG-3546, RG-3793, RG-3965; and a grant from the Myelin Repair Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen D. Miller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

OMIM

multiple sclerosis

type 1 diabetes

FURTHER INFORMATION

Stephen D. Miller's homepage

Immune Tolerance Network

Glossary

Adjuvant

An agent mixed with an antigen that increases the immune response to that antigen after immunization.

Altered-peptide ligands

(APLs). APLs are peptide analogues that are derived from the original antigenic peptide. They commonly have amino-acid substitutions at T-cell receptor (TCR)-contact residues. TCR engagement by these APLs usually leads to partial or incomplete T-cell activation. Antagonistic APLs can specifically antagonize and inhibit T-cell activation that is induced by the wild-type antigenic peptide.

Anergy

A state of unresponsiveness to antigen. Anergic T cells or B cells cannot respond to their cognate antigens under optimal conditions of stimulation.

Activation-induced cell death

(AICD). A form of regulated cell death, which is induced during lymphocyte activation. During a normal immune response, most antigen-specific lymphocytes undergo AICD.

Anaphylaxis

Severe and rapid allergic reaction triggered by the activation of high-affinity Fc receptors for IgE in sensitized individuals. An anaphylactic shock is the most severe type of anaphylaxis and will usually lead to an individual's death in minutes if left untreated.

Central tolerance

The lack of self-responsiveness that occurs as lymphocytes develop. It is associated with the deletion of autoreactive clones. For T cells, this occurs in the thymus.

Bystander suppression

The extension of tolerogen-induced suppression of immune responses that are directed against antigens not structurally related to the tolerogen but expressed by the same target cell or organ.

Epitope spreading

The de novo activation of autoreactive T cells by self-antigens that have been released after T-cell or B-cell-mediated bystander tissue damage.

TH3 cells

A CD4+ helper T-cell subset that is characterized phenotypically by the secretion of TGFβ.

Gadolinium-enhanced magnetic resonance imaging

An imaging technique in which gadolinium is introduced as a contrast agent, allowing short data-acquisition times, large anatomical coverage and improved image quality.

E3 ubiquitin ligase

An enzyme that is required to attach the molecular tag ubiquitin to proteins. Depending on the position and number of ubiquitin molecules that are attached, the ubiquitin tag can target proteins for degradation in the proteasomal complex, sort them to specific subcellular compartments or modify their biological activity.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, S., Turley, D. & Podojil, J. Antigen-specific tolerance strategies for the prevention and treatment of autoimmune disease. Nat Rev Immunol 7, 665–677 (2007). https://doi.org/10.1038/nri2153

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2153

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing