Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

NLRs at the intersection of cell death and immunity

Key Points

  • NLR (nucleotide-binding domain, leucine-rich repeat containing) family proteins structurally and functionally resemble APAF1 (apoptotic-protease activating factor 1), an apoptotic mediator, and the NBS-LRR (nucleotide-binding site, leucine-rich repeats) proteins, which help to mediate cell death in plants.

  • Pyronecrosis and pyroptosis are two pathways of cell death initiated in response to pathogens. Both feature degradation of the plasma membrane and the pro-inflammatory release of cellular contents. Pyroptosis is dependent on caspase-1, whereas pyronecrosis is not.

  • Several NLR proteins mediate caspase-1 pathway activation through their participation in NLR-specific inflammasomes. NLR and inflammasome activation is analogous to APAF1 and apoptosome formation.

  • NLRP1 inflammasome activity is regulated by the anti-apoptotic mitochondrial factors BCL-2 (B-cell lymphoma 2) and BCL-XL.

  • NAIP5 (neuronal apoptosis inhibitory protein 5) mediates cell death in response to Legionella pneumophila, and NLRP1 mediates cell death in response to anthrax lethal toxin. In both cases, cell death requires caspase-1, and is thereby thought to be pyroptosis.

  • Expression of disease-associated hyperactive mutants of NLRP3 induces pyronecrosis. This pathway is also activated in response to intracellular infection by Shigella flexneri.

Abstract

Inflammation is a crucial element of the host response to cellular insult. Pathogen-induced inflammation includes a molecular pathway which proceeds through activation of the protease caspase-1 to the release of the inflammatory cytokines interleukin-1 (IL-1) and IL-18. Importantly, pathogens may also induce forms of cell death that have inherently pro-inflammatory features. Here, we review recent evidence demonstrating that NLR (nucleotide-binding domain, leucine-rich repeat containing) family proteins serve as a common component of both caspase-1-activated apoptotic pathways and caspase-independent necrotic pathways. Parallels are drawn between NLR protein function and the activity of structurally similar proteins involved in cell death: the apoptotic mediator APAF1 (apoptotic-protease-activating factor 1) and the plant disease resistance NBS-LRR (nucleotide-binding site leucine-rich repeats) proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NLR proteins are structurally similar to the pro-apoptotic protein APAF1 and the plant cell-death mediating NBS-LRR proteins.
Figure 2: Comparison of APAF1 and NLRP3 cell-death pathways.
Figure 3: Specificity of the NLR proteins involved in the induction of cell death.

Similar content being viewed by others

References

  1. Rast, J. P., Smith, L. C., Loza-Coll, M., Hibino, T. & Litman, G. W. Genomic insights into the immune system of the sea urchin. Science 314, 952–956 (2006).

    Article  CAS  Google Scholar 

  2. Belkhadir, Y., Subramaniam, R. & Dangl, J. L. Plant disease resistance protein signaling: NBS-LRR proteins and their partners. Curr. Opin. Plant. Biol. 7, 391–399 (2004).

    Article  CAS  Google Scholar 

  3. Lam, E., Kato, N. & Lawton, M. Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411, 848–853 (2001).

    Article  CAS  Google Scholar 

  4. Zou, H., Henzel, W. J., Liu, X., Lutschg, A. & Wang, X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90, 405–413 (1997).

    Article  CAS  Google Scholar 

  5. Riedl, S. J. & Salvesen, G. S. The apoptosome: signalling platform of cell death. Nature Rev. Mol. Cell Biol. 8, 405–413 (2007).

    Article  CAS  Google Scholar 

  6. Zimmermann, K. C., Bonzon, C. & Green, D. R. The machinery of programmed cell death. Pharmacol. Ther. 92, 57–70 (2001).

    Article  CAS  Google Scholar 

  7. Nicholson, D. W. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ. 6, 1028–1042 (1999).

    Article  CAS  Google Scholar 

  8. Zong, W. X. & Thompson, C. B. Necrotic death as a cell fate. Genes Dev. 20, 1–15 (2006).

    Article  CAS  Google Scholar 

  9. Edinger, A. L. & Thompson, C. B. Death by design: apoptosis, necrosis and autophagy. Curr. Opin. Cell Biol. 16, 663–669 (2004).

    Article  CAS  Google Scholar 

  10. Chen, C. J. et al. Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Nature Med. 13, 851–856 (2007).

    Article  CAS  Google Scholar 

  11. Dinarello, C. A. Biologic basis for interleukin-1 in disease. Blood 87, 2095–2147 (1996).

    CAS  PubMed  Google Scholar 

  12. Lotze, M. T. & Tracey, K. J. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nature Rev. Immunol. 5, 331–342 (2005).

    Article  CAS  Google Scholar 

  13. Park, J. S. et al. Involvement of Toll-like receptors 2 and 4 in cellular activation by high mobility group box1 protein. J. Biol. Chem. 279, 7370–7377 (2004).

    Article  CAS  Google Scholar 

  14. Sunden-Cullberg, J., Norrby-Teglund, A. & Treutiger, C. J. The role of high mobility group box-1 protein in severe sepsis. Curr. Opin. Infect. Dis. 19, 231–236 (2006).

    Article  CAS  Google Scholar 

  15. Brennan, M. A. & Cookson, B. T. Salmonella induces macrophage death by caspase-1-dependent necrosis. Mol. Microbiol. 38, 31–40 (2000). This is the first report to describe pyroptosis.

    Article  CAS  Google Scholar 

  16. Cervantes, J., Nagata, T., Uchijima, M., Shibata, K. & Koide, Y. Intracytosolic Listeria monocytogenes induces cell death through caspase-1 activation in murine macrophages. Cell. Microbiol. 10, 41–52 (2008).

    CAS  PubMed  Google Scholar 

  17. Fink, S. L. & Cookson, B. T. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect. Immun. 73, 1907–1916 (2005).

    Article  CAS  Google Scholar 

  18. Fernandes-Alnemri, T. et al. The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ. 14, 1590–1604 (2007). The authors of this study demonstrate the assembly of a large ASC-containing complex, termed the pyroptosome, during pyroptosis.

    Article  CAS  Google Scholar 

  19. Fujisawa, A. et al. Disease-associated mutations in CIAS1 induce cathepsin B-dependent rapid cell death of human THP-1 monocytic cells. Blood 109, 2903–2911 (2007). This article shows that the expression of disease-associated mutants of NLRP3 results in a caspase-1-independent, cathepsin B-dependent form of cell death.

    CAS  PubMed  Google Scholar 

  20. Willingham, S. B. et al. Microbial pathogen-induced necrotic cell death mediated by the inflammasome components CIAS1/Cryopyrin/NLRP3 and ASC. Cell Host Microbe 2, 147–159 (2007). The work presented in this article confirms the findings of Fujisawa et al . and demonstrates that the previously observed form of cell death, which is herein named pyronecrosis, occurs in monocytic cells infected with the pathogen S. flexneri.

    Article  CAS  Google Scholar 

  21. Srinivasula, S. M. et al. The PYRIN-CARD protein ASC is an activating adaptor for caspase-1. J. Biol. Chem. 277, 21119–21122 (2002).

    Article  CAS  Google Scholar 

  22. Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell 10, 417–426 (2002).

    Article  CAS  Google Scholar 

  23. Agostini, L. et al. NALP3 forms an IL-1β-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 20, 319–325 (2004).

    Article  CAS  Google Scholar 

  24. Duncan, J. A. et al. Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate inflammatory signaling. Proc. Natl. Acad. Sci. USA 104, 8041–8046 (2007).

    Article  CAS  Google Scholar 

  25. Yu, J. W. et al. Cryopyrin and pyrin activate caspase-1, but not NF-κB, via ASC oligomerization. Cell Death Differ. 13, 236–249 (2006).

    Article  CAS  Google Scholar 

  26. Franchi, L. et al. Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1β in salmonella-infected macrophages. Nature Immunol. 7, 576–582 (2006).

    Article  CAS  Google Scholar 

  27. Mariathasan, S. et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430, 213–218 (2004).

    Article  CAS  Google Scholar 

  28. Miao, E. A. et al. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nature Immunol. 7, 569–575 (2006).

    Article  CAS  Google Scholar 

  29. Boyden, E. D. & Dietrich, W. F. Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nature Genet. 38, 240–244 (2006). The authors of this study show that functional NLRP1 is required for cell death in mouse macrophages exposed to anthrax lethal toxin.

    Article  CAS  Google Scholar 

  30. Kanneganti, T. D. et al. Critical role for Cryopyrin/Nalp3 in activation of caspase-1 in response to viral infection and double-stranded RNA. J. Biol. Chem. 281, 36560–36568 (2006).

    Article  CAS  Google Scholar 

  31. Kanneganti, T. D. et al. Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature 440, 233–236 (2006).

    Article  CAS  Google Scholar 

  32. Mariathasan, S. et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440, 228–232 (2006).

    Article  CAS  Google Scholar 

  33. Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).

    Article  CAS  Google Scholar 

  34. Sutterwala, F. S. et al. Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity 24, 317–327 (2006).

    Article  CAS  Google Scholar 

  35. Mariathasan, S. & Monack, D. M. Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nature Rev. Immunol. 7, 31–40 (2007). This article discusses current research into the specificity and function of the inflammasomes.

    Article  CAS  Google Scholar 

  36. Kanneganti, T. D. et al. Pannexin-1-mediated recognition of bacterial molecules activates the cryopyrin inflammasome independent of Toll-like receptor signaling. Immunity 26, 433–443 (2007).

    Article  CAS  Google Scholar 

  37. Schafer, Z. T. & Kornbluth, S. The apoptosome: physiological, developmental, and pathological modes of regulation. Dev. Cell 10, 549–561 (2006).

    Article  CAS  Google Scholar 

  38. Faustin, B. et al. Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation. Mol. Cell 25, 713–724 (2007).

    Article  CAS  Google Scholar 

  39. Wright, E. K. et al. Naip5 affects host susceptibility to the intracellular pathogen Legionella pneumophila. Curr. Biol. 13, 27–36 (2003).

    Article  CAS  Google Scholar 

  40. Molofsky, A. B. et al. Cytosolic recognition of flagellin by mouse macrophages restricts Legionella pneumophila infection. J. Exp. Med. 203, 1093–1104 (2006).

    Article  CAS  Google Scholar 

  41. Ren, T., Zamboni, D. S., Roy, C. R., Dietrich, W. F. & Vance, R. E. Flagellin-deficient Legionella mutants evade caspase-1- and Naip5-mediated macrophage immunity. PLoS Pathog. 2, e18 (2006).

    Article  Google Scholar 

  42. Zamboni, D. S. et al. The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nature Immunol. 7, 318–325 (2006).

    Article  CAS  Google Scholar 

  43. Suzuki, T. et al. Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella-infected macrophages. PLoS Pathog. 3, e111 (2007).

    Article  Google Scholar 

  44. Bruey, J. M. et al. Bcl-2 and Bcl-XL regulate proinflammatory caspase-1 activation by interaction with NALP1. Cell 129, 45–56 (2007). This paper demonstrates the surprising finding that NLRP1 inflammasome activity is regulated by the anti-apoptotic factors BCL-2 and BCL-X L.

    Article  CAS  Google Scholar 

  45. Seth, R. B., Sun, L., Ea, C. K. & Chen, Z. J. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF 3. Cell 122, 669–682 (2005).

    Article  CAS  Google Scholar 

  46. Yoneyama, M. & Fujita, T. RIG-I family RNA helicases: Cytoplasmic sensor for antiviral innate immunity. Cytokine Growth Factor Rev. 18, 545–551 (2007).

    Article  CAS  Google Scholar 

  47. Moore, C. B. et al. NLRX1 is a regulator of mitochondrial antiviral immunity. Nature 451, 573–577 (2008).

    Article  CAS  Google Scholar 

  48. Hoffman, H. M., Mueller, J. L., Broide, D. H., Wanderer, A. A. & Kolodner, R. D. Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nature Genet. 29, 301–305 (2001).

    Article  CAS  Google Scholar 

  49. Aganna, E. et al. Association of mutations in the NALP3/CIAS1/PYPAF1 gene with a broad phenotype including recurrent fever, cold sensitivity, sensorineural deafness, and AA amyloidosis. Arthritis Rheum. 46, 2445–2452 (2002).

    Article  CAS  Google Scholar 

  50. Aksentijevich, I. et al. De novo CIAS1 mutations, cytokine activation, and evidence for genetic heterogeneity in patients with neonatal-onset multisystem inflammatory disease (NOMID): a new member of the expanding family of pyrin-associated autoinflammatory diseases. Arthritis Rheum. 46, 3340–3348 (2002).

    Article  CAS  Google Scholar 

  51. Feldmann, J. et al. Chronic infantile neurological cutaneous and articular syndrome is caused by mutations in CIAS1, a gene highly expressed in polymorphonuclear cells and chondrocytes. Am. J. Hum. Genet. 71, 198–203 (2002).

    Article  CAS  Google Scholar 

  52. Ting, J. P., Kastner, D. L. & Hoffman, H. M. CATERPILLERs, pyrin and hereditary immunological disorders. Nature Rev. Immunol. 6, 183–195 (2006).

    Article  CAS  Google Scholar 

  53. Janssen, R., Verhard, E., Lankester, A., Ten Cate, R. & van Dissel, J. T. Enhanced interleukin-1beta and interleukin-18 release in a patient with chronic infantile neurologic, cutaneous, articular syndrome. Arthritis Rheum. 50, 3329–3333 (2004).

    Article  Google Scholar 

  54. Stack, J. H. et al. IL-converting enzyme/caspase-1 inhibitor VX-765 blocks the hypersensitive response to an inflammatory stimulus in monocytes from familial cold autoinflammatory syndrome patients. J. Immunol. 175, 2630–2634 (2005).

    Article  CAS  Google Scholar 

  55. Saito, M. et al. Disease-associated CIAS1 mutations induce monocyte death, revealing low-level mosaicism in mutation-negative cryopyrin-associated periodic syndrome patients. Blood 111, 2132–2141 (2008).

    Article  CAS  Google Scholar 

  56. Navarre, W. W. & Zychlinsky, A. Pathogen-induced apoptosis of macrophages: a common end for different pathogenic strategies. Cell. Microbiol. 2, 265–273 (2000).

    Article  CAS  Google Scholar 

  57. Fernandez-Prada, C. M., Hoover, D. L., Tall, B. D. & Venkatesan, M. M. Human monocyte-derived macrophages infected with virulent Shigella flexneri in vitro undergo a rapid cytolytic event similar to oncosis but not apoptosis. Infect. Immun. 65, 1486–1496 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Koterski, J. F., Nahvi, M., Venkatesan, M. M. & Haimovich, B. Virulent Shigella flexneri causes damage to mitochondria and triggers necrosis in infected human monocyte-derived macrophages. Infect. Immun. 73, 504–513 (2005).

    Article  CAS  Google Scholar 

  59. Suzuki, T. et al. A novel caspase-1/toll-like receptor 4-independent pathway of cell death induced by cytosolic Shigella in infected macrophages. J. Biol. Chem. 280, 14042–14050 (2005).

    Article  CAS  Google Scholar 

  60. McCall, S. H. et al. Osteoblasts express NLRP3, a nucleotide-binding domain and leucine-rich repeat region containing receptor implicated in bacterially induced cell death. J, Bone Miner. Res. 23, 30–40 (2008).

    Article  CAS  Google Scholar 

  61. Hentze, H., Lin, X. Y., Choi, M. S. & Porter, A. G. Critical role for cathepsin B in mediating caspase-1-dependent interleukin-18 maturation and caspase-1-independent necrosis triggered by the microbial toxin nigericin. Cell Death Differ. 10, 956–968 (2003).

    Article  CAS  Google Scholar 

  62. Perregaux, D. et al. IL-1β maturation: evidence that mature cytokine formation can be induced specifically by nigericin. J. Immunol. 149, 1294–1303 (1992).

    CAS  PubMed  Google Scholar 

  63. Verhoef, P. A., Kertesy, S. B., Estacion, M., Schilling, W. P. & Dubyak, G. R. Maitotoxin induces biphasic interleukin-1β secretion and membrane blebbing in murine macrophages. Mol. Pharmacol. 66, 909–920 (2004).

    CAS  PubMed  Google Scholar 

  64. Zhao, X. et al. Maitotoxin induces calpain but not caspase-3 activation and necrotic cell death in primary septo-hippocampal cultures. Neurochem. Res. 24, 371–382 (1999).

    Article  CAS  Google Scholar 

  65. Majno, G. & Joris, I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am. J. Pathol. 146, 3–15 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Fink, S. L. & Cookson, B. T. Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell. Microbiol. 8, 1812–1825 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.P.-Y.T. is supported by NIH grants and the SPAR award. D.T.B. is supported by the Lineberger postdoctoral award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenny P.-Y. Ting.

Related links

Related links

FURTHER INFORMATION

HUGO gene nomenclature, NLR family

Glossary

Membrane blebbing

Breakdown of the cytoskeleton during apoptosis results in 'blebbing' or bubbling of the plasma membrane. These blebs eventually separate from the cell to become apoptotic bodies, which are small membrane-enclosed packages of cytoplasm. Apoptotic bodies are ultimately engulfed by phagocytic cells and their contents are recycled.

Nuclear condensation

A hallmark of apoptosis is pyknosis, or the condensation of chromatin into compact spots along the nuclear membrane. During pyknosis, the nucleus itself may also shrink.

Cryopyrin-associated periodic syndrome

(CAPS). An autosomal dominant condition arising from mutations in NLRP3. CAPS has only recently been recognized as a single condition, and represents a range of disease severity that was formerly thought to be three distinct diseases: FCAS (familial cold autoinflammatory syndrome), Muckle-Wells syndrome and CINCA/NOMID (chronic infantile neurological cutaneous articular syndrome / neonatal onset multisystem inflammatory disease). Patients suffering from CAPS develop spontaneous inflammation and excessive release of the cytokine IL-1β, and may also suffer from arthralgia, deafness and hives.

Knockdown

This term is used to describe the decrease in mRNA or protein expression that results from RNA interference.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ting, JY., Willingham, S. & Bergstralh, D. NLRs at the intersection of cell death and immunity. Nat Rev Immunol 8, 372–379 (2008). https://doi.org/10.1038/nri2296

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2296

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing