Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Inhibitory B7-family molecules in the tumour microenvironment

Key Points

  • The immune response against cancer is tightly regulated through a set of stimulatory and inhibitory molecules expressed by cancer cells, stromal cells (including APCs) and haematopoietic cells in the tumour microenvironment.

  • Expression of inhibitory members of the co-stimulatory B7 family, such as B7-H1 and B7-H4, is often up-regulated in the tumour microenvironment by local factors including cytokines.

  • Inhibitory B7 molecules mediate various mechanisms to evade tumour-antigen-specific T-cell immunity, including T-cell apoptosis, anergy and exhaustion, forming a molecular shield to protect tumour cells from lysis, and functional modulations of antigen-presenting cells and regulatory T cells.

  • Expression of inhibitory B7 molecules in the tumour microenvironment correlates with poor prognosis in several types of human cancer. Therefore, these molecules might be potential biomarkers to predict therapeutic outcome.

  • Blockade of signalling through the inhibitory B7 molecules is a promising strategy that might work alone or in combination with other modalities to improve current tumour therapies.

Abstract

The B7 family consists of activating and inhibitory co-stimulatory molecules that positively and negatively regulate immune responses. Recent studies have shown that human and rodent cancer cells, and stromal cells and immune cells in the cancer microenvironment upregulate expression of inhibitory B7 molecules and that these contribute to tumour immune evasion. In this Review, we focus on the roles of these B7 molecules in the dynamic interactions between tumours and the host immune system, including their expression, regulation and function in the tumour microenvironment. We also discuss novel therapeutic strategies that target these inhibitory B7 molecules and their signalling pathways to treat human cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The B7 family and antigen presentation to T cells.
Figure 2: B7-H4+ antigen-presenting cells in the tumour microenvironment.
Figure 3: The inhibitory actions of B7-H1 in tumour immune evasion.

Similar content being viewed by others

References

  1. Zou, W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nature Rev. Cancer 5, 263–274 (2005).

    Article  CAS  Google Scholar 

  2. Khong, H. T. & Restifo, N. P. Natural selection of tumor variants in the generation of “tumor escape” phenotypes. Nature Immunol. 3, 999–1005 (2002).

    Article  CAS  Google Scholar 

  3. Kaufman, H. L. & Disis, M. L. Immune system versus tumor: shifting the balance in favor of DCs and effective immunity. J. Clin. Invest. 113, 664–667 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pardoll, D. Does the immune system see tumors as foreign or self? Annu. Rev. Immunol. 21, 807–839 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Cerundolo, V., Hermans, I. F. & Salio, M. Dendritic cells: a journey from laboratory to clinic. Nature Immunol. 5, 7–10 (2004).

    Article  CAS  Google Scholar 

  6. Gilboa, E. The promise of cancer vaccines. Nature Rev. Cancer 4, 401–411 (2004).

    Article  CAS  Google Scholar 

  7. Mellor, A. L. & Munn, D. H. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nature Rev. Immunol. 4, 762–774 (2004).

    Article  CAS  Google Scholar 

  8. Finn, O. J. Cancer vaccines: between the idea and the reality. Nature Rev. Immunol. 3, 630–641 (2003).

    Article  CAS  Google Scholar 

  9. Schreiber, H., Wu, T. H., Nachman, J. & Kast, W. M. Immunodominance and tumor escape. Semin. Cancer Biol. 12, 25–31 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Banchereau, J. & Palucka, A. K. Dendritic cells as therapeutic vaccines against cancer. Nature Rev. Immunol. 5, 296–306 (2005).

    Article  CAS  Google Scholar 

  11. Gabrilovich, D. Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nature Rev. Immunol. 4, 941–952 (2004).

    Article  CAS  Google Scholar 

  12. Bronte, V. & Zanovello, P. Regulation of immune responses by L-arginine metabolism. Nature Rev. Immunol. 5, 641–654 (2005).

    Article  CAS  Google Scholar 

  13. Zou, W. Regulatory T cells, tumour immunity and immunotherapy. Nature Rev. Immunol. 6, 295–307 (2006).

    Article  CAS  Google Scholar 

  14. Wei, S., Kryczek, I. & Zou, W. Regulatory T-cell compartmentalization and trafficking. Blood 108, 426–431 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sakaguchi, S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nature Immunol. 6, 345–352 (2005).

    Article  CAS  Google Scholar 

  16. Curiel, T. J. et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nature Med. 10, 942–949 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Chen, L. Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nature Rev. Immunol. 4, 336–347 (2004).

    Article  CAS  Google Scholar 

  18. Sharpe, A. H. & Freeman, G. J. The B7–CD28 superfamily. Nature Rev. Immunol. 2, 116–126 (2002).

    Article  CAS  Google Scholar 

  19. Korman, A. J., Peggs, K. S. & Allison, J. P. Checkpoint blockade in cancer immunotherapy. Adv. Immunol. 90, 297–339 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dong, H., Zhu, G., Tamada, K. & Chen, L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nature Med. 5, 1365–1369 (1999). This study reported the first identification of B7-H1 and indicated a negative role of B7-H1 in T-cell responses.

    Article  CAS  PubMed  Google Scholar 

  21. Freeman, G. J. et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 192, 1027–1034 (2000). This study showed that PD-1 is an inhibitory receptor for B7-H1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, S. et al. Molecular modeling and functional mapping of B7-H1 and B7-DC uncouple costimulatory function from PD-1 interaction. J. Exp. Med. 197, 1083–1091 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Curiel, T. J. et al. Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nature Med. 21, 562–567 (2003). This study showed that human tumour-associated DCs express B7-H1 and can inhibit tumour-antigen-specific T-cell function through B7-H1.

    Article  CAS  Google Scholar 

  24. Kanai, T. et al. Blockade of B7-H1 suppresses the development of chronic intestinal inflammation. J. Immunol. 171, 4156–4163 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Butte, M. J., Keir, M. E., Phamduy, T. B., Sharpe, A. H. & Freeman, G. J. Programmed death-1 ligand 1 interacts specifically with the b7–1 costimulatory molecule to inhibit T cell responses. Immunity 27, 111–122 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dong, H. et al. Costimulating aberrant T cell responses by B7-H1 autoantibodies in rheumatoid arthritis. J. Clin. Invest. 111, 363–370 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Azuma, T. et al. B7-H1 is a ubiquitous antiapoptotic receptor on cancer cells. Blood 111, 3635–3643 (2008). This study reports that B7-H1 functions as a receptor to transmit an anti-apoptotic signal to cancer cells as a means to resist immune-mediated destruction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sica, G. L. et al. B7-H4, a molecule of the B7 family, negatively regulates T cell immunity. Immunity 18, 849–861 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Zang, X. et al. B7x: a widely expressed B7 family member that inhibits T cell activation. Proc. Natl Acad. Sci. USA 100, 10388–10392 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Prasad, D. V., Richards, S., Mai, X. M. & Dong, C. B7S1, a novel B7 family member that negatively regulates T cell activation. Immunity 18, 863–873 (2003). References 28–30 identified B7-H4 and described the inhibitory role of B7-H4 in T-cell responses.

    Article  CAS  PubMed  Google Scholar 

  31. Kryczek, I. et al. B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. J. Exp. Med. 203, 871–881 (2006). This study showed that human tumour-associated macrophages express B7-H4 and can suppress tumour-antigen-specific T-cell responses, and it provided a cytokine profile for the regulation of B7-H4 expression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Watanabe, N. et al. BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nature Immunol. 4, 670–679 (2003).

    Article  CAS  Google Scholar 

  33. Sedy, J. R. et al. B and T lymphocyte attenuator regulates T cell activation through interaction with herpesvirus entry mediator. Nature Immunol. 6, 90–98 (2005).

    Article  CAS  Google Scholar 

  34. Compaan, D. M. et al. Attenuating lymphocyte activity: the crystal structure of the BTLA-HVEM complex. J. Biol. Chem. 280, 39553–39561 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Gonzalez, L. C. et al. A coreceptor interaction between the CD28 and TNF receptor family members B and T lymphocyte attenuator and herpesvirus entry mediator. Proc. Natl Acad. Sci. USA 102, 1116–1121 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Brown, J. A. et al. Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production. J. Immunol. 170, 1257–1266 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Parsa, A. T. et al. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nature Med. 13, 84–88 (2007). This study showed that the increased expression at a post-transcriptional level of B7-H1 in human glioma is associated with loss of function of PTEN.

    Article  CAS  PubMed  Google Scholar 

  38. Saudemont, A., Jouy, N., Hetuin, D. & Quesnel, B. NK cells that are activated by CXCL10 can kill dormant tumor cells that resist CTL-mediated lysis and can express B7-H1 that stimulates T cells. Blood 105, 2428–2435 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Mazanet, M. M. & Hughes, C. C. B7-H1 is expressed by human endothelial cells and suppresses T cell cytokine synthesis. J. Immunol. 169, 3581–3588 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Augello, A. et al. Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur. J. Immunol. 35, 1482–1490 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Nakae, S. et al. Mast cells enhance T cell activation: importance of mast cell costimulatory molecules and secreted TNF. J. Immunol. 176, 2238–2248 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Petroff, M. G., Chen, L., Phillips, T. A. & Hunt, J. S. B7 family molecules: novel immunomodulators at the maternal-fetal interface. Placenta 23 (Suppl. A), 95–101 (2002).

    Article  Google Scholar 

  43. Hori, J. et al. B7-H1-induced apoptosis as a mechanism of immune privilege of corneal allografts. J. Immunol. 177, 5928–5935 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Dong, H. et al. Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. Nature Med. 8, 793–800 (2002). This study showed that tumour-associated B7-H1 induces T-cell apoptosis and that B7-H1 protein is found in many types of human tumour, which could be upregulated by IFNγ.

    Article  CAS  PubMed  Google Scholar 

  45. Perrot, I. et al. Dendritic cells infiltrating human non-small cell lung cancer are blocked at immature stage. J. Immunol. 178, 2763–2769 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Nazareth, M. R. et al. Characterization of human lung tumor-associated fibroblasts and their ability to modulate the activation of tumor-associated T cells. J. Immunol. 178, 5552–5562 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Thompson, R. H. et al. Costimulatory B7-H1 in renal cell carcinoma patients: Indicator of tumor aggressiveness and potential therapeutic target. Proc. Natl Acad. Sci. USA 101, 17174–17179 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ghebeh, H. et al. The B7-H1 (PD-L1) T lymphocyte-inhibitory molecule is expressed in breast cancer patients with infiltrating ductal carcinoma: correlation with important high-risk prognostic factors. Neoplasia 8, 190–198 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Choi, I. H. et al. Genomic organization and expression analysis of B7-H4, an immune inhibitory molecule of the B7 family. J. Immunol. 171, 4650–4654 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Tringler, B. et al. B7-h4 is highly expressed in ductal and lobular breast cancer. Clin. Cancer Res. 11, 1842–1848 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Bignotti, E. et al. Differential gene expression profiles between tumor biopsies and short-term primary cultures of ovarian serous carcinomas: identification of novel molecular biomarkers for early diagnosis and therapy. Gynecol. Oncol. 103, 405–416 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Tringler, B. et al. B7-H4 overexpression in ovarian tumors. Gynecol. Oncol. 100, 44–52 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Simon, I. et al. B7-h4 is a novel membrane-bound protein and a candidate serum and tissue biomarker for ovarian cancer. Cancer Res. 66, 1570–1575 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Salceda, S. et al. The immunomodulatory protein B7-H4 is overexpressed in breast and ovarian cancers and promotes epithelial cell transformation. Exp. Cell Res. 306, 128–141 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Kryczek, I. et al. Relationship between B7-H4, Regulatory T cells, and patient outcome in human ovarian carcinoma. Cancer Res. 67, 8900–8905 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Krambeck, A. E. et al. B7-H4 expression in renal cell carcinoma and tumor vasculature: Associations with cancer progression and survival. Proc. Natl Acad. Sci. USA 103, 10391–10396 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Balkwill, F. Cancer and the chemokine network. Nature Rev. Cancer 4, 540–550 (2004).

    Article  CAS  Google Scholar 

  58. Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Waeckerle-Men, Y., Starke, A. & Wuthrich, R. P. PD-L1 partially protects renal tubular epithelial cells from the attack of CD8+ cytotoxic T cells. Nephrol. Dial. Transplant 22, 1527–1536 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Muhlbauer, M. et al. PD-L1 is induced in hepatocytes by viral infection and by interferon-α and -γ and mediates T cell apoptosis. J. Hepatol. 45, 520–528 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Schreiner, B. et al. Interferon-β enhances monocyte and dendritic cell expression of B7-H1 (PD-L1), a strong inhibitor of autologous T-cell activation: relevance for the immune modulatory effect in multiple sclerosis. J. Neuroimmunol. 155, 172–182 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Zou, W. et al. Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells. Nature Med. 7, 1339–1346 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Rissoan, M. C. et al. Reciprocal control of T helper cell and dendritic cell differentiation. Science 283, 1183–1186 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Boehm, U., Klamp, T., Groot, M. & Howard, J. C. Cellular responses to interferon-γ. Annu. Rev. Immunol. 15, 749–795 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Munn, D. H. et al. Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science 297, 1867–1870 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Mazzoni, A. et al. Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J. Immunol. 168, 689–695 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Kusmartsev, S. A., Li, Y. & Chen, S. H. Gr-1+ myeloid cells derived from tumor-bearing mice inhibit primary T cell activation induced through CD3/CD28 costimulation. J. Immunol. 165, 779–785 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Saio, M., Radoja, S., Marino, M. & Frey, A. B. Tumor-infiltrating macrophages induce apoptosis in activated CD8+ T cells by a mechanism requiring cell contact and mediated by both the cell-associated form of TNF and nitric oxide. J. Immunol. 167, 5583–5593 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Yee, C., Riddell, S. R. & Greenberg, P. D. Prospects for adoptive T cell therapy. Curr. Opin. Immunol. 9, 702–708 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Maio, M. & Parmiani, G. Melanoma immunotherapy: new dreams or solid hopes? Immunol. Today 17, 405–407 (1996).

    Article  CAS  PubMed  Google Scholar 

  71. Maeurer, M. J., Storkus, W. J., Kirkwood, J. M. & Lotze, M. T. New treatment options for patients with melanoma: review of melanoma- derived T-cell epitope-based peptide vaccines. Melanoma Res. 6, 11–24 (1996).

    Article  CAS  PubMed  Google Scholar 

  72. Romero, P. et al. Ex vivo staining of metastatic lymph nodes by class I major histocompatibility complex tetramers reveals high numbers of antigen-experienced tumor-specific cytolytic T lymphocytes. J. Exp. Med. 188, 1641–1650 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Berner, V. et al. IFN-γ mediates CD4+ T-cell loss and impairs secondary antitumor responses after successful initial immunotherapy. Nature Med. 13, 354–360 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Kryczek, I. et al. Cutting Edge: Induction of B7-H4 on APCs through IL-10: novel suppressive mode for regulatory T cells. J. Immunol. 177, 40–44 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Dong, H. et al. B7-H1 determines accumulation and deletion of intrahepatic CD8+ T lymphocytes. Immunity 20, 327–336 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Latchman, Y. E. et al. PD-L1-deficient mice show that PD-L1 on T cells, antigen-presenting cells, and host tissues negatively regulates T cells. Proc. Natl Acad. Sci. USA 101, 10691–10696 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Suh, W. K. et al. Generation and characterization of B7-H4/B7S1/B7x-deficient mice. Mol. Cell Biol. 26, 6403–6411 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Strome, S. E. et al. B7-H1 blockade augments adoptive T-cell immunotherapy for squamous cell carcinoma. Cancer Res. 63, 6501–6505 (2003).

    CAS  PubMed  Google Scholar 

  79. Iwai, Y., Terawaki, S. & Honjo, T. PD-1 blockade inhibits hematogenous spread of poorly immunogenic tumor cells by enhanced recruitment of effector T cells. Int. Immunol. 17, 133–144 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Tsushima, F. et al. Predominant expression of B7-H1 and its immunoregulatory roles in oral squamous cell carcinoma. Oral Oncol. 42, 268–274 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Salih, H. R. et al. The role of leukemia-derived B7-H1 (PD-L1) in tumor-T-cell interactions in humans. Exp. Hematol. 34, 888–894 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Hirano, F. et al. Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res. 65, 1089–1096 (2005).

    CAS  PubMed  Google Scholar 

  83. Iwai, Y. et al. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc. Natl Acad. Sci. USA 99, 12293–12297 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Saudemont, A. & Quesnel, B. In a model of tumor dormancy, long-term persistent leukemic cells have increased B7-H1 and B7.1 expression and resist CTL-mediated lysis. Blood 104, 2124–2133 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Thompson, R. H. et al. Tumor B7-H1 is associated with poor prognosis in renal cell carcinoma patients with long-term follow-up. Cancer Res. 66, 3381–3385 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Konishi, J. et al. B7-H1 expression on non-small cell lung cancer cells and its relationship with tumor-infiltrating lymphocytes and their PD-1 expression. Clin. Cancer Res. 10, 5094–5100 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Hamanishi, J. et al. Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc. Natl Acad. Sci. USA 104, 3360–3365 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ohigashi, Y. et al. Clinical significance of programmed death-1 ligand-1 and programmed death-1 ligand-2 expression in human esophageal cancer. Clin. Cancer Res. 11, 2947–2953 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Wu, C. et al. Immunohistochemical localization of programmed death-1 ligand-1 (PD-L1) in gastric carcinoma and its clinical significance. Acta Histochem. 108, 19–24 (2006).

    Article  PubMed  Google Scholar 

  90. Zang, X. et al. B7-H3 and B7x are highly expressed in human prostate cancer and associated with disease spread and poor outcome. Proc. Natl Acad. Sci. USA 104, 19458–19463 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sadun, R. E. et al. Immune signatures of murine and human cancers reveal unique mechanisms of tumor escape and new targets for cancer immunotherapy. Clin. Cancer Res. 13, 4016–4025 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Oikawa, T. et al. Intrahepatic expression of the co-stimulatory molecules programmed death-1, and its ligands in autoimmune liver disease. Pathol. Int. 57, 485–492 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Chen, C. H. et al. In vivo immune modulatory activity of hepatic stellate cells in mice. Hepatology 44, 1171–1181 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Selenko-Gebauer, N. et al. B7-h1 (programmed death-1 ligand) on dendritic cells is involved in the induction and maintenance of T cell anergy. J. Immunol. 170, 3637–3644 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Probst, H. C., McCoy, K., Okazaki, T., Honjo, T. & van den Broek, M. Resting dendritic cells induce peripheral CD8+ T cell tolerance through PD-1 and CTLA-4. Nature Immunol. 6, 280–286 (2005).

    Article  CAS  Google Scholar 

  96. Fife, B. T. et al. Insulin-induced remission in new-onset NOD mice is maintained by the PD-1–PD-L1 pathway. J. Exp. Med. 203, 2737–2747 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Tsushima, F. et al. Interaction between B7-H1 and PD-1 determines initiation and reversal of T-cell anergy. Blood 110, 180–185 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Goldberg, M. V. et al. Role of PD-1 and its ligand, B7-H1, in early fate decisions of CD8 T cells. Blood 110, 186–192 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wong, R. M. et al. Programmed death-1 blockade enhances expansion and functional capacity of human melanoma antigen-specific CTLs. Int. Immunol. 19, 1223–1234 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Barber, D. L. et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439, 682–687 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Petrovas, C. et al. PD-1 is a regulator of virus-specific CD8+ T cell survival in HIV infection. J. Exp. Med. 203, 2281–2292 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Day, C. L. et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443, 350–354 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Trautmann, L. et al. Upregulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction. Nature Med. 12, 1198–1202 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Kuper, H., Adami, H. O. & Trichopoulos, D. Infections as a major preventable cause of human cancer. J. Intern. Med. 248, 171–183 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Blank, C. et al. PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells. Cancer Res. 64, 1140–1145 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Blank, C. et al. Blockade of PD-L1 (B7-H1) augments human tumor-specific T cell responses in vitro. Int. J. Cancer 119, 317–327 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Geng, L. et al. B7-H1 expression is upregulated in peripheral blood CD14+ monocytes of patients with chronic hepatitis B virus infection, which correlates with higher serum IL-10 levels. J. Viral. Hepat. 13, 725–733 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Trabattoni, D. et al. B7-H1 is up-regulated in HIV infection and is a novel surrogate marker of disease progression. Blood 101, 2514–2520 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Krupnick, A. S. et al. Murine vascular endothelium activates and induces the generation of allogeneic CD4+25+Foxp3+ regulatory T cells. J. Immunol. 175, 6265–6270 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Beswick, E. J., Pinchuk, I. V., Das, S., Powell, D. W. & Reyes, V. E. Expression of the programmed death ligand 1, B7-H1, on gastric epithelial cells after Helicobacter pylori exposure promotes development of CD4+ CD25+ FoxP3+ regulatory T cells. Infect. Immun. 75, 4334–4341 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sharma, M. D. et al. Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase. J. Clin. Invest. 117, 2570–2582 (2007). This study showed that plasmacytoid DCs from mouse tumour-draining lymph nodes activate regulatory T (T Reg ) cells through indoleamine 2,3-dioxygenase, these activated T Reg cells induce B7-H1 on target DCs and mediate tumour immune suppression in a B7-H1-dependent manner.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Yang, Z. Z., Novak, A. J., Stenson, M. J., Witzig, T. E. & Ansell, S. M. Intratumoral CD4+CD25+ regulatory T-cell-mediated suppression of infiltrating CD4+ T cells in B-cell non-Hodgkin lymphoma. Blood 107, 3639–3646 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wyckoff, J. et al. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res. 64, 7022–7029 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Pollard, J. W. Tumour-educated macrophages promote tumour progression and metastasis. Nature Rev. Cancer 4, 71–78 (2004).

    Article  CAS  Google Scholar 

  115. Vakkila, J. & Lotze, M. T. Inflammation and necrosis promote tumour growth. Nature Rev. Immunol. 4, 641–648 (2004).

    Article  CAS  Google Scholar 

  116. Mantovani, A., Sozzani, S., Locati, M., Allavena, P. & Sica, A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23, 549–555 (2002).

    Article  CAS  PubMed  Google Scholar 

  117. Subudhi, S. K. et al. Local expression of B7-H1 promotes organ-specific autoimmunity and transplant rejection. J. Clin. Invest. 113, 694–700 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhu, B. et al. Differential role of programmed death-ligand 1 [corrected] and programmed death-ligand 2 [corrected] in regulating the susceptibility and chronic progression of experimental autoimmune encephalomyelitis. J. Immunol. 176, 3480–3489 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Ansari, M. J. et al. The programmed death-1 (PD-1) pathway regulates autoimmune diabetes in nonobese diabetic (NOD) mice. J. Exp. Med. 198, 63–69 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Keir, M. E. et al. Tissue expression of PD-L1 mediates peripheral T cell tolerance. J. Exp. Med. 203, 883–895 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. del Rio, M. L. et al. Antibody-mediated signaling through PD-1 costimulates T cells and enhances CD28-dependent proliferation. Eur. J. Immunol. 35, 3545–3560 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Melero, I. et al. Monoclonal antibodies against the 4–1BB T-cell activation molecule eradicate established tumors. Nature Med. 3, 682–685 (1997).

    Article  CAS  PubMed  Google Scholar 

  123. Webster, W. S. et al. Targeting molecular and cellular inhibitory mechanisms for improvement of antitumor memory responses reactivated by tumor cell vaccine. J. Immunol. 179, 2860–2869 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Geng, H. et al. HSP70 vaccine in combination with gene therapy with plasmid DNA encoding sPD-1 overcomes immune resistance and suppresses the progression of pulmonary metastatic melanoma. Int. J. Cancer 118, 2657–2664 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Wintterle, S. et al. Expression of the B7-related molecule B7-H1 by glioma cells: a potential mechanism of immune paralysis. Cancer Res. 63, 7462–7467 (2003).

    CAS  PubMed  Google Scholar 

  126. Liu, J. et al. Plasma cells from multiple myeloma patients express B7-H1 (PD-L1) and increase expression following stimulation with IFN-γ and TLR ligands via a MyD88-, TRAF6-, and MEK-dependent pathway. Blood 110, 296–304 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Nomi, T. et al. Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer. Clin. Cancer Res. 13, 2151–2157 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. Thompson, R. H. et al. Costimulatory molecule B7-H1 in primary and metastatic clear cell renal cell carcinoma. Cancer 104, 2084–2091 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Nakanishi, J. et al. Overexpression of B7-H1 (PD-L1) significantly associates with tumor grade and postoperative prognosis in human urothelial cancers. Cancer Immunol. Immunother. 56, 1173–1182 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Inman, B. A. et al. PD-L1 (B7-H1) expression by urothelial carcinoma of the bladder and BCG-induced granulomata: associations with localized stage progression. Cancer 109, 1499–1505 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Sun, Y. et al. B7-H3 and B7-H4 expression in non-small-cell lung cancer. Lung Cancer 53, 143–151 (2006).

    Article  PubMed  Google Scholar 

  132. Miyatake, T. et al. B7-H4 (DD-O110) is overexpressed in high risk uterine endometrioid adenocarcinomas and inversely correlated with tumor T-cell infiltration. Gynecol. Oncol. 106, 119–127 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Wei S. et al. Tumor-induced immune suppression of in vivo T effector cell priming is mediated by the B7-H1/PD-1 axis and TGF-β1. Cancer Res. (in the press).

Download references

Acknowledgements

We would like to thank our former and current trainees and collaborators for their intellectual input and hard work. The work described in this Review was supported by grants from the United States National Institutes of Health and the United States Department of Defense.

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

Weiping Zou's homepage

Lieping Chen's homepage

Glossary

Tumour-associated antigens

(TAAs). Antigens that are expressed by tumour cells. These belong to three main categories: tissue-differentiation antigens, which are also expressed by non-malignant cells; mutated or aberrantly expressed molecules; and cancer testis antigens, which are normally expressed only by spermatocytes and occasionally in the placenta.

Myeloid-derived suppressor cells

A population of cells that comprises mature and immature myeloid cells. They are expanded and/or activated during an inflammatory immune response. Through direct interactions and secreted components, they inhibit T-cell function.

Regulatory T (TReg) cells

A T-cell population that can functionally suppress an immune response by influencing the activity of another cell type. Several phenotypically distinct regulatory T-cell populations exist. The classic regulatory T cells are CD4+CD25+FOXP3+ T cells known as TReg cells.

Two-signal model

The concept that both the MHC–peptide complex (signal 1) and co-stimulatory signals delivered by B7-family molecules expressed by antigen-presenting cells (signal 2) are required for T-cell activation. The absence of signal 2 results in the induction of T-cell anergy or deletion.

Cytotoxic T-lymphocyte-antigen 4

(CTLA4). After engagement by CD80 or CD86 on antigen-presenting cells, CTLA4 signalling in activated T cells induces cell-cycle arrest, decreases cytokine production and inhibits T-cell responses. CD4+CD25+ TReg cells constitutively express CTLA4.

Myeloid DCs

A subset of dendritic cells (DCs) that are lineage-negative, HLA-DR+CD11c+ (in humans) mononuclear cells with a monocytoid appearance. Human myeloid DCs might be derived from myeloid precursors (for example, monocytes, macrophages and CD11c+ precursors).

Plasmacytoid DCs

A subset of dendritic cells (DCs) that are lineage negative, HLA-DR+CD11c (in humans) mononuclear cells with a microscopic appearance similar to plasmablasts. Plasmacytoid DCs are the main producers of type I interferon.

Indoleamine 2,3-dioxygenase

(IDO). An intracellular haem-containing enzyme that catalyses the oxidative catabolism of tryptophan. Insufficient availability of tryptophan can lead to T-cell apoptosis and anergy.

Arginase

An enzyme that converts L-arginine into l-ornithine and urea.

Danger signals

Agents that alert the immune system to stress, usually by interacting with Toll-like receptors and other pattern-recognition receptors, and thereby promote the generation of innate and adaptive immune responses. Danger signals can be associated with microbial invaders (exogenous danger signals) or produced by damaged cells (endogenous danger signals).

Anergy

A state of non-responsiveness to antigen. Anergic T or B cells cannot respond to their cognate antigens under optimal conditions of stimulation.

Exhaustion

An 'operational' definition that refers to the loss of antigen-specific T-cell responses in vivo after prolonged or repetitive stimulation with antigen. This has been best observed in a model of infection with lymphocytic choriomeningitis virus Docile strain, for which the exact mechanism is still not understood.

Small interfering RNA

Double-stranded RNAs (dsRNAs) with sequences that precisely match a given gene are able to 'knock down' the expression of that gene by directing RNA-degrading enzymes to destroy the encoded mRNA transcript. The two most common forms of dsRNAs used for gene silencing are short — usually 21-bp long — small interfering RNAs (siRNAs) or the plasmid-delivered short hairpin RNAs (shRNAs).

Antisense oligonucleotides

Short, gene-specific sequences of nucleic acids that are of the opposite strand (complementary) to the targeted mRNA. Classical antisense oligonucleotides target specific strands of RNA within a cell, thereby preventing translation of these RNAs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, W., Chen, L. Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol 8, 467–477 (2008). https://doi.org/10.1038/nri2326

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2326

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing