Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

GATA3 and the T-cell lineage: essential functions before and after T-helper-2-cell differentiation

Key Points

  • GATA-binding protein 3 (GATA3) is a zinc-finger transcription factor that is continually expressed in a highly regulated manner throughout T-cell development and CD4+ T helper (TH)-cell differentiation.

  • At the earliest stages of T-cell development, GATA3 is required for commitment to the T-cell lineage. However, forced expression of GATA3 in pre-committed double negative 1 (DN1) or DN2 thymocytes is toxic, and in developing B cells it diverts the development of cells to the mast-cell lineage. So, the expression levels of GATA3 must be 'just right' for successful commitment to the T-cell lineage.

  • After T-cell-lineage commitment, GATA3 has a role in β-selection, such that mice lacking GATA3 at the DN3 stage of development exhibit partial arrest at the DN3 stage and impairment of T-cell receptor β-chain (TCRβ) protein expression. The nature and extent of this function of GATA3 are still unclear owing to the current limitations of T-cell-specific conditional knockout technology.

  • Two transcription factors, GATA3 and T-helper-inducing POZ/Kruppel-like factor (ThPOK; encoded by Zbtb7b, which was recently found to be mutated in the helper-deficient spontaneous mutant mouse strain), are both crucial for CD4 single positive (SP) thymocyte development. The development of MHC class II-restricted thymocytes that lack or express a mutant form of ThPOK is diverted to the CD8 lineage, indicating that ThPOK functions in CD4- or CD8- lineage determination. By contrast, GATA3-deficient thymocytes that develop in a MHC class II-restricted environment give rise to no or few CD8-lineage cells. Delineating the distinct functions of these two factors is further complicated by evidence showing that GATA3 upregulates ThPOK expression but restoration of ThPOK expression in GATA3-deficient mice fails to restore CD4 SP thymocyte development.

  • GATA3 is both necessary and sufficient for the development of TH2 cells, largely because interleukin-4 receptor (IL-4R) signalling through signal transducer and activator of transcription 6 (STAT6) induces GATA3 expression in a positive-feedback loop. STAT6-independent TH2-cell differentiation signals, such as triggering of the TCR, activation of IL-2R–STAT5A signalling and engagement of Notch receptors, also depend on GATA3 to promote IL-4 production.

  • Control of the production of individual TH2-type cytokines by GATA3 is accomplished by distinct mechanisms, as shown by structure–function analyses.

Abstract

Many advances in our understanding of the molecules that regulate the development, differentiation and function of T cells have been made over the past few years. One important regulator of T-cell differentiation is the transcription factor GATA-binding protein 3 (GATA3). Although the main function of GATA3 is to act as a master transcription factor for the differentiation of T helper 2 (TH2) cells, new research has helped to uncover crucial functions of GATA3 in T cells that go beyond TH2-cell differentiation and that are important at earlier stages of haematopoietic and lymphoid-cell development. This Review focuses on the functions of GATA3 from early thymocyte development to effector T-cell differentiation. In addition, we discuss the interactions between GATA3 and other transcription factors and signalling pathways, and highlight the functional significance of the GATA3 protein structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Functional domains and essential amino acids in mouse GATA-binding protein 3.
Figure 2: Transcriptional regulation of positive selection, CD4- or CD8-lineage commitment and post-commitment development of thymocytes.
Figure 3: GATA-binding protein 3 is required for both STAT6-dependent and STAT6-independent pathways of T-helper-2-cell differentiation.

Similar content being viewed by others

References

  1. Ko, L. & Engel, J. DNA-binding specificities of the GATA transcription factor family. Mol. Cell. Biol. 13, 4011–4022 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Merika, M. & Orkin, S. DNA-binding specificity of GATA family transcription factors. Mol. Cell. Biol. 13, 3999–4010 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ho, I. et al. Human GATA-3: a lineage-restricted transcription factor that regulates the expression of the T cell receptor alpha gene. EMBO J. 10, 1187–1192 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Oosterwegel, M., Timmerman, J., Leiden, J. & Clevers, H. Expression of GATA-3 during lymphocyte differentiation and mouse embryogenesis. Dev. Immunol. 3, 1–11 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Samson, S. I. et al. GATA-3 promotes maturation, IFN-γ production, and liver-specific homing of NK cells. Immunity 19, 701–711 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Zon, L. I. et al. GATA-binding transcription factors in mast cells regulate the promoter of the mast cell carboxypeptidase A gene. J. Biol. Chem. 266, 22948–22953 (1991).

    CAS  PubMed  Google Scholar 

  7. Solymar, D. C., Agarwal, S., Bassing, C. H., Alt, F. W. & Rao, A. A 3′ enhancer in the IL-4 gene regulates cytokine production by Th2 cells and mast cells. Immunity 17, 41–50 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Asselin-Labat, M. L. et al. Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nature Cell Biol. 9, 201–209 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. de Guzman Strong, C. et al. Lipid defect underlies selective skin barrier impairment of an epidermal-specific deletion of Gata-3. J. Cell Biol. 175, 661–670 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kaufman, C. K. et al. GATA-3: an unexpected regulator of cell lineage determination in skin. Genes Dev. 17, 2108–2122 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kouros-Mehr, H. et al. GATA-3 links tumor differentiation and dissemination in a luminal breast cancer model. Cancer Cell 13, 141–152 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kouros-Mehr, H., Slorach, E. M., Sternlicht, M. D. & Werb, Z. GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland. Cell 127, 1041–1055 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lim, K. C. et al. Gata3 loss leads to embryonic lethality due to noradrenaline deficiency of the sympathetic nervous system. Nature Genet. 25, 209–212 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Tong, Q. et al. Function of GATA transcription factors in preadipocyte–adipocyte transition. Science 290, 134–138 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Ho, I. C. & Pai, S. Y. GATA-3 — not just for Th2 cells anymore. Cell. Mol. Immunol. 4, 15–29 (2007).

    CAS  PubMed  Google Scholar 

  16. Pandolfi, P. P. et al. Targeted disruption of the GATA3 gene causes severe abnormalities in the nervous system and in fetal liver haematopoiesis. Nature Genet. 11, 40–44 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Ting, C. N., Olson, M. C., Barton, K. P. & Leiden, J. M. Transcription factor Gata-3 is required for development of the T-cell lineage. Nature 384, 474–478 (1996). This paper establishes the crucial role of GATA3 in T-cell lineage commitment by showing that Rag−/− blastocysts complemented with Gata3−/− embryonic stem cells generate B cells but not T cells.

    Article  CAS  PubMed  Google Scholar 

  18. Zhong, J. F. et al. Gene expression profile of murine long-term reconstituting vs. short-term reconstituting hematopoietic stem cells. Proc. Natl Acad. Sci. USA 102, 2448–2453 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bertrand, J. Y. et al. Characterization of purified intraembryonic hematopoietic stem cells as a tool to define their site of origin. Proc. Natl Acad. Sci. USA 102, 134–139 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Kobayashi-Osaki, M. et al. GATA motifs regulate early hematopoietic lineage-specific expression of the Gata2 gene. Mol. Cell. Biol. 25, 7005–7020 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Labastie, M. C., Cortés, F., Roméo, P. H., Dulac, C. & Péault, B. Molecular identity of hematopoietic precursor cells emerging in the human embryo. Blood 92, 3624–3635 (1998).

    CAS  PubMed  Google Scholar 

  22. Mouthon, M. A. et al. Expression of tal-1 and GATA-binding proteins during human hematopoiesis. Blood 81, 647–655 (1993).

    CAS  PubMed  Google Scholar 

  23. Dias, S., Silva, H., Cumano, A. & Vieira, P. Interleukin-7 is necessary to maintain the B cell potential in common lymphoid progenitors. J. Exp. Med. 201, 971–979 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen, D. & Zhang, G. Enforced expression of the GATA-3 transcription factor affects cell fate decisions in hematopoiesis. Exp. Hematol. 29, 971–980 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Taghon, T. et al. Enforced expression of GATA-3 severely reduces human thymic cellularity. J. Immunol. 167, 4468–4475 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. David-Fung, E. S. et al. Progression of regulatory gene expression states in fetal and adult pro-T-cell development. Immunol. Rev. 209, 212–236 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tydell, C. C. et al. Molecular dissection of prethymic progenitor entry into the T lymphocyte developmental pathway. J. Immunol. 179, 421–438 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Schmitt, T. M. & Zúñiga-Pflücker, J. C. Induction of T cell development from hematopoietic progenitor cells by Delta-like-1 in vitro. Immunity 17, 749–756 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Höflinger, S. et al. Analysis of Notch1 function by in vitro T cell differentiation of Pax5 mutant lymphoid progenitors. J. Immunol. 173, 3935–3944 (2004).

    Article  PubMed  Google Scholar 

  30. Schmitt, T. M. et al. Induction of T cell development and establishment of T cell competence from embryonic stem cells differentiated in vitro. Nature Immunol. 5, 410–417 (2004).

    Article  CAS  Google Scholar 

  31. Taghon, T. N., David, E. S., Zúñiga-Pflücker, J. C. & Rothenberg, E. V. Delayed, asynchronous, and reversible T-lineage specification induced by Notch/Delta signaling. Genes Dev. 19, 965–978 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pui, J. C. et al. Notch1 expression in early lymphopoiesis influences B versus T lineage determination. Immunity 11, 299–308 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Radtke, F. et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 10, 547–558 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Taghon, T., Yui, M. A. & Rothenberg, E. V. Mast cell lineage diversion of T lineage precursors by the essential T cell transcription factor GATA-3. Nature Immunol. 8, 845–855 (2007). By overexpressing GATA3 in DN thymocytes cultured on an OP9 or an OP9–DLL1 stroma, these authors show that GATA3 overexpression in the presence of Notch signals is toxic, whereas GATA3 overexpression in the absence of Notch signals diverts pre-committed thymocytes to the mast-cell lineage.

    Article  CAS  Google Scholar 

  35. Hozumi, K. et al. Notch signaling is necessary for GATA3 function in the initiation of T cell development. Eur. J. Immunol. 38, 977–985 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Ouyang, W. et al. Stat6-independent GATA-3 autoactivation directs IL-4-independent Th2 development and commitment. Immunity 12, 27–37 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Tsai, S.-F., Strauss, E. & Orkin, S. Functional analysis and in vivo footprinting implicate the erythroid transcription factor GATA-1 as a positive regulator of its own promoter. Genes Dev. 5, 919–931 (1991).

    Article  CAS  PubMed  Google Scholar 

  38. Hendriks, R. W. et al. Expression of the transcription factor GATA-3 is required for the development of the earliest T cell progenitors and correlates with stages of cellular proliferation in the thymus. Eur. J. Immunol. 29, 1912–1918 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Pai, S. Y. et al. Critical roles for transcription factor GATA-3 in thymocyte development. Immunity 19, 863–875 (2003). Using mice in which thymocytes were rendered deficient in GATA3 at the DN3 and DP stages of development, these authors show that GATA3 is required for optimal β-selection and for CD4 SP thymocyte development.

    Article  CAS  PubMed  Google Scholar 

  40. Bender, T. P., Kremer, C. S., Kraus, M., Buch, T. & Rajewsky, K. Critical functions for c-Myb at three checkpoints during thymocyte development. Nature Immunol. 5, 721–729 (2004).

    Article  CAS  Google Scholar 

  41. Tanigaki, K. et al. Regulation of αβ/γδ T cell lineage commitment and peripheral T cell responses by Notch/RBP-J signaling. Immunity 20, 611–622 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Wolfer, A., Wilson, A., Nemir, M., MacDonald, H. R. & Radtke, F. Inactivation of Notch1 impairs VDJβ rearrangement and allows pre-TCR-independent survival of early αβ lineage thymocytes. Immunity 16, 869–879 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Neilson, J. R., Winslow, M. M., Hur, E. M. & Crabtree, G. R. Calcineurin B1 is essential for positive but not negative selection during thymocyte development. Immunity 20, 255–266 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Gu, H., Marth, J. D., Orban, P. C., Mossmann, H. & Rajewsky, K. Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science 265, 103–106 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Maillard, I. et al. The requirement for Notch signaling at the β-selection checkpoint in vivo is absolute and independent of the pre-T cell receptor. J. Exp. Med. 203, 2239–2245 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Aliahmad, P. & Kaye, J. Commitment issues: linking positive selection signals and lineage diversification in the thymus. Immunol. Rev. 209, 253–273 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Bosselut, R. CD4/CD8-lineage differentiation in the thymus: from nuclear effectors to membrane signals. Nature Rev. Immunol. 4, 529–540 (2004).

    Article  CAS  Google Scholar 

  48. He, X. & Kappes, D. J. CD4/CD8 lineage commitment: light at the end of the tunnel? Curr. Opin. Immunol. 18, 135–142 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Kappes, D. J., He, X. & He, X. Role of the transcription factor Th-POK in CD4:CD8 lineage commitment. Immunol. Rev. 209, 237–252 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Laky, K. & Fowlkes, B. J. Receptor signals and nuclear events in CD4 and CD8 T cell lineage commitment. Curr. Opin. Immunol. 17, 116–121 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Singer, A., Adoro, S. & Park, J. H. Lineage fate and intense debate: myths, models and mechanisms of CD4- versus CD8-lineage choice. Nature Rev. Immunol. 8, 788–801 (2008).

    Article  CAS  Google Scholar 

  52. Hedrick, S. M. T cell development: bottoms-up. Immunity 16, 619–622 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Hogquist, K. A. Signal strength in thymic selection and lineage commitment. Curr. Opin. Immunol. 13, 225–231 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Singer, A. New perspectives on a developmental dilemma: the kinetic signaling model and the importance of signal duration for the CD4/CD8 lineage decision. Curr. Opin. Immunol. 14, 207–215 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Brugnera, E. et al. Coreceptor reversal in the thymus: signaled CD4+8+ thymocytes initially terminate CD8 transcription even when differentiating into CD8+ T cells. Immunity 13, 59–71 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Matechak, E. O., Killeen, N., Hedrick, S. M. & Fowlkes, B. J. MHC class II-specific T cells can develop in the CD8 lineage when CD4 is absent. Immunity 4, 337–347 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. Sarafova, S. D. et al. Modulation of coreceptor transcription during positive selection dictates lineage fate independently of TCR/coreceptor specificity. Immunity 23, 75–87 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Bosselut, R., Guinter, T. I., Sharrow, S. O. & Singer, A. Unraveling a revealing paradox: why major histocompatibility complex I-signaled thymocytes “paradoxically” appear as CD4+8lo transitional cells during positive selection of CD8+ T cells. J. Exp. Med. 197, 1709–1719 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lucas, B. & Germain, R. N. Unexpectedly complex regulation of CD4/CD8 coreceptor expression supports a revised model for CD4+CD8+ thymocyte differentiation. Immunity 5, 461–477 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. Lundberg, K., Heath, W., Köntgen, F., Carbone, F. R. & Shortman, K. Intermediate steps in positive selection: differentiation of CD4+8int TCRint thymocytes into CD48+TCRhi thymocytes. J. Exp. Med. 181, 1643–1651 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. Aliahmad, P. & Kaye, J. Development of all CD4 T lineages requires nuclear factor TOX. J. Exp. Med. 205, 245–256 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dave, V. P., Allman, D., Keefe, R., Hardy, R. R. & Kappes, D. J. HD mice: a novel mouse mutant with a specific defect in the generation of CD4+ T cells. Proc. Natl Acad. Sci. USA 95, 8187–8192 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Keefe, R., Dave, V., Allman, D., Wiest, D. & Kappes, D. J. Regulation of lineage commitment distinct from positive selection. Science 286, 1149–1153 (1999). References 62 and 63 describe the phenotype of the helper-deficient mouse strain, which lacks CD4+ T-cell development and supports the diversion of MHC class II-restricted T cells into the CD8 lineage when crossed with AND TCR-transgenic mice.

    Article  CAS  PubMed  Google Scholar 

  64. He, X. et al. The zinc finger transcription factor Th-POK regulates CD4 versus CD8 T-cell lineage commitment. Nature 433, 826–833 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Sun, G. et al. The zinc finger protein cKrox directs CD4 lineage differentiation during intrathymic T cell positive selection. Nature Immunol. 6, 373–381 (2005). References 64 and 65 identify Zbtb7b as the gene that is mutated in helper-deficient mice. Transgenic expression of ThPOK is sufficient to divert the development of MHC class I-restricted thymocytes to the CD4 lineage.

    Article  CAS  Google Scholar 

  66. Egawa, T. & Littman, D. R. ThPOK acts late in specification of the helper T cell lineage and suppresses Runx-mediated commitment to the cytotoxic T cell lineage. Nature Immunol. 9, 1131–1139 (2008).

    Article  CAS  Google Scholar 

  67. Muroi, S. et al. Cascading suppression of transcriptional silencers by ThPOK seals helper T cell fate. Nature Immunol. 9, 1113–1121 (2008).

    Article  CAS  Google Scholar 

  68. Nawijn, M. C. et al. Enforced expression of GATA-3 during T cell development inhibits maturation of CD8 single-positive cells and induces thymic lymphoma in transgenic mice. J. Immunol. 167, 715–723 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Hernandez-Hoyos, G., Anderson, M. K., Wang, C., Rothenberg, E. V. & Alberola-Ila, J. GATA-3 expression is controlled by TCR signals and regulates CD4/CD8 differentiation. Immunity 19, 83–94 (2003). Using overexpression and knockdown of GATA3 expression in fetal thymocytes, the authors show that GATA3 promotes CD4 SP thymocyte development.

    Article  CAS  PubMed  Google Scholar 

  70. Pai, S. Y. et al. Distinct structural requirements of GATA-3 for the regulation of thymocyte and Th2 cell differentiation. J. Immunol. 180, 1050–1059 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Maurice, D., Hooper, J., Lang, G. & Weston, K. c-Myb regulates lineage choice in developing thymocytes via its target gene Gata3. EMBO J. 26, 3629–3640 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang, L. et al. Distinct functions for the transcription factors GATA-3 and ThPOK during intrathymic differentiation of CD4+ T cells. Nature Immunol. 9, 1122–1130 (2008). This paper shows that GATA3 upregulates ThPOK expression in post-selection thymocytes and that GATA3 can function as a lineage-determining factor. The finding that restoration of ThPOK expression in GATA3-deficient mice failed to restore the development of CD4 SP thymocytes suggests that GATA3 has additional roles in the survival of CD4 SP thymocytes after lineage commitment.

    Article  CAS  Google Scholar 

  73. He, X. et al. CD4–CD8 lineage commitment is regulated by a silencer element at the ThPOK transcription-factor locus. Immunity 28, 346–358 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Setoguchi, R. et al. Repression of the transcription factor Th-POK by Runx complexes in cytotoxic T cell development. Science 319, 822–825 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Dong, C. TH17 cells in development: an updated view of their molecular identity and genetic programming. Nature Rev. Immunol. 8, 337–348 (2008).

    Article  CAS  Google Scholar 

  76. Reiner, S. L. Development in motion: helper T cells at work. Cell 129, 33–36 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Ansel, K. M., Djuretic, I., Tanasa, B. & Rao, A. Regulation of Th2 differentiation and Il4 locus accessibility. Annu. Rev. Immunol. 24, 607–656 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Mowen, K. A. & Glimcher, L. H. Signaling pathways in Th2 development. Immunol. Rev. 202, 203–222 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Zhu, J., Yamane, H., Cote-Sierra, J., Guo, L. & Paul, W. E. GATA-3 promotes Th2 responses through three different mechanisms: induction of Th2 cytokine production, selective growth of Th2 cells and inhibition of Th1 cell-specific factors. Cell Res. 16, 3–10 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Amsen, D., Antov, A. & Flavell, R. A. The different faces of Notch in T-helper-cell differentiation. Nature Rev. Immunol. (in the press).

  81. Collins, A., Littman, D. R. & Taniuchi, I. RUNX proteins in transcription factor networks that regulate T-cell lineage choice. Nature Rev. Immunol. (in the press).

  82. Ouyang, W. et al. Inhibition of Th1 development mediated by GATA-3 through an IL-4-independent mechanism. Immunity 9, 745–755 (1998).

    Article  CAS  PubMed  Google Scholar 

  83. Grogan, J. L. et al. Early transcription and silencing of cytokine genes underlie polarization of T helper cell subsets. Immunity 14, 205–215 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Yamane, H., Zhu, J. & Paul, W. E. Independent roles for IL-2 and GATA-3 in stimulating naive CD4+ T cells to generate a Th2-inducing cytokine environment. J. Exp. Med. 202, 793–804 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Avni, O. et al. TH cell differentiation is accompanied by dynamic changes in histone acetylation of cytokine genes. Nature Immunol. 3, 643–651 (2002).

    Article  CAS  Google Scholar 

  86. Lee, G. R., Fields, P. E. & Flavell, R. A. Regulation of IL-4 gene expression by distal regulatory elements and GATA-3 at the chromatin level. Immunity 14, 447–459 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Lee, H. J. et al. GATA-3 induces T helper cell type 2 (Th2) cytokine expression and chromatin remondeling in committed Th1 cells. J. Exp. Med. 192, 105–115 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Spilianakis, C. G. & Flavell, R. A. Long-range intrachromosomal interactions in the T helper type 2 cytokine locus. Nature Immunol. 5, 1017–1027 (2004).

    Article  CAS  Google Scholar 

  89. Tanaka, S. et al. The interleukin-4 enhancer CNS-2 is regulated by Notch signals and controls initial expression in NKT cells and memory-type CD4 T cells. Immunity 24, 689–701 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Xin, J., Ohmori, K., Nishida, J., Zhu, Y. & Huang, H. The initial response of CD4+ IL-4-producing cells. Int. Immunol. 19, 305–310 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Sokol, C. L., Barton, G. M., Farr, A. G. & Medzhitov, R. A mechanism for the initiation of allergen-induced T helper type 2 responses. Nature Immunol. 9, 310–318 (2008).

    Article  CAS  Google Scholar 

  92. Zhang, D. H., Cohn, L., Ray, P., Bottomly, K. & Ray, A. Transcription factor Gata-3 is differentially expressed murine Th1 and Th2 cells and controls Th2-specific expression of the interleukin-5 gene. J. Biol. Chem. 272, 21597–21603 (1997).

    Article  CAS  PubMed  Google Scholar 

  93. Zheng, W. P. & Flavell, R. A. The transcription factor Gata-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 89, 587–596 (1997).

    Article  CAS  PubMed  Google Scholar 

  94. Pai, S. Y., Truitt, M. L. & Ho, I. C. GATA-3 deficiency abrogates the development and maintenance of T helper type 2 cells. Proc. Natl Acad. Sci. USA 101, 1993–1998 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhu, J. et al. Conditional deletion of Gata3 shows its essential function in TH1-TH2 responses. Nature Immunol. 5, 1157–1165 (2004). References 94 and 95 use conditional deletion of GATA3 to confirm the requirement for GATA3 in the differentiation of T H 2 cells in vitro and in vivo .

    Article  CAS  Google Scholar 

  96. Kaplan, M. H., Schindler, U., Smiley, S. T. & Grusby, M. J. Stat6 is required for mediating responses to IL-4 and for development of Th2 cells. Immunity 4, 313–319 (1996).

    Article  CAS  PubMed  Google Scholar 

  97. Shimoda, K. et al. Lack of IL-4-induced Th2 response and IgE class switching in mice with disrupted Stat6 gene. Nature 380, 630–633 (1996).

    Article  CAS  PubMed  Google Scholar 

  98. Takeda, K. et al. Essential role of Stat6 in IL-4 signalling. Nature 380, 627–630 (1996).

    Article  CAS  PubMed  Google Scholar 

  99. Amsen, D. et al. Direct regulation of Gata3 expression determines the T helper differentiation potential of Notch. Immunity 27, 89–99 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Fang, T. C. et al. Notch directly regulates Gata3 expression during T helper 2 cell differentiation. Immunity 27, 100–110 (2007). References 99 and 100 show that Notch signals directly induce the transcription of GATA3 from exon 1a and that in the presence of GATA3, Notch signals can promote T H 2-cell differentiation in a STAT6-independent manner.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Asnagli, H., Afkarian, M. & Murphy, K. M. Cutting Edge: identification of an alternative GATA-3 promoter directing tissue-specific gene expression in mouse and human. J. Immunol. 168, 4268–4271 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Zhu, J., Cote-Sierra, J., Guo, L. & Paul, W. E. Stat5 activation plays a critical role in Th2 differentiation. Immunity 19, 739–748 (2003). This is the first report showing that IL-2R signalling through STAT5A can promote T H 2-cell differentiation in a STAT6-independent manner.

    Article  CAS  PubMed  Google Scholar 

  103. Cote-Sierra, J. et al. Interleukin 2 plays a central role in Th2 differentiation. Proc. Natl Acad. Sci. USA 101, 3880–3885 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hwang, E. S., White, I. A. & Ho, I. C. An IL-4-independent and CD25-mediated function of c-maf in promoting the production of Th2 cytokines. Proc. Natl Acad. Sci. USA 99, 13026–13030 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ranganath, S. & Murphy, K. Structure and specificity of GATA proteins in Th2 development. Mol. Cell. Biol. 21, 2716–2725 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Takemoto, N., Arai, K. & Miyatake, S. Cutting Edge: the differential involvement of the N-finger of GATA-3 in chromatin remodeling and transactivation during Th2 development. J. Immunol. 169, 4103–4107 (2002).

    Article  CAS  PubMed  Google Scholar 

  107. Shinnakasu, R. et al. Critical YxKxHxxxRP motif in the C-terminal region of GATA3 for its DNA binding and function. J. Immunol. 177, 5801–5810 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Smith, V. M., Lee, P. P., Szychowski, S. & Winoto, A. Gata-3 dominant negative mutant — functional redundancy of the T cell receptor α and β enhancers. J. Biol. Chem. 270, 1515–1520 (1995).

    Article  CAS  PubMed  Google Scholar 

  109. Zhang, D.-H. et al. Inhibition of allergic inflammation in a murine model of asthma by expression of a dominant-negative mutant of GATA-3. Immunity 11, 473–482 (1999).

    Article  CAS  PubMed  Google Scholar 

  110. Zhao, X. et al. Interaction between GATA-3 and the transcriptional coregulator Pias1 is important for the regulation of Th2 immune responses. J. Immunol. 179, 8297–8304 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Bates, D. L., Chen, Y., Kim, G., Guo, L. & Chen, L. Crystal structures of multiple GATA zinc fingers bound to DNA reveal new insights into DNA recognition and self-association by GATA. J. Mol. Biol. 381, 1292–1306 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bendelac, A., Savage, P. B. & Teyton, L. The biology of NKT cells. Annu. Rev. Immunol. 25, 297–336 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Godfrey, D. I. & Berzins, S. P. Control points in NKT-cell development. Nature Rev. Immunol. 7, 505–518 (2007).

    Article  CAS  Google Scholar 

  114. Wang, Z. Y. et al. Regulation of Th2 cytokine expression in NKT cells: unconventional use of Stat6, GATA-3, and NFAT2. J. Immunol. 176, 880–888 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Kim, P. J. et al. GATA-3 regulates the development and function of invariant NKT cells. J. Immunol. 177, 6650–6659 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Maillard, I., Fang, T. & Pear, W. S. Regulation of lymphoid development, differentiation, and function by the Notch pathway. Annu. Rev. Immunol. 23, 945–974 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Osborne, B. A. & Minter, L. M. Notch signalling during peripheral T-cell activation and differentiation. Nature Rev. Immunol. 7, 64–75 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Owing to space constraints, we could not include every relevant reference and apologize to our colleagues whose work we did not mention. This work is supported by a R01 grant AI054451 (to I.-C.H.) and a K08 award (AI050601 (to S.-Y.P.) from the National Institutes of Health, USA, a Charles H. Hood Foundation Child Health Research Grant (to S.-Y.P.), and a Merit Scholarship (to T.-S.T.) from National Science Council, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I-Cheng Ho.

Related links

Related links

FURTHER INFORMATION

I-Cheng Ho's homepage

Glossary

Zinc-finger motif

A DNA-binding domain in which cysteine and histidine residues are coordinated by zinc atoms and thereby form 'fingers' that bind to DNA.

Natural killer T (NKT) cells

A subpopulation of T cells that expresses both NK- and T-cell markers. In the C57BL/6 mouse strain, NKT cells express the NK1.1 (NKRP1C) molecule and the T-cell receptor (TCR). Some NKT cells recognize CD1d-associated lipid antigens and express a restricted repertoire of TCRs. After TCR stimulation of naive mice, NKT cells rapidly produce interleukin-4 and interferon-γ.

β-selection

The controlled developmental transition beyond the double negative 3 (DN3) stage to the double-positive stage that is limited to T cells which have successfully rearranged their T-cell receptor (TCR) β-chain genes to express a functional cell-surface pre-TCR. The conditional developmental arrest encountered at the DN3 stage is termed the β-selection checkpoint.

Fetal thymic organ culture

(FTOC). A system for culturing fetal thymi on a filter that is suspended over culture medium. FTOC allows the growth of the organ for a longer period than would be allowed by the viability of the embryo and/or under various experimental conditions (for example, by the addition of growth factors to the medium).

Double negative (DN) subset

The most immature thymocytes, which lack expression of the co-receptors CD4 and CD8. This compartment can be further subdivided on the basis of CD44 and CD25 expression into four subpopulations: DN1 (CD25-CD44+), DN2 (CD25+CD44+), DN3 (CD25+CD44) and DN4 (CD25CD44).

OP9–DLL1 culture system

A culture system in which stromal cells that are derived from osteopetrotic Op/Op mice (OP9 cells) are stably transduced to overexpress the Notch ligand Delta-like ligand 1 (DLL1) to promote T-cell lineage development of co-cultured progenitor cells. OP9 cells are useful in co-cultures that are initiated with myeloid progenitor cells because they do not produce macrophage colony-stimulating factor 1, which can cause excessive generation of macrophages and prevent the development of lymphoid cells.

Positive selection

The process by which immature CD4+CD8+ thymocytes expressing T-cell receptors with low affinity and/or avidity for self-peptide– MHC complexes are induced to differentiate into mature CD4+ and CD8+ thymocytes.

Negative selection

The process by which CD4+CD8+ thymocytes expressing potentially autoreactive T-cell receptors are induced to undergo apoptosis in the thymus.

Cre–loxp technology

A site-specific recombination system that is used to delete a gene in mouse cells using Cre recombinase. Two short DNA sequences (loxP sites) are engineered to flank the target DNA. Expression of Cre recombinase leads to excision of the intervening sequence. Depending on the type of promoter, Cre can be expressed at specific times during development or by specific sets of cells, including embryonic stem cells.

Annexin V

A molecule that binds phosphatidylserine, which is usually located on the inner leaflet of the plasma membrane but flips to the outer leaflet during apoptosis. Positive staining with annexin V is an indicator of apoptosis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ho, IC., Tai, TS. & Pai, SY. GATA3 and the T-cell lineage: essential functions before and after T-helper-2-cell differentiation. Nat Rev Immunol 9, 125–135 (2009). https://doi.org/10.1038/nri2476

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2476

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing