Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Antiviral immune responses in the genital tract: clues for vaccines

Key Points

  • Sexually transmitted viruses (STVs) are a major cause of morbidity and mortality in humans worldwide. Yet, for the most part, vaccines that prevent transmission of STVs are not available.

  • Certain STVs, such as herpes simplex virus type 2 and human papillomavirus, cause much more severe disease in women than in men. One of the underlying reasons for this variation is the differences in the anatomy of the genital mucosa between females and males; the female genital tract has a much larger area for viral invasion and contains many more target cell types.

  • Innate immunity in the genital mucosa is provided by a physical barrier (such as mucus and epithelial cells), antimicrobial factors (such as antimicrobial peptides, lactoferrin and complement) and endogenous microflora. In addition, innate immune cells survey the environment for pathogen invasion by expression of a wide range of pattern recognition receptors.

  • Adaptive immunity in the genital mucosa is mediated by antibodies (IgG in vaginal transudate and IgA from the cervix), CD4+ T cells and CD8+ T cells. After viral clearance, foci of memory lymphocytes form near the vaginal epithelium, which provides an immediate source of virus-specific T and B cells, should a secondary infection occur.

  • Immune correlates of protection for each STV must be understood before a successful vaccine can be developed. Vaccines against HIV-1 must establish a robust local memory CD8+ T cell population without recruiting memory CD4+ T cells that can become targets for viral replication.

Abstract

Mucosal surfaces are exploited as a portal of entry into hosts by a wide variety of microorganisms. Over the past decade, an advanced understanding of the immune system of the gastrointestinal and the respiratory mucosae has been gained. However, despite the fact that many viruses are transmitted sexually through the genital tract, the immune system of the male and female genital mucosae has received much less attention. Here, I describe and highlight differences in the innate and adaptive immune systems of the genital and intestinal mucosae, and discuss some of the challenges we face in the development of successful vaccines against sexually transmitted viral pathogens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of HIV-1 infection on human demographics.
Figure 2: Prevalence of genital herpes.
Figure 3: Anatomy of the genital mucosae and anorectal canal.
Figure 4: The innate defence system of the vaginal mucosa.
Figure 5: The adaptive immune system of the vaginal mucosa.

Similar content being viewed by others

References

  1. Starnbach, M. N. & Roan, N. R. Conquering sexually transmitted diseases. Nature Rev. Immunol. 8, 313–317 (2008).

    CAS  Google Scholar 

  2. Joint United Nations Programme on HIV/Acquired Immune Deficiency Syndrome/World Health Organization. AIDS epidemic update 2007 (UNAIDS/WHO, Geneva, 2007).

  3. Joint United Nations Programme on HIV/Acquired Immune Deficiency Syndrome/World Health Organization. Report on the global AIDS epidemic (UNAIDS/WHO, Geneva, 2008).

  4. Lafferty, W. E. The changing epidemiology of HSV-1 and HSV-2 and implications for serological testing. Herpes 9, 51–55 (2002).

    PubMed  Google Scholar 

  5. Frazer, I. H. Prevention of cervical cancer through papillomavirus vaccination. Nature Rev. Immunol. 4, 46–54 (2004).

    CAS  Google Scholar 

  6. World Health Organization. Comprehensive cervical cancer control: a guide to essential practice (WHO, Geneva, 2006).

  7. Wira, C. R., Fahey, J. V., Sentman, C. L., Pioli, P. A. & Shen, L. Innate and adaptive immunity in female genital tract: cellular responses and interactions. Immunol. Rev. 206, 306–335 (2005).

    PubMed  Google Scholar 

  8. Tobian, A. A., Gray, R. H. & Quinn, T. C. Male circumcision for the prevention of acquisition and transmission of sexually transmitted infections: the case for neonatal circumcision. Arch. Pediatr. Adolesc. Med. 164, 78–84 (2010).

    PubMed  PubMed Central  Google Scholar 

  9. Iwasaki, A. Mucosal dendritic cells. Annu. Rev. Immunol. 25, 381–418 (2007).

    CAS  PubMed  Google Scholar 

  10. Fussell, E. N., Kaack, M. B., Cherry, R. & Roberts, J. A. Adherence of bacteria to human foreskins. J. Urol. 140, 997–1001 (1988).

    CAS  PubMed  Google Scholar 

  11. Naylor, S. W. et al. Lymphoid follicle-dense mucosa at the terminal rectum is the principal site of colonization of enterohemorrhagic Escherichia coli O157:H7 in the bovine host. Infect. Immun. 71, 1505–1512 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hladik, F. & McElrath, M. J. Setting the stage: host invasion by HIV. Nature Rev. Immunol. 8, 447–457 (2008).

    CAS  Google Scholar 

  13. Shattock, R. J. & Moore, J. P. Inhibiting sexual transmission of HIV-1 infection. Nature Rev. Microbiol. 1, 25–34 (2003).

    CAS  Google Scholar 

  14. Haase, A. T. Targeting early infection to prevent HIV-1 mucosal transmission. Nature 464, 217–223 (2010).

    CAS  PubMed  Google Scholar 

  15. Keele, B. F. et al. Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. Proc. Natl Acad. Sci. USA 105, 7552–7557 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Abrahams, M. R. et al. Quantitating the multiplicity of infection with human immunodeficiency virus type 1 subtype C reveals a non-poisson distribution of transmitted variants. J. Virol. 83, 3556–3567 (2009). References 15 and 16 show that a single HIV-1 virus is responsible for establishing the majority of clinical infection in humans.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Spear, P. G., Eisenberg, R. J. & Cohen, G. H. Three classes of cell surface receptors for alphaherpesvirus entry. Virology 275, 1–8 (2000).

    CAS  PubMed  Google Scholar 

  18. Koelle, D. M. & Corey, L. Herpes simplex: insights on pathogenesis and possible vaccines. Annu. Rev. Med. 59, 381–395 (2008).

    CAS  PubMed  Google Scholar 

  19. Hernandez, B. Y. et al. Circumcision and human papillomavirus infection in men: a site-specific comparison. J. Infect. Dis. 197, 787–794 (2008).

    CAS  PubMed  Google Scholar 

  20. Kines, R. C., Thompson, C. D., Lowy, D. R., Schiller, J. T. & Day, P. M. The initial steps leading to papillomavirus infection occur on the basement membrane prior to cell surface binding. Proc. Natl Acad. Sci. USA 106, 20458–20463 (2009). An intriguing report that shows that HPV evolved a two-phase mechanism of entry; initial steps occur on the basement membrane followed by capsid transfer to basal epithelial cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Valore, E. V., Park, C. H., Igreti, S. L. & Ganz, T. Antimicrobial components of vaginal fluid. Am. J. Obstet. Gynecol. 187, 561–568 (2002).

    CAS  PubMed  Google Scholar 

  22. Hooper, L. V. & Macpherson, A. J. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nature Rev. Immunol. 10, 159–169 (2010).

    CAS  Google Scholar 

  23. Hooper, L. V. & Gordon, J. I. Commensal host-bacterial relationships in the gut. Science 292, 1115–1118 (2001).

    CAS  PubMed  Google Scholar 

  24. Dethlefsen, L., McFall-Ngai, M. & Relman, D. A. An ecological and evolutionary perspective on human–microbe mutualism and disease. Nature 449, 811–818 (2007).

    CAS  PubMed  Google Scholar 

  25. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Fredricks, D. N., Fiedler, T. L. & Marrazzo, J. M. Molecular identification of bacteria associated with bacterial vaginosis. N. Engl. J. Med. 353, 1899–1911 (2005).

    CAS  PubMed  Google Scholar 

  27. Cutler, B. & Justman, J. Vaginal microbicides and the prevention of HIV transmission. Lancet Infect. Dis. 8, 685–697 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim, T. K. et al. Heterogeneity of vaginal microbial communities within individuals. J. Clin. Microbiol. 47, 1181–1189 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Milligan, G. N. Neutrophils aid in protection of the vaginal mucosae of immune mice against challenge with herpes simplex virus type 2. J. Virol. 73, 6380–6386 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Orange, J. S. Human natural killer cell deficiencies. Curr. Opin. Allergy Clin. Immunol. 6, 399–409 (2006).

    PubMed  Google Scholar 

  31. Nishimura, H. et al. Intraepithelial γδ T cells may bridge a gap between innate immunity and acquired immunity to herpes simplex virus type 2. J. Virol. 78, 4927–4930 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Cohen, G. B. et al. The selective downregulation of class I major histocompatibility complex proteins by HIV-1 protects HIV-infected cells from NK cells. Immunity 10, 661–671 (1999).

    CAS  PubMed  Google Scholar 

  33. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    CAS  PubMed  Google Scholar 

  34. Sadler, A. J. & Williams, B. R. Interferon-inducible antiviral effectors. Nature Rev. Immunol. 8, 559–568 (2008).

    CAS  Google Scholar 

  35. Iwasaki, A. & Medzhitov, R. Regulation of adaptive immunity by the innate immune system. Science 327, 291–295 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Iwasaki, A. & Medzhitov, R. Toll-like receptor control of the adaptive immune responses. Nature Immunol. 5, 987–995 (2004).

    CAS  Google Scholar 

  37. Flacher, V. et al. Human Langerhans cells express a specific TLR profile and differentially respond to viruses and Gram-positive bacteria. J. Immunol. 177, 7959–7967 (2006).

    CAS  PubMed  Google Scholar 

  38. Pichlmair, A. & Reis e Sousa, C. Innate recognition of viruses. Immunity 27, 370–383 (2007).

    CAS  PubMed  Google Scholar 

  39. Chiu, Y. H., Macmillan, J. B. & Chen, Z. J. RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 138, 576–591 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ablasser, A. et al. RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Nature Immunol. 10, 1065–1072 (2009). References 39 and 40 show that certain classes of dsDNA in the cytoplasm are transcribed by RNA polymerase III, generating ligands for RIG-I for innate recognition.

    CAS  Google Scholar 

  41. Martinon, F., Mayor, A. & Tschopp, J. The inflammasomes: guardians of the body. Annu. Rev. Immunol. 27, 229–265 (2009).

    CAS  PubMed  Google Scholar 

  42. Kummer, J. A. et al. Inflammasome components NALP 1 and 3 show distinct but separate expression profiles in human tissues suggesting a site-specific role in the inflammatory response. J. Histochem. Cytochem. 55, 443–452 (2007).

    CAS  PubMed  Google Scholar 

  43. Burckstummer, T. et al. An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nature Immunol. 10, 266–272 (2009).

    Google Scholar 

  44. Fernandes-Alnemri, T., Yu, J. W., Datta, P., Wu, J. & Alnemri, E. S. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458, 509–513 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hornung, V. et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458, 514–518 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Roberts, T. L. et al. HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science 323, 1057–1060 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Lund, J., Sato, A., Akira, S., Medzhitov, R. & Iwasaki, A. Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. J. Exp. Med. 198, 513–520 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Krug, A. et al. Herpes simplex virus type 1 activates murine natural interferon-producing cells through Toll-like receptor 9. Blood 103, 1433–1437 (2004).

    CAS  PubMed  Google Scholar 

  49. Kurt-Jones, E. A. et al. Herpes simplex virus 1 interaction with Toll-like receptor 2 contributes to lethal encephalitis. Proc. Natl Acad. Sci. USA 101, 1315–1320 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Muruve, D. A. et al. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature 452, 103–107 (2008).

    CAS  PubMed  Google Scholar 

  51. Rathinam, V. A. et al. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nature Immunol. 11, 395–402 (2010).

    CAS  Google Scholar 

  52. Sato, A. & Iwasaki, A. Induction of antiviral immunity requires Toll-like receptor signaling in both stromal and dendritic cell compartments. Proc. Natl Acad. Sci. USA 101, 16274–16279 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Fujioka, N. et al. Interleukin-18 protects mice against acute herpes simplex virus type 1 infection. J. Virol. 73, 2401–2409 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Lund, J. M., Linehan, M. M., Iijima, N. & Iwasaki, A. Cutting edge: plasmacytoid dendritic cells provide innate immune protection against mucosal viral infection in situ. J. Immunol. 177, 7510–7514 (2006).

    CAS  PubMed  Google Scholar 

  55. Yang, R. et al. Papillomavirus-like particles stimulate murine bone marrow-derived dendritic cells to produce α interferon and Th1 immune responses via MyD88. J. Virol. 78, 11152–11160 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Wolf, D. & Goff, S. P. Host restriction factors blocking retroviral replication. Annu. Rev. Genet. 42, 143–163 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Browne, E. P. & Littman, D. R. Myd88 is required for an antibody response to retroviral infection. PLoS Pathog. 5, e1000298 (2009). This paper shows that DCs and MyD88 are needed to mount antibody responses and antiviral defence against a mouse retrovirus in vivo .

    PubMed  PubMed Central  Google Scholar 

  58. Beignon, A. S. et al. Endocytosis of HIV-1 activates plasmacytoid dendritic cells via Toll-like receptor- viral RNA interactions. J. Clin. Invest. 115, 3265–3275 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Fitzgerald-Bocarsly, P. & Jacobs, E. S. Plasmacytoid dendritic cells in HIV infection: striking a delicate balance. J. Leukoc. Biol. 87, 609–620 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Doehle, B. P., Hladik, F., McNevin, J. P., McElrath, M. J. & Gale, M. Jr. Human immunodeficiency virus type 1 mediates global disruption of innate antiviral signaling and immune defenses within infected cells. J. Virol. 83, 10395–10405 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Medzhitov, R. & Littman, D. HIV immunology needs a new direction. Nature 455, 591 (2008).

    CAS  PubMed  Google Scholar 

  62. Leib, D. A. Counteraction of interferon-induced antiviral responses by herpes simplex viruses. Curr. Top. Microbiol. Immunol. 269, 171–185 (2002).

    CAS  PubMed  Google Scholar 

  63. Lee, H. K. et al. Differential roles of migratory and resident DCs in T cell priming after mucosal or skin HSV-1 infection. J. Exp. Med. 206, 359–370 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhao, X. et al. Vaginal submucosal dendritic cells, but not Langerhans cells, induce protective Th1 responses to herpes simplex virus-2. J. Exp. Med. 197, 153–162 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Iijima, N., Linehan, M. M., Saeland, S. & Iwasaki, A. Vaginal epithelial dendritic cells renew from bone marrow precursors. Proc. Natl Acad. Sci. USA 104, 19061–19066 (2007).

    PubMed  PubMed Central  Google Scholar 

  66. Hervouet, C. et al. Langerhans cells prime IL-17-producing T cells and dampen genital cytotoxic responses following mucosal immunization. J. Immunol. 184, 4842–4851 (2010).

    CAS  PubMed  Google Scholar 

  67. Divito, S., Cherpes, T. L. & Hendricks, R. L. A triple entente: virus, neurons, and CD8+ T cells maintain HSV-1 latency. Immunol. Res. 36, 119–126 (2006).

    CAS  PubMed  Google Scholar 

  68. Stanberry, L. R. et al. Glycoprotein-D-adjuvant vaccine to prevent genital herpes. N. Engl. J. Med. 347, 1652–1661 (2002). Two double-blind, randomized trials of an HSV-2 glycoprotein-D-subunit vaccine showed that the vaccine was only effective against genital herpes in women who were seronegative for both HSV-1 and HSV-2. The vaccine had no efficacy in men, regardless of their HSV serological status.

    CAS  PubMed  Google Scholar 

  69. Matthews, K. et al. Depletion of Langerhans cells in human papillomavirus type 16-infected skin is associated with E6-mediated down regulation of E-cadherin. J. Virol. 77, 8378–8385 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Ashrafi, G. H., Haghshenas, M., Marchetti, B. & Campo, M. S. E5 protein of human papillomavirus 16 downregulates HLA class I and interacts with the heavy chain via its first hydrophobic domain. Int. J. Cancer 119, 2105–2112 (2006).

    CAS  PubMed  Google Scholar 

  71. Antonsson, A., Payne, E., Hengst, K. & McMillan, N. A. The human papillomavirus type 16 E7 protein binds human interferon regulatory factor-9 via a novel PEST domain required for transformation. J. Interferon Cytokine Res. 26, 455–461 (2006).

    CAS  PubMed  Google Scholar 

  72. Turville, S. G. et al. Diversity of receptors binding HIV on dendritic cell subsets. Nature Immunol. 3, 975–983 (2002).

    CAS  Google Scholar 

  73. Hladik, F. et al. Initial events in establishing vaginal entry and infection by human immunodeficiency virus type-1. Immunity 26, 257–270 (2007). An excellent analysis of the initial events that occur following HIV-1 entry through the use of ex vivo vaginal organ culture, which shows direct viral infection of CD4+ T cells in the epithelial layer.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. McMichael, A. J., Borrow, P., Tomaras, G. D., Goonetilleke, N. & Haynes, B. F. The immune response during acute HIV-1 infection: clues for vaccine development. Nature Rev. Immunol. 10, 11–23 (2010).

    CAS  Google Scholar 

  75. Altfeld, M. et al. HIV-1 superinfection despite broad CD8+ T-cell responses containing replication of the primary virus. Nature 420, 434–439 (2002).

    CAS  PubMed  Google Scholar 

  76. Brandtzaeg, P. Mucosal immunity in the female genital tract. J. Reprod. Immunol. 36, 23–50 (1997).

    CAS  PubMed  Google Scholar 

  77. Moldoveanu, Z., Huang, W. Q., Kulhavy, R., Pate, M. S. & Mestecky, J. Human male genital tract secretions: both mucosal and systemic immune compartments contribute to the humoral immunity. J. Immunol. 175, 4127–4136 (2005).

    CAS  PubMed  Google Scholar 

  78. Bennett, S. R. et al. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 393, 478–480 (1998).

    CAS  PubMed  Google Scholar 

  79. Ridge, J. P., Di Rosa, F. & Matzinger, P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393, 474–478 (1998).

    CAS  PubMed  Google Scholar 

  80. Schoenberger, S. P., Toes, R. E., van der Voort, E. I., Offringa, R. & Melief, C. J. T-cell help for cytotoxic T lymphocytes is mediated by CD40–CD40L interactions. Nature 393, 480–483 (1998).

    CAS  PubMed  Google Scholar 

  81. Jennings, S. R., Bonneau, R. H., Smith, P. M., Wolcott, R. M. & Chervenak, R. CD4+ T lymphocytes are required for the generation of the primary but not the secondary CD8+ cytolytic T lymphocyte response to herpes simplex virus in C57BL/6 mice. Cell. Immunol. 133, 234–252 (1991).

    CAS  PubMed  Google Scholar 

  82. Janssen, E. M. et al. CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 421, 852–856 (2003).

    CAS  PubMed  Google Scholar 

  83. Shedlock, D. J. & Shen, H. Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science 300, 337–339 (2003).

    CAS  PubMed  Google Scholar 

  84. Sun, J. C. & Bevan, M. J. Defective CD8 T cell memory following acute infection without CD4 T cell help. Science 300, 339–342 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Nakanishi, Y., Lu, B., Gerard, C. & Iwasaki, A. CD8+ T lymphocyte mobilization to virus-infected tissue requires CD4+ T-cell help. Nature 462, 510–513 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Iijima, N. et al. Dendritic cells and B cells maximize mucosal Th1 memory response to herpes simplex virus. J. Exp. Med. 205, 3041–3052 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Blaney, J. E. Jr et al. Immunization with a single major histocompatibility complex class I-restricted cytotoxic T-lymphocyte recognition epitope of herpes simplex virus type 2 confers protective immunity. J. Virol. 72, 9567–9574 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Orr, M. T., Orgun, N. N., Wilson, C. B. & Way, S. S. Cutting edge: recombinant Listeria monocytogenes expressing a single immune-dominant peptide confers protective immunity to herpes simplex virus-1 infection. J. Immunol. 178, 4731–4735 (2007).

    CAS  PubMed  Google Scholar 

  89. Knickelbein, J. E. et al. Noncytotoxic lytic granule-mediated CD8+ T cell inhibition of HSV-1 reactivation from neuronal latency. Science 322, 268–271 (2008). This study shows that CTLs block HSV-1 reactivation by releasing lytic granules into neurons and degrading ICP4 by granzyme B.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Liu, T., Khanna, K. M., Carriere, B. N. & Hendricks, R. L. γ interferon can prevent herpes simplex virus type 1 reactivation from latency in sensory neurons. J. Virol. 75, 11178–11184 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Liu, T., Khanna, K. M., Chen, X., Fink, D. J. & Hendricks, R. L. CD8+ T cells can block herpes simplex virus type 1 (HSV-1) reactivation from latency in sensory neurons. J. Exp. Med. 191, 1459–1466 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Prabhakaran, K. et al. Sensory neurons regulate the effector functions of CD8+ T cells in controlling HSV-1 latency ex vivo. Immunity 23, 515–525 (2005).

    CAS  PubMed  Google Scholar 

  93. Zhu, J. et al. Persistence of HIV-1 receptor-positive cells after HSV-2 reactivation is a potential mechanism for increased HIV-1 acquisition. Nature Med. 15, 886–892 (2009). This study shows that HSV-2 infection results in the formation of persistent localized CD4+ and CD8+ T cell foci in the dermis below the healed lesion, and that such foci can be readily infected by HIV-1.

    CAS  PubMed  Google Scholar 

  94. Johansson, M. & Lycke, N. Immunological memory in B-cell-deficient mice conveys long-lasting protection against genital tract infection with Chlamydia trachomatis by rapid recruitment of T cells. Immunology 102, 199–208 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Johansson, E. L., Rudin, A., Wassen, L. & Holmgren, J. Distribution of lymphocytes and adhesion molecules in human cervix and vagina. Immunology 96, 272–277 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhu, J. et al. Virus-specific CD8+ T cells accumulate near sensory nerve endings in genital skin during subclinical HSV-2 reactivation. J. Exp. Med. 204, 595–603 (2007). This study assessed CD8+ T cell surveillance of reactivating HSV-2 in humans, and showed that persistent CD8+ T cells and sensory nerve endings could quickly respond to and eliminate reactivated virus before it underwent extensive replication.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Schiller, J. T., Castellsague, X., Villa, L. L. & Hildesheim, A. An update of prophylactic human papillomavirus L1 virus-like particle vaccine clinical trial results. Vaccine 26 (Suppl. 10), K53–K61 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Campo, M. S. & Roden, R. B. Papillomavirus prophylactic vaccines: established successes, new approaches. J. Virol. 84, 1214–1220 (2010).

    CAS  PubMed  Google Scholar 

  99. Mascola, J. R. & Montefiori, D. C. The role of antibodies in HIV vaccines. Annu. Rev. Immunol. 28, 413–444 (2010).

    CAS  PubMed  Google Scholar 

  100. Stanberry, L. R. Clinical trials of prophylactic and therapeutic herpes simplex virus vaccines. Herpes 11 (Suppl. 3), 161A–169A (2004).

    PubMed  Google Scholar 

  101. Virgin, H. W. & Walker, B. D. Immunology and the elusive AIDS vaccine. Nature 464, 224–231 (2010).

    CAS  PubMed  Google Scholar 

  102. Gebhardt, T. et al. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nature Immunol. 10, 524–530 (2009). This study shows that memory CD8+ T cells that persist in the skin in primary HSV-1 infection provide enhanced clearance of virus on secondary challenge.

    CAS  Google Scholar 

  103. Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    CAS  PubMed  Google Scholar 

  104. Masopust, D., Vezys, V., Marzo, A. L. & Lefrancois, L. Preferential localization of effector memory cells in nonlymphoid tissue. Science 291, 2413–2417 (2001).

    CAS  PubMed  Google Scholar 

  105. Reinhardt, R. L., Khoruts, A., Merica, R., Zell, T. & Jenkins, M. K. Visualizing the generation of memory CD4 T cells in the whole body. Nature 410, 101–105 (2001).

    CAS  PubMed  Google Scholar 

  106. Klonowski, K. D. et al. Dynamics of blood-borne CD8 memory T cell migration in vivo. Immunity 20, 551–562 (2004). This study analysed the migratory behaviour of CD8+ memory T cells, which showed controlled gating for entry into certain tissues, including the brain, peritoneum and intestinal lamina propria.

    CAS  PubMed  Google Scholar 

  107. Reboldi, A. et al. C-C chemokine receptor 6-regulated entry of TH17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nature Immunol. 10, 514–523 (2009). This study shows that T cell entry into a restricted tissue occurs in two steps: a small number of pioneering CCR6+ T cells trigger the entry of a second wave of T cells that migrate into the central nervous system and cause encephalomyelitis.

    CAS  Google Scholar 

  108. Brady, M. T. Newborn circumcision: routine or not routine, that is the question. Arch. Pediatr. Adolesc. Med. 164, 94–96 (2010).

    PubMed  Google Scholar 

  109. Round, J. L. & Mazmanian, S. K. The gut microbiota shapes intestinal immune responses during health and disease. Nature Rev. Immunol. 9, 313–323 (2009).

    CAS  Google Scholar 

  110. Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. & Medzhitov, R. Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cell 118, 229–241 (2004).

    CAS  PubMed  Google Scholar 

  111. Tezuka, H. et al. Regulation of IgA production by naturally occurring TNF/iNOS-producing dendritic cells. Nature 448, 929–933 (2007).

    CAS  PubMed  Google Scholar 

  112. Atarashi, K. et al. ATP drives lamina propria TH17 cell differentiation. Nature 455, 808–812 (2008).

    CAS  PubMed  Google Scholar 

  113. Gaboriau-Routhiau, V. et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31, 677–689 (2009).

    CAS  PubMed  Google Scholar 

  114. Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Caramalho, I. et al. Regulatory T cells selectively express Toll-like receptors and are activated by lipopolysaccharide. J. Exp. Med. 197, 403–411 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. O'Mahony, C. et al. Commensal-induced regulatory T cells mediate protection against pathogen-stimulated NFκB activation. PLoS Pathog. 4, e1000112 (2008).

    PubMed  PubMed Central  Google Scholar 

  117. Hall, J. A. et al. Commensal DNA limits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses. Immunity 29, 637–649 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Van Damme, L. et al. Effectiveness of COL-1492, a nonoxynol-9 vaginal gel, on HIV-1 transmission in female sex workers: a randomised controlled trial. Lancet 360, 971–977 (2002).

    CAS  PubMed  Google Scholar 

  119. Karim, Q. A. et al. Effectiveness and safety of Tenofovir gel, an antiretroviral microbicide, for the prevention of HIV infection in women. Science 19 Jul 2010 (doi:10.1126/science.1193748).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. VanCott, T. C. et al. HIV-1 neutralizing antibodies in the genital and respiratory tracts of mice intranasally immunized with oligomeric gp160. J. Immunol. 160, 2000–2012 (1998).

    CAS  PubMed  Google Scholar 

  121. Di Tommaso, A. et al. Induction of antigen-specific antibodies in vaginal secretions by using a nontoxic mutant of heat-labile enterotoxin as a mucosal adjuvant. Infect. Immun. 64, 974–979 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Livingston, J. B., Lu, S., Robinson, H. & Anderson, D. J. Immunization of the female genital tract with a DNA-based vaccine. Infect. Immun. 66, 322–329 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Klavinskis, L. S., Barnfield, C., Gao, L. & Parker, S. Intranasal immunization with plasmid DNA-lipid complexes elicits mucosal immunity in the female genital and rectal tracts. J. Immunol. 162, 254–262 (1999).

    CAS  PubMed  Google Scholar 

  124. Parr, E. L. & Parr, M. B. Immune responses and protection against vaginal infection after nasal or vaginal immunization with attenuated herpes simplex virus type-2. Immunology 98, 639–645 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Morrison, L. A., Da Costa, X. J. & Knipe, D. M. Influence of mucosal and parenteral immunization with a replication-defective mutant of HSV-2 on immune responses and protection from genital challenge. Virology 243, 178–187 (1998).

    CAS  PubMed  Google Scholar 

  126. Gallichan, W. S. et al. Intranasal immunization with CpG oligodeoxynucleotides as an adjuvant dramatically increases IgA and protection against herpes simplex virus-2 in the genital tract. J. Immunol. 166, 3451–3457 (2001).

    CAS  PubMed  Google Scholar 

  127. Gallichan, W. S. & Rosenthal, K. L. Specific secretory immune responses in the female genital tract following intranasal immunization with a recombinant adenovirus expressing glycoprotein B of herpes simplex virus. Vaccine 13, 1589–1595 (1995).

    CAS  PubMed  Google Scholar 

  128. Kool, M. et al. Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. J. Exp. Med. 205, 869–882 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Mora, J. R. et al. Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science 314, 1157–1160 (2006).

    CAS  PubMed  Google Scholar 

  130. Li, Z. et al. Novel vaccination protocol with two live mucosal vectors elicits strong cell-mediated immunity in the vagina and protects against vaginal virus challenge. J. Immunol. 180, 2504–2513 (2008).

    CAS  PubMed  Google Scholar 

  131. Suvas, P. K., Dech, H. M., Sambira, F., Zeng, J. & Onami, T. M. Systemic and mucosal infection program protective memory CD8 T cells in the vaginal mucosa. J. Immunol. 179, 8122–8127 (2007).

    CAS  PubMed  Google Scholar 

  132. Cuburu, N. et al. Sublingual immunization with nonreplicating antigens induces antibody-forming cells and cytotoxic T cells in the female genital tract mucosa and protects against genital papillomavirus infection. J. Immunol. 183, 7851–7859 (2009).

    CAS  PubMed  Google Scholar 

  133. Lehner, T. et al. Protective mucosal immunity elicited by targeted iliac lymph node immunization with a subunit SIV envelope and core vaccine in macaques. Nature Med. 2, 767–775 (1996).

    CAS  PubMed  Google Scholar 

  134. Kozlowski, P. A. et al. Differential induction of mucosal and systemic antibody responses in women after nasal, rectal, or vaginal immunization: influence of the menstrual cycle. J. Immunol. 169, 566–574 (2002).

    CAS  PubMed  Google Scholar 

  135. Johansson, E. L., Wassen, L., Holmgren, J., Jertborn, M. & Rudin, A. Nasal and vaginal vaccinations have differential effects on antibody responses in vaginal and cervical secretions in humans. Infect. Immun. 69, 7481–7486 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Rudin, A., Riise, G. C. & Holmgren, J. Antibody responses in the lower respiratory tract and male urogenital tract in humans after nasal and oral vaccination with cholera toxin B subunit. Infect. Immun. 67, 2884–2890 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Looker, K. J., Garnett, G. P. & Schmid, G. P. An estimate of the global prevalence and incidence of herpes simplex virus type 2 infection. Bull. World Health Organ. 86, 805–812 (2008).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A.I. is a recipient of the Burroughs Wellcome Fund (BWF) Investigators in the Pathogenesis of Infectious Disease award. This work was supported by a National Institutes of Health (NIH) grant to A.I. (R01AI054359, R01AI062428, R01AI064705, R21AI083242 and R01AI081884). The author would like to thank N. Iijima, H. Shin, E. Foxman, Y. Kumamoto and R. Medzhitov for review of this manuscript.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Akiko Iwasaki's homepage

Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat, World Populations Prospects: The 2006 Revision

IMS Health Integrated Promotional Services, IMS Health Report, 1966–2008

Glossary

Microfold cell

(M cell). A specialized epithelial cell that delivers antigens from the gut lumen directly to intraepithelial lymphocytes and subepithelial lymphoid tissues by transepithelial vesicular transport.

Transformation zone

The area that surrounds the border that is located between the endocervix and the ectocervix. This is where the columnar epithelial cells of the endocervix meet the stratified squamous epithelial cells of the ectocervix. It is the most common area for cervical cancer to develop.

Founder virus

A transmitted virus, or a virus that gives rise to all virus quasispecies in an infected individual.

Goblet cell

A mucus-producing cell that is located in the epithelial cell lining of the intestine and lungs.

Paneth cell

A cell that is present at the base of the crypts in the intestinal epithelium, which produces antimicrobial proteins and peptides, including phospholipase A2 and defensins.

γδ T cells

T cells expressing a T cell receptor that consists of a γ-chain and a δ-chain. These T cells are present in the skin, vagina and intestinal epithelium as intraepithelial lymphocytes. Although the exact function of γδ T cells is unknown, it has been suggested that mucosal γδ T cells are involved in innate immune responses.

Langerhans cells

A population of dendritic cells that are resident in the epidermal layer of the skin and in type II epithelia.

Pattern recognition receptors

(PRRs). Host receptors (such as Toll-like receptors (TLRs) or NOD-like receptors (NLRs)) that can detect pathogen-associated molecular patterns and initiate signalling cascades, leading to an innate immune response. These receptors can be membrane bound (such as TLRs) or soluble cytoplasmic receptors (such as retinoic acid-inducible gene I (RIG-I), melanoma differentiation-associated protein 5 (MDA5) and NLRs).

Virus-like particles

(VLPs). Virion-like structures that are formed from the self assembly of viral envelope or capsid proteins in vitro. VLPs are not infectious because they do not contain a viral genome.

TCID50

A typical virus infectivity assay that quantifies the amount of virus that is required to produce a cytopathic effect in 50% of inoculated tissue culture cells.

Cross-presentation

The mechanism by which certain antigen-presenting cells take up, process and present extracellular antigens on MHC class I molecules to stimulate CD8+ T cells.

Targeted lymph node immunization

A subcutaneous immunization technique that aims to administer a vaccine in the proximity of the internal and external iliac lymph nodes. This technique has been proposed as a means to harvest the naturally existing imprinting mechanism for instructing effector lymphocytes to migrate to the tissue (for example, the genital and rectal mucosae) that is being drained by a particular lymph node.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwasaki, A. Antiviral immune responses in the genital tract: clues for vaccines. Nat Rev Immunol 10, 699–711 (2010). https://doi.org/10.1038/nri2836

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2836

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology