Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dynamics of B cells in germinal centres

Key Points

  • The germinal centre (GC) of lymphoid organs is the microenvironment in which antigen-activated B cells diversify their immunoglobulin genes by somatic hypermutation (SHM) to generate high-affinity antibodies. A subset of the cells also undergoes class-switch recombination to generate antibodies with specialized effector functions.

  • Early in an immune response, antigen-stimulated B cells form long-lived interactions with antigen-specific T cells at the border between the B cell zone and the T cell zone or the interfollicular region to become fully activated. Antigen-activated B cells and T cells are committed to differentiate into GC B cells and T follicular helper cells (TFH cells), respectively, outside of the follicle. Migration into the follicle is facilitated by B cell lymphoma 6 (BCL-6), which is the master transcriptional regulator of GC B cells.

  • One day after TFH cells have moved into the follicle, GC precursor B cells migrate from the border between the B cell zone and the T cell zone or the interfollicular region into the centre of the follicle to form an early GC. The B cells differentiate into blasts and, over the next several days, rapidly divide and begin to fill the centre of the follicle until they have formed a mature GC that is polarized into two microenvironments known as the dark and light zones.

  • Dark zone B cells, which are GC B cells that undergo active SHM, are programmed to proliferate extremely rapidly and thereby to generate a large number of immunoglobulin mutations in a short time. Dark zone B cells differentiate into light zone B cells, at which stage mutants expressing high-affinity antibodies are selected and instructed to either recirculate to the dark zone to undergo further rounds of SHM or to differentiate into memory B cells or plasma cells.

  • Light zone B cells capture antigen via the B cell receptor (BCR) and present the processed antigen on MHC complexes to TFH cells. Higher BCR affinity is directly associated with greater antigen capture and leads to a higher density of peptide–MHC complex presentation on the surface of the B cell. This results in the greatest share of T cell help, which in turn drives selection.

  • Evidence suggests that the transcription factors MYC and the nuclear factor-κB subunit REL are essential for the maintenance of the GC reaction as they 'license' antigen-selected light zone B cells to recirculate to the dark zone. Inhibition of the terminal differentiation of GC B cells is controlled by multiple mechanisms that include both transcriptional and non-transcriptional regulation.

Abstract

Humoral immunity depends on the germinal centre (GC) reaction during which somatically mutated high-affinity memory B cells and plasma cells are generated. Recent studies have uncovered crucial cues that are required for the formation and the maintenance of GCs and for the selection of high-affinity antibody mutants. In addition, it is now clear that these events are promoted by the dynamic movements of cells within and between GCs. These findings have resolved the complexities of the GC reaction in greater detail than ever before. This Review focuses on these recent advances and discusses their implications for the establishment of humoral immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Initiation of the GC reaction and the formation of the mature GC in the lymph node.
Figure 2: Expression pattern and/or functional requirement of molecules during the initiation and formation of the mature GC.
Figure 3: Dynamics of the GC reaction and selection of high-affinity antibody mutants.
Figure 4: Molecular control of GC maintenance.

Similar content being viewed by others

References

  1. MacLennan, I. C. Germinal centers. Annu. Rev. Immunol. 12, 117–139 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Jacob, J., Kelsoe, G., Rajewsky, K. & Weiss, U. Intraclonal generation of antibody mutants in germinal centres. Nature 354, 389–392 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Berek, C., Berger, A. & Apel, M. Maturation of the immune response in germinal centers. Cell 67, 1121–1129 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. Blink, E. J. et al. Early appearance of germinal center-derived memory B cells and plasma cells in blood after primary immunization. J. Exp. Med. 201, 545–554 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Victora, G. D. & Nussenzweig, M. C. Germinal centers. Annu. Rev. Immunol. 30, 429–457 (2012).

    CAS  PubMed  Google Scholar 

  6. Batista, F. D. & Harwood, N. E. The who, how and where of antigen presentation to B cells. Nature Rev. Immunol. 9, 15–27 (2009).

    Article  CAS  Google Scholar 

  7. Okada, T. et al. Antigen-engaged B cells undergo chemotaxis toward the T zone and form motile conjugates with helper T cells. PLoS Biol. 3, e150 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Qi, H., Cannons, J. L., Klauschen, F., Schwartzberg, P. L. & Germain, R. N. SAP-controlled T-B cell interactions underlie germinal centre formation. Nature 455, 764–769 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jacob, J. & Kelsoe, G. In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl) acetyl. II. A common clonal origin for periarteriolar lymphoid sheath-associated foci and germinal centers. J. Exp. Med. 176, 679–687 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Paus, D. et al. Antigen recognition strength regulates the choice between extrafollicular plasma cell and germinal center B cell differentiation. J. Exp. Med. 203, 1081–1091 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. O'Connor, B. P. et al. Imprinting the fate of antigen-reactive B cells through the affinity of the B cell receptor. J. Immunol. 177, 7723–7732 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Taylor, J. J., Pape, K. A. & Jenkins, M. K. A germinal center-independent pathway generates unswitched memory B cells early in the primary response. J. Exp. Med. 209, 597–606 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dal Porto, J. M., Haberman, A. M., Kelsoe, G. & Shlomchik, M. J. Very low affinity B cells form germinal centers, become memory B cells, and participate in secondary immune responses when higher affinity competition is reduced. J. Exp. Med. 195, 1215–1221 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shih, T. A., Meffre, E., Roederer, M. & Nussenzweig, M. C. Role of BCR affinity in T cell dependent antibody responses in vivo. Nature Immunol. 3, 570–575 (2002).

    Article  CAS  Google Scholar 

  15. Schwickert, T. A. et al. A dynamic T cell-limited checkpoint regulates affinity-dependent B cell entry into the germinal center. J. Exp. Med. 208, 1243–1252 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gatto, D., Paus, D., Basten, A., Mackay, C. R. & Brink, R. Guidance of B cells by the orphan G protein-coupled receptor EBI2 shapes humoral immune responses. Immunity 31, 259–269 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Pereira, J. P., Kelly, L. M., Xu, Y. & Cyster, J. G. EBI2 mediates B cell segregation between the outer and centre follicle. Nature 460, 1122–1126 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kerfoot, S. M. et al. Germinal center B cell and T follicular helper cell development initiates in the interfollicular zone. Immunity 34, 947–960 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kitano, M. et al. Bcl6 protein expression shapes pre-germinal center B cell dynamics and follicular helper T cell heterogeneity. Immunity 34, 961–972 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Choi, Y. S. et al. ICOS receptor instructs T follicular helper cell versus effector cell differentiation via induction of the transcriptional repressor Bcl6. Immunity 34, 932–946 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Baumjohann, D., Okada, T. & Ansel, K. M. Cutting Edge: Distinct waves of BCL6 expression during T follicular helper cell development. J. Immunol. 187, 2089–2092 (2011). References 18–21 collectively show that antigen-activated B cells and T cells are committed to differentiate into GC B cells and T FH cells outside of the follicle.

    Article  CAS  PubMed  Google Scholar 

  22. Coffey, F., Alabyev, B. & Manser, T. Initial clonal expansion of germinal center B cells takes place at the perimeter of follicles. Immunity 30, 599–609 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bannard, O. et al. Germinal center centroblasts transition to a centrocyte phenotype according to a timed program and depend on the dark zone for effective selection. Immunity 39, 912–924 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Allen, C. D., Okada, T., Tang, H. L. & Cyster, J. G. Imaging of germinal center selection events during affinity maturation. Science 315, 528–531 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Huang, C. et al. The BCL6 RD2 domain governs commitment of activated B cells to form germinal centers. Cell Rep. 8, 1497–1508 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Allen, C. D. et al. Germinal center dark and light zone organization is mediated by CXCR4 and CXCR5. Nature Immunol. 5, 943–952 (2004).

    Article  CAS  Google Scholar 

  27. Caron, G., Le Gallou, S., Lamy, T., Tarte, K. & Fest, T. CXCR4 expression functionally discriminates centroblasts versus centrocytes within human germinal center B cells. J. Immunol. 182, 7595–7602 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Green, J. A. et al. The sphingosine 1-phosphate receptor S1P2 maintains the homeostasis of germinal center B cells and promotes niche confinement. Nature Immunol. 12, 672–680 (2011).

    Article  CAS  Google Scholar 

  29. Cinamon, G. et al. Sphingosine 1-phosphate receptor 1 promotes B cell localization in the splenic marginal zone. Nature Immunol. 5, 713–720 (2004).

    Article  CAS  Google Scholar 

  30. Cannons, J. L. et al. Optimal germinal center responses require a multistage T cell:B cell adhesion process involving integrins, SLAM-associated protein, and CD84. Immunity 32, 253–265 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Allman, D. et al. BCL-6 expression during B-cell activation. Blood 87, 5257–5268 (1996).

    CAS  PubMed  Google Scholar 

  32. Basso, K. & Dalla-Favera, R. Roles of BCL6 in normal and transformed germinal center B cells. Immunol. Rev. 247, 172–183 (2012).

    PubMed  Google Scholar 

  33. Crotty, S., Johnston, R. J. & Schoenberger, S. P. Effectors and memories: Bcl-6 and Blimp-1 in T and B lymphocyte differentiation. Nature Immunol. 11, 114–120 (2010).

    Article  CAS  Google Scholar 

  34. Khiem, D., Cyster, J. G., Schwarz, J. J. & Black, B. L. A p38 MAPK–MEF2C pathway regulates B-cell proliferation. Proc. Acad. Natl Sci. USA 105, 17067–17072 (2008).

    Article  CAS  Google Scholar 

  35. Wilker, P. R. et al. Transcription factor Mef2c is required for B cell proliferation and survival after antigen receptor stimulation. Nature Immunol. 9, 603–612 (2008).

    Article  CAS  Google Scholar 

  36. Ying, C. Y. et al. MEF2B mutations lead to deregulated expression of the oncogene BCL6 in diffuse large B cell lymphoma. Nature Immunol. 14, 1084–1092 (2013).

    Article  CAS  Google Scholar 

  37. De Silva, N. S., Simonetti, G., Heise, N. & Klein, U. The diverse roles of IRF4 in late germinal center B-cell differentiation. Immunol. Rev. 247, 73–92 (2012).

    Article  PubMed  CAS  Google Scholar 

  38. Shaffer, A. L., Emre, N. C., Romesser, P. B. & Staudt, L. M. IRF4: Immunity. Malignancy! Therapy? Clin. Cancer Res. 15, 2954–2961 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bollig, N. et al. Transcription factor IRF4 determines germinal center formation through follicular T-helper cell differentiation. Proc. Acad. Natl Sci. USA 109, 8664–8669 (2012).

    Article  CAS  Google Scholar 

  40. Ochiai, K. et al. Transcriptional regulation of germinal center B and plasma cell fates by dynamical control of IRF4. Immunity 38, 918–929 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Willis, S. N. et al. Transcription factor IRF4 regulates germinal center cell formation through a B cell-intrinsic mechanism. J. Immunol. 192, 3200–3206 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Saito, M. et al. A signaling pathway mediating downregulation of BCL6 in germinal center B cells is blocked by BCL6 gene alterations in B cell lymphoma. Cancer Cell 12, 280–292 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Klein, U. et al. Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination. Nature Immunol. 7, 773–782 (2006).

    Article  CAS  Google Scholar 

  44. Sciammas, R. et al. An incoherent regulatory network architecture that orchestrates B cell diversification in response to antigen signaling. Mol. Sys Biol. 7, 495 (2011).

    Article  CAS  Google Scholar 

  45. Dang, C. V. MYC on the path to cancer. Cell 149, 22–35 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dominguez-Sola, D. et al. The proto-oncogene MYC is required for selection in the germinal center and cyclic reentry. Nature Immunol. 13, 1083–1091 (2012).

    Article  CAS  Google Scholar 

  47. Shaffer, A. L. et al. Signatures of the immune response. Immunity 15, 375–385 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Klein, U. et al. Transcriptional analysis of the B cell germinal center reaction. Proc. Acad. Natl Sci. USA 100, 2639–2644 (2003).

    Article  CAS  Google Scholar 

  49. Calado, D. P. et al. The cell-cycle regulator c-Myc is essential for the formation and maintenance of germinal centers. Nature Immunol. 13, 1092–1100 (2012). References 46 and 49 define the long unknown role of the MYC proto-oncogene in GC formation and in the maintenance of the GC reaction.

    Article  CAS  Google Scholar 

  50. Peled, J. U. et al. Requirement for cyclin D3 in germinal center formation and function. Cell Res. 20, 631–646 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Cato, M. H., Chintalapati, S. K., Yau, I. W., Omori, S. A. & Rickert, R. C. Cyclin D3 is selectively required for proliferative expansion of germinal center B cells. Mol. Cell. Biol. 31, 127–137 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Hatzi, K. & Melnick, A. Breaking bad in the germinal center: how deregulation of BCL6 contributes to lymphomagenesis. Trends Mol. Med. 20, 343–352 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Vikstrom, I. et al. Mcl-1 is essential for germinal center formation and B cell memory. Science 330, 1095–1099 (2010). This study shows that MCL1 is the main anti-apoptotic regulator in GC B cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kaileh, M. & Sen, R. NF-κB function in B lymphocytes. Immunol. Rev. 246, 254–271 (2012).

    Article  PubMed  CAS  Google Scholar 

  55. Gerondakis, S. & Siebenlist, U. Roles of the NF-κB pathway in lymphocyte development and function. Cold Spring Harb. Perspect. Biol. 2, a000182 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Jacque, E. et al. IKK-induced NF-êB1 p105 proteolysis is critical for B cell antibody responses to T cell-dependent antigen. J. Exp. Med. 211, 2085–2101 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kim, U. et al. The B-cell-specific transcription coactivator OCA-B/OBF-1/Bob-1 is essential for normal production of immunoglobulin isotypes. Nature 383, 542–547 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Schubart, D. B., Rolink, A., Kosco-Vilbois, M. H., Botteri, F. & Matthias, P. B-cell-specific coactivator OBF-1/OCA-B/Bob1 required for immune response and germinal centre formation. Nature 383, 538–542 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Lee, C. H. et al. Regulation of the germinal center gene program by interferon (IFN) regulatory factor 8/IFN consensus sequence-binding protein. J. Exp. Med. 203, 63–72 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kwon, K. et al. Instructive role of the transcription factor E2A in early B lymphopoiesis and germinal center B cell development. Immunity 28, 751–762 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Randall, K. L. et al. Dock8 mutations cripple B cell immunological synapses, germinal centers and long-lived antibody production. Nature Immunol. 10, 1283–1291 (2009).

    Article  CAS  Google Scholar 

  62. Vilagos, B. et al. Essential role of EBF1 in the generation and function of distinct mature B cell types. J. Exp. Med. 209, 775–792 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Su, G. H. et al. Defective B cell receptor-mediated responses in mice lacking the Ets protein, Spi-B. EMBO J. 16, 7118–7129 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Muto, A. et al. The transcriptional programme of antibody class switching involves the repressor Bach2. Nature 429, 566–571 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Huang, C., Geng, H., Boss, I., Wang, L. & Melnick, A. Cooperative transcriptional repression by BCL6 and BACH2 in germinal center B-cell differentiation. Blood 123, 1012–1020 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Schwickert, T. A. et al. In vivo imaging of germinal centres reveals a dynamic open structure. Nature 446, 83–87 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Hauser, A. E. et al. Definition of germinal-center B cell migration in vivo reveals predominant intrazonal circulation patterns. Immunity 26, 655–667 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Victora, G. D. et al. Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell 143, 592–605 (2010). This study provides evidence that T cell help is the major factor promoting the selection of high-affinity antibodies in the light zone. Reference 24 and references 66–68 are an elegant series of studies that dissect the dynamics of GC B cell differentiation using intravital microscopy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Allen, C. D., Okada, T. & Cyster, J. G. Germinal-center organization and cellular dynamics. Immunity 27, 190–202 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hauser, A. E., Shlomchik, M. J. & Haberman, A. M. In vivo imaging studies shed light on germinal-centre development. Nature Rev. Immunol. 7, 499–504 (2007).

    Article  CAS  Google Scholar 

  71. Victora, G. D. et al. Identification of human germinal center light and dark zone cells and their relationship to human B-cell lymphomas. Blood 120, 2240–2248 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shulman, Z. et al. Dynamic signaling by T follicular helper cells during germinal center B cell selection. Science 345, 1058–1062 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Khalil, A. M., Cambier, J. C. & Shlomchik, M. J. B cell receptor signal transduction in the GC is short-circuited by high phosphatase activity. Science 336, 1178–1181 (2012). This work provides evidence that in GC B cells, BCR signalling is quiescent; rather, it seems that the role of the BCR is primarily to capture and to internalize antigen.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gitlin, A. D., Shulman, Z. & Nussenzweig, M. C. Clonal selection in the germinal centre by regulated proliferation and hypermutation. Nature 509, 637–640 (2014). This study identifies the mechanism by which GC B cell clones with the highest affinity for the immunizing antigen are selectively expanded.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Di Noia, J. M. & Neuberger, M. S. Molecular mechanisms of antibody somatic hypermutation. Annu. Rev. Biochem. 76, 1–22 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Crotty, S. Follicular helper CD4 T cells (TFH). Annu. Rev. Immunol. 29, 621–663 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Ramiscal, R. R. & Vinuesa, C. G. T-cell subsets in the germinal center. Immunol. Rev. 252, 146–155 (2013).

    Article  PubMed  CAS  Google Scholar 

  78. Liu, D. et al. T–B-cell entanglement and ICOSL-driven feed-forward regulation of germinal centre reaction. Nature 517, 214–218 (2015). References 72 and 78 show that interactions between T FH cells and GC B cells are transient but extensive. These contacts initiate changes within T FH cells that guide the selection of high-affinity GC B cells.

    Article  CAS  PubMed  Google Scholar 

  79. Zhang, Y. et al. Germinal center B cells govern their own fate via antibody feedback. J. Exp. Med. 210, 457–464 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Shulman, Z. et al. T follicular helper cell dynamics in germinal centers. Science 341, 673–677 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Schwickert, T. A., Alabyev, B., Manser, T. & Nussenzweig, M. C. Germinal center reutilization by newly activated B cells. J. Exp. Med. 206, 2907–2914 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chan, T. D. et al. Elimination of germinal-center-derived self-reactive B cells is governed by the location and concentration of self-antigen. Immunity 37, 893–904 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Klein, U. & Dalla-Favera, R. Germinal centres: role in B-cell physiology and malignancy. Nature Rev. Immunol. 8, 22–33 (2008).

    Article  CAS  Google Scholar 

  84. Jacob, J., Przylepa, J., Miller, C. & Kelsoe, G. In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. III. The kinetics of V region mutation and selection in germinal center B cells. J. Exp. Med. 178, 1293–1307 (1993).

    Article  CAS  PubMed  Google Scholar 

  85. Basso, K. et al. Tracking CD40 signaling during germinal center development. Blood 104, 4088–4096 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Heise, N. et al. Germinal center B cell maintenance and differentiation are controlled by distinct NF-κB transcription factor subunits. J. Exp. Med. 211, 2103–2118 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Huntington, N. D. et al. CD45 links the B cell receptor with cell survival and is required for the persistence of germinal centers. Nature Immunol. 7, 190–198 (2006).

    Article  CAS  Google Scholar 

  88. Goldberg, A. D., Allis, C. D. & Bernstein, E. Epigenetics: a landscape takes shape. Cell 128, 635–638 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Beguelin, W. et al. EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation. Cancer Cell 23, 677–692 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Caganova, M. et al. Germinal center dysregulation by histone methyltransferase EZH2 promotes lymphomagenesis. J. Clin. Invest. 123, 5009–5022 (2013). References 89 and 90 show an important role for epigenetic regulation in the maintenance of the dark zone B cell phenotype.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Raaphorst, F. M. et al. Cutting edge: polycomb gene expression patterns reflect distinct B cell differentiation stages in human germinal centers. J. Immunol. 164, 1–4 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Velichutina, I. et al. EZH2-mediated epigenetic silencing in germinal center B cells contributes to proliferation and lymphomagenesis. Blood 116, 5247–5255 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Hatzi, K. et al. A hybrid mechanism of action for BCL6 in B cells defined by formation of functionally distinct complexes at enhancers and promoters. Cell Rep. 4, 578–588 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Xu, S., Guo, K., Zeng, Q., Huo, J. & Lam, K. P. The RNase III enzyme Dicer is essential for germinal center B-cell formation. Blood 119, 767–776 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. Thai, T. H. et al. Regulation of the germinal center response by microRNA-155. Science 316, 604–608 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Vigorito, E. et al. microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity 27, 847–859 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Basso, K. et al. BCL6 positively regulates AID and germinal center gene expression via repression of miR-155. J. Exp. Med. 209, 2455–2465 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. van den Berg, A. et al. High expression of B-cell receptor inducible gene BIC in all subtypes of Hodgkin lymphoma. Genes Chromosomes Cancer 37, 20–28 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Gururajan, M. et al. MicroRNA 125b inhibition of B cell differentiation in germinal centers. Int. Immunol. 22, 583–592 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. de Yebenes, V. G. et al. miR-217 is an oncogene that enhances the germinal center reaction. Blood 124, 229–239 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Schneider, C. et al. MicroRNA 28 controls cell proliferation and is down-regulated in B-cell lymphomas. Proc. Acad. Natl Sci. USA 111, 8185–8190 (2014).

    Article  CAS  Google Scholar 

  103. Feng, J. et al. IFN regulatory factor 8 restricts the size of the marginal zone and follicular B cell pools. J. Immunol. 186, 1458–1466 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Carotta, S. et al. The transcription factors IRF8 and PU.1 negatively regulate plasma cell differentiation. J. Exp. Med. 211, 2169–2181 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  105. McHeyzer-Williams, M., Okitsu, S., Wang, N. & McHeyzer-Williams, L. Molecular programming of B cell memory. Nature Rev. Immunol. 12, 24–34 (2012).

    Article  CAS  Google Scholar 

  106. Zotos, D. & Tarlinton, D. M. Determining germinal centre B cell fate. Trends Immunol. 33, 281–288 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Shlomchik, M. J. & Weisel, F. Germinal center selection and the development of memory B and plasma cells. Immunol. Rev. 247, 52–63 (2012).

    Article  PubMed  Google Scholar 

  108. Nutt, S. L., Taubenheim, N., Hasbold, J., Corcoran, L. M. & Hodgkin, P. D. The genetic network controlling plasma cell differentiation. Semin. Immunol. 23, 341–349 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Barnett, B. E. et al. Asymmetric B cell division in the germinal center reaction. Science 335, 342–344 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Duffy, K. R. et al. Activation-induced B cell fates are selected by intracellular stochastic competition. Science 335, 338–341 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Meyer-Hermann, M. et al. A theory of germinal center B cell selection, division, and exit. Cell Rep. 2, 162–174 (2012).

    Article  CAS  PubMed  Google Scholar 

  112. Shaffer, A. L. 3rd, Young, R. M. & Staudt, L. M. Pathogenesis of human B cell lymphomas. Annu. Rev. Immunol. 30, 565–610 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Basso, K. & Dalla-Favera, R. Germinal centres and B cell lymphomagenesis. Nature Rev. Immunol. (in the press).

  114. Sciammas, R. et al. Graded expression of interferon regulatory factor-4 coordinates isotype switching with plasma cell differentiation. Immunity 25, 225–236 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Shapiro-Shelef, M. et al. Blimp-1 is required for the formation of immunoglobulin secreting plasma cells and pre-plasma memory B cells. Immunity 19, 607–620 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Igarashi, K., Ochiai, K., Itoh-Nakadai, A. & Muto, A. Orchestration of plasma cell differentiation by Bach2 and its gene regulatory network. Immunol. Rev. 261, 116–125 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the members of the Klein laboratory and in particular N. Heise for discussions. This work was supported by National Cancer Institute (NCI) and US National Institutes of Health (NIH) grant R01-CA157660 to U.K. and a Cancer Biology Training Program fellowship (NCI and NIH grant 5T32-CA009503-26) to N.S.D..

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulf Klein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Plasma cells

Non-dividing, terminally differentiated antibody-secreting cells of the B cell lineage.

Memory B cells

Antigen-experienced B cells that express high-affinity antibodies and that quickly differentiate into plasma cells in antigen-recall responses.

Somatic hypermutation

(SHM). The process by which point mutations are introduced in the heavy or light chain variable region gene segments, resulting in a change in the expressed protein, which may alter affinity or specificity for antigen.

Affinity maturation

The somatic mutation process by which B cells are selected for survival and proliferation on the basis of their increased affinity for antigen.

Follicular dendritic cells

(FDCs). Specialized non-haematopoietic stromal cells that reside in lymphoid follicles and germinal centres. These cells have long dendrites and carry intact antigens on their surface. They are crucial for the optimal selection of B cells that produce antigen-binding antibodies.

Plasmablasts

The B cell lineage precursors of non-dividing plasma cells, which have the capacity to divide and have migratory potential.

Two-photon intravital microscopy

Laser-scanning microscopy that uses pulsed infrared laser light for the excitation of conventional fluorophores or fluorescent proteins. The main advantage is deep tissue penetration of the infrared light owing to the low level of light scattering within the tissue.

T follicular helper cells

(TFH cells). A specialized subset of T cells that guide the selection of high-affinity germinal centre (GC) B cells within the light zone of the GC.

B cell lymphoma 6

(BCL-6). A transcriptional repressor and the master regulator of the germinal centre B cell reaction. Together with cofactors, BCL-6 represses genes involved in B cell activation, negative cell cycle regulation, the response to genotoxic stress, and differentiation into memory B cells and plasma cells.

Early GC

(Early germinal centre). The earliest GC structure that arises from the coalescence of antigen-activated B cell blasts within the network of follicular dendritic cells in the centre of the B cell follicle.

Dark zone B cells

Proliferating germinal centre B cells localized in the dark zone with rearranged variable region immunoglobulin genes that are undergoing somatic hypermutation.

Interferon-regulatory factor 4

(IRF4). A member of the interferon-regulatory factor family of transcription factors. IRF4 exerts its function through heteromerization with cofactors and can either activate or repress gene expression. IRF4 is required for germinal centre formation and for plasma cell differentiation.

Light zone B cells

The progeny of dark zone B cells. These cells need to be selected on the basis of their affinity for antigen, following interaction with immune complexes that are associated with follicular dendritic cells and their ability to elicit help from T follicular helper cells. A subset of light zone B cells undergoes class-switch recombination or differentiates into memory B cells or plasma cells.

Nuclear factor-κB

(NF-κB). Activation of the NF-κB signalling pathway via stimulation of cell-surface receptors can occur via two different routes, the canonical and the alternative pathways, and it induces the transcription of genes that are involved in cellular activation, cell growth and proliferation.

Class-switch recombination

(CSR). The process by which B cells change their immunoglobulin isotype to generate antibodies with different effector functions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Silva, N., Klein, U. Dynamics of B cells in germinal centres. Nat Rev Immunol 15, 137–148 (2015). https://doi.org/10.1038/nri3804

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3804

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing