Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Comparative analyses of immunoglobulin genes: surprises and portents

Key Points

  • The adaptive immune system — defined by clonally distributed antigen receptors, the presence of the recombination-activating genes (RAGs), somatic hypermutation, polymorphic MHC class I and class II molecules, a thymus and secondary lymphoid tissues — is found only in the jawed vertebrates.

  • Affinity maturation in response to hapten antigens is poor for species other than mammals; rather than a change in the affinity of the response of up to four orders of magnitude, at the most, there is only a one–twofold increase in affinity.

  • B cells from cold-blooded vertebrates mutate their antigen-receptor genes but do not form germinal centres after antigen activation. In Xenopus, guanine/cytosine mutations are preferred, but in cartilaginous fish, the mutation process is similar to that in mammals, except for the presence of tandem mutations in IgNAR and light-chain genes and, perhaps, a gene-conversion bias at the heavy-chain locus.

  • Birds and most mammals (the so-called 'gut-associated lymphoid tissue (GALT) species') do not use variable–diversity–joining (VDJ) rearrangement to generate the antibody repertoire, but instead, modify rearranged genes by somatic hypermutation and/or gene conversion in GALT.

  • Cartilaginous-fish immunoglobulin genes have a so-called 'cluster organization', with each cluster containing the rearranging V, (D) and J segments, as well as constant-region exons. Three heavy-chain isotypes and three light-chain isotypes are all encoded by many clusters, and rearrangement does not occur between clusters.

  • Some cartilaginous-fish immunoglobulin genes have been joined by RAG activity in germ cells. When all members of a particular family are joined, the genes are expressed throughout life. When there is a mixture of germ-line-joined and -unjoined genes in an isotype, the germ-line-joined genes are preferentially expressed early in development and then expression is perpetuated only in primary lymphoid tissues.

  • IgD has been detected only in primates and rodents, but an isotype that has similarity to IgD has been found in bony fish. The absence of IgD in GALT-containing species might be important in repertoire generation.

  • The immunoglobulin-isotype switch mechanism arose in an amphibian ancestor, which indicates that somatic hypermutation and gene conversion preceded isotype switching in evolution.

  • Xenopus has an immunoglobulin isotype that is expressed predominantly in mucosal tissue called IgX, which is analogous to mammalian IgA. Furthermore, as for a subset of IgA-producing B cells in mice, the production of IgX is T-cell-independent and its repertoire is predicted to be influenced by gut antigens.

  • Amphibians are the phylogenetically oldest group to have an IgG equivalent, known as IgY, which is also found in reptiles and birds. As the memory B-cell 'burst' that is found in mice has been shown to be dependent on the cytosolic tail of IgG, the presence of a homologous segment in frogs indicates that amphibians might be the oldest group to have 'textbook' B-cell memory.

  • Palindromic sequences near to switch boxes in Xenopus were shown to be involved in the switch mechanism, and, therefore, secondary structure in single-stranded DNA, rather than nucleotide composition, regulates the initial breaks.

  • Somatic hypermutation, gene conversion and isotype switching are all dependent on expression of activation-induced cytidine deaminase (AID). Study of the expression of this gene in ectothermic vertebrates might reveal the 'selecting environments' in secondary lymphoid tissues in which immunoglobulin genes mutate in animals that do not have germinal centres.

  • Most investigators believe that an invasion by a RAG-based transposon into an immunoglobulin-superfamily exon explains the origins of the V(D)J rearrangement system, and that this 'big bang' event was the impetus for emergence of the adaptive immune system. The demonstration that the RAG1 and RAG2 enzymes can transpose DNA that is flanked by recombination signal sequences (RSS) into double-stranded DNA is consistent with this proposal.

  • As the molecules that are involved in somatic hypermutation and gene conversion were apparently derived by a gradual evolutionary process (rather than a horizontal transfer of the RAG transposon) and hypermutation and V(D)J rearrangement are both found in cartilaginous fish, it is possible that the original adaptive immune system was hypermutation- and/or conversion-based.

Abstract

The study of immunoglobulin genes in non-mouse and non-human models has shown that different vertebrate groups have evolved distinct methods of generating antibody diversity. By contrast, the development of T cells in the thymus is quite similar in all of the species that have been examined. The three mechanisms by which B cells uniquely modify their immunoglobulin genes — somatic hypermutation, gene conversion and class switching — are increasingly believed to share some fundamental mechanisms, which studies in different vertebrate groups have helped (and will continue to help) to resolve. When these mechanisms are better understood, we should be able to look to the constitutive pathways from which they have evolved and perhaps determine whether the rearrangement of variable, diversity and joining antibody gene segments — V(D)J recombination — was superimposed on an existing adaptive immune system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Evolution of features of the adaptive immune system in vertebrates.
Figure 2: Differences in the formation of the BCR repertoire between human and mouse and the GALT species.

Similar content being viewed by others

References

  1. Reynaud, C.A., Anquez, V., Grimal, H. & Weill, J.-C. A hyperconversion mechanism generates the chicken light-chain preimmune repertoire. Cell 48, 379–388 (1987).

    Article  CAS  PubMed  Google Scholar 

  2. Thompson, C. B. & Neiman, P. E. Somatic diversification of the chicken immunoglobulin light-chain gene is limited to the rearranged variable gene segment. Cell 48, 369–378 (1987).References 1 and 2 established the model for the generation of a BCR repertoire by post-rearrangement diversification mechanisms.

    Article  CAS  PubMed  Google Scholar 

  3. Zapata, A. & Amemiya, C. T. Phylogeny of lower vertebrates and their immunological structures. Curr. Top. Microbiol. Immunol. 248, 67–107 (2000).

    CAS  PubMed  Google Scholar 

  4. Klein, J., Sato, A. & Mayer, W. E. in Major Histocompatibility Complex: Evolution, Structure and Function. (ed. Kasahara, M.) 3–26 (Springer–Verlag, Tokyo, 2000).

    Book  Google Scholar 

  5. Du Pasquier, L., Wilson, M., Greenberg, A. S. & Flajnik, M. F. Somatic mutation in ectothermic vertebrates: musings on selection and origins. Curr. Top. Microbiol. Immunol. 229, 199–216 (1998).

    CAS  PubMed  Google Scholar 

  6. Roost, H. P. et al. Early high-affinity neutralizing anti-viral IgG responses without overall improvements in affinity. Proc. Natl Acad. Sci. USA 92, 1254–1256 (1995).

    Article  Google Scholar 

  7. Goldbaum, F. A. et al. Lack of significant differences in association rates and affinities of antibodies from short-term and long-term responses to hen-egg lysozyme. J. Immunol. 162, 6040–6045 (1999).

    CAS  PubMed  Google Scholar 

  8. Haire, R. N., Amemiya, C. T., Suzuki, D. & Litman, G. W. Eleven distinct VH families and additional patterns of sequence variation suggest a high degree of immunoglobulin gene complexity in a lower vertebrate, Xenopus laevis. J. Exp. Med. 171, 1721–1737 (1990).

    Article  CAS  PubMed  Google Scholar 

  9. Hsu, E. Mutation, selection and memory in B lymphocytes of exothermic vertebrates. Immunol. Rev. 162, 25–36 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Rast, J. P. et al. α, β, γ, and δ T-cell antigen receptor genes arose early in vertebrate phylogeny. Immunity 6, 1–11 (1997).Because T-cell functions had been difficult to show in the cartilaginous fish, some investigators believed that TCRs had not yet evolved in this taxon. This paper proved this theory to be incorrect and also indicated that all four rearranging TCR families were present in the ancestor of mammals and cartilaginous fish.

    Article  CAS  PubMed  Google Scholar 

  11. Su, C., Jakobsen, I., Gu, X. & Nei, M. Diversity and evolution of T-cell receptor variable-region genes in mammals and birds. Immunogenetics 50, 301–308 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Bengtén, E. et al. Immunoglobulin isotypes: structure, function and genetics. Curr. Top. Microbiol. Immunol. 248, 189–219 (2000).

    PubMed  Google Scholar 

  13. Cooper, M. D. et al. The functions of the thymus system and the bursa system in the chicken. J. Exp. Med. 123, 75–102 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pink, J. R., Vaino, O. & Rijnbeek, A.-M. Clones of B lymphocytes in individual follicles of the bursa of Fabricius. Eur. J. Immunol. 15, 83–87 (1985).

    Article  CAS  PubMed  Google Scholar 

  15. Ratcliffe, M. J. & Ivanyi, J. Allotype suppression in the chicken. IV. Deletion of B cells and lack of suppressor cells during chronic suppression. Eur. J. Immunol. 11, 306–310 (1981).The first paper to show a short time window for IgM+ precursor cells to generate a diverse population of mature B cells in a GALT species.

    Article  CAS  PubMed  Google Scholar 

  16. Weill, J. C., Reynaud, C. A., Lassila, O. & Pink, J. R. L. Rearrangement of chicken immunoglobulin genes is not an ongoing process in the embryonic bursa of Fabricius. Proc. Natl Acad. Sci. USA 83, 3336–3340 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Reynaud, C.-A., Anquez, V., Dahan, A. & Weill, J.-C. A single rearrangement event generates most of the chicken immunoglobulin light-chain diversity. Cell 40, 283–291 (1985).

    Article  CAS  PubMed  Google Scholar 

  18. Reynaud, C. A., Dahan, A., Anquez, V. & Weill, J. C. Somatic hyperconversion diversifies the single VH gene of the chicken with a high incidence in the D region. Cell 59, 171–183 (1989).

    Article  CAS  PubMed  Google Scholar 

  19. Reynaud, C.-A., Imhof, B. A., Anquez, V. & Weill, J.-C. Emergence of committed B-lymphoid progenitors in the developing chicken embryo. EMBO J. 11, 4349–4358 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sayegh, C. E., Demaries, S. L., Iacampo, S. & Ratcliffe, M. J. H. Development of B cells expressing surface immunoglobulin molecules that lack V(D)J-encoded determinants in the avian embryo bursa of Fabricius. Proc. Natl Acad. Sci. USA 96, 10806–10811 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sayegh, C. E., Drury, G. & Ratcliffe, M. J. H. Efficient antibody diversification by gene conversion in vivo in the absence of selection for V(D)J-encoded determinants. EMBO J. 18, 6319–6328 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lauster, R. et al. Promoter, enhancer and silencer elements regulate rearrangement of an immunoglobulin transgene. EMBO J. 12, 4615–4623 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Langman, R. E. & Cohn, M. A theory of the ontogeny of the chicken humoral immune system: the consequences of diversification by gene hyperconversion and extension to the rabbit. Res. Immunol. 144, 422–446 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Arakawa, H., Furusawa, S., Ekino, S. & Yamagishi, H. Immunoglobulin gene hyperconversion ongoing in chicken splenic germinal centers. EMBO J. 15, 2540–2546 (1996).This work showed that the gene-conversion mechanism in chicken B cells is not limited to early development, but can be engaged in mature B cells during an antigen-specific response.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Butler, J. E. Immunoglobulin gene organization and the mechanism of repertoire development. Scand. J. Immunol. 45, 455–462 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Archer, O. K., Sutherland, D. E. R. & Good, R. A. Appendix of the rabbit: a homologue of the bursa in the chicken? Nature 200, 337–339 (1963).

    Article  CAS  PubMed  Google Scholar 

  27. Knight, K. L. & Becker, R. S. Molecular basis of the allelic inheritance of rabbit immunoglobulin VH allotypes: implications for the generation of antibody diversity. Cell 60, 963–970 (1990).

    Article  CAS  PubMed  Google Scholar 

  28. Becker, R. S. & Knight, K. L. Somatic diversification of immunoglobulin heavy-chain VDJ genes: evidence for somatic gene conversion in rabbits. Cell 63, 987–997 (1990).References 27 and 28 explain the classical 'rabbit allotype' mystery (the classical model of allelic exclusion) and also show that gene conversion could generate the BCR repertoire in mammals.

    Article  CAS  PubMed  Google Scholar 

  29. Vajdy, M., Sethupathi, P. & Knight, K. L. Dependence of antibody somatic diversification on gut-associated lymphoid tissue in the rabbit. J. Immunol. 160, 2725–2729 (1998).

    CAS  PubMed  Google Scholar 

  30. Lanning, D. et al. Intestinal microflora and diversification of the rabbit antibody repertoire. J. Immunol. 165, 2012–2019 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Pospisil, R., Fitts, M. G. & Mage, R. G. CD5 is a potential selecting ligand for B-cell surface immunoglobulin framework-region sequences. J. Exp. Med. 184, 1279–1284 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Schiafella, E., Sehgal, D., Anderson, A. O. & Mage, R. G. Gene conversion and hypermutation during diversification of VH sequences in developing splenic germinal centers of immunized rabbits. J. Immunol. 162, 3984–3995 (1999).

    Google Scholar 

  33. Winstead, C. R., Zhai, S. K., Sethupathi, P. & Knight, K. L. Antigen-induced somatic diversification of rabbit IgH genes: gene conversion and point mutation. J. Immunol. 162, 6602–6612 (1999).

    CAS  PubMed  Google Scholar 

  34. Sehgal, D., Johnson, G., Wu, T. T. & Mage, R. G. Generation of the primary antibody repertoire in rabbits: expression of a diverse set of Igk-V genes may compensate for limited combinatorial diversity at the heavy-chain locus. Immunogenetics 50, 31–42 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Reynolds, J. D. & Morris, B. The evolution and involution of Peyer's patches in fetal and postnatal sheep. Eur. J. Immunol. 13, 627–635 (1983).

    Article  CAS  PubMed  Google Scholar 

  36. Griebel, P. J. & Hein, W. R. Expanding the role of Peyer's patches in B-cell ontogeny. Immunol. Today 17, 30–39 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Motya, B. & Reynolds, J. D. Apoptosis is associated with the extensive B-cell death in the sheep ileal Peyer's patch and the chicken bursa of Fabricius: a possible role in B-cell selection. Eur. J. Immunol. 21, 1951–1958 (1991).

    Article  Google Scholar 

  38. Reynaud, C. A., Mackay, C. R., Muller, R. G. & Weill, J.-C. Somatic generation of diversity in a mammalian primary lymphoid organ: the sheep ileal Peyer's patches. Cell 64, 995–1005 (1991).This work followed the analysis of sheep ileal Peyer's patches as a primary lymphoid tissue by the Reynold's group and showed, for the first time, the generation of a pre-immune repertoire by somatic hypermutation.

    Article  CAS  PubMed  Google Scholar 

  39. Reynaud, C.-A., Garcia, C., Hein, W. R. & Weill, J.-C. Hypermutation generating the sheep immunoglobulin repertoire is an antigen-independent process. Cell 80, 115–125 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Maybaum, T. A. & Reynolds, J. D. B cells selected for apoptosis in the sheep ileal Peyer's patch have enhanced mutational diversity in the Ig Vλ light chain. J. Immunol. 157, 1474–1484 (1996).

    CAS  PubMed  Google Scholar 

  41. Hein, W. R. & Dudler, L. Diversification of sheep immunoglobulins. Vet. Immunol. Immunopathol. 72, 17–20 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Charlton, K. A., Moyle, S., Porter, A. J. & Harris, W. J. Analysis of the diversity of a sheep antibody repertoire as revealed from a bacteriophage display library. J. Immunol. 164, 6221–6229 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Parng, C.-L., Hansal, S., Goldsby, R. A. & Osborne, B. A. Gene conversion contributes to Ig light-chain diversity in cattle. J. Immunol. 157, 5478–5486 (1996).

    CAS  PubMed  Google Scholar 

  44. Butler, J. E. et al. Antibody repertoire in fetal and newborn piglets. III. Colonization of the gastrointestinal tract selectively diversifies the preimmune repertoire in mucosal lymphoid tissues. Immunology 100, 119–130 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Reynaud, C. A., Dufour, V. & Weill, J.-C. Generation of diversity in mammalian gut-associated lymphoid tissues: restricted V-gene usage does not preclude complex V-gene organization. J. Immunol. 159, 3093–3096 (1997).

    CAS  PubMed  Google Scholar 

  46. Weill, J.-C. & Reynaud, C.-A. Rearrangement/hypermutation/gene conversion: when, where and why? Immunol. Today 17, 92–97 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Hinds, K. R. & Litman, G. W. Major reorganization of immunoglobulin VH segmental elements during vertebrate evolution. Nature 320, 546–549 (1986).This paper showed the new immunoglobulin gene organization (cluster type) in cartilaginous fish.

    Article  CAS  PubMed  Google Scholar 

  48. Litman, G. W., Anderson, M. K. & Rast, J. P. Evolution of antigen-binding receptors. Annu. Rev. Immunol. 17, 109–147 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Flajnik, M. F. & Rumfelt, L. L. The immune system of cartilaginous fish. Curr. Top. Microbiol. Immunol. 248, 249–270 (2000).

    CAS  PubMed  Google Scholar 

  50. Rumfelt, L. L., McKinney, E. C., Taylor, E. & Flajnik, M. F. The development of primary and secondary lymphoid tissues in the nurse shark Ginglymostoma cirratum. Scand. J. Immunol. 56, 130–148 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Kobayashi, K., Tomonaga, S., Teshima, K. & Kajii, T. Ontogenic studies on the appearance of two classes of immunoglobulin-forming cells in the spleen of the Aleutian skate, Bathyraja aleutica, a cartilaginous fish. Eur. J. Immunol. 15, 952–956 (1985).

    Article  CAS  PubMed  Google Scholar 

  52. Kobayashi, K., Tomonaga, S. & Kajii, T. A second class of immunoglobulin other than IgM present in the serum of a cartilaginous fish, the skate, Raja kenojei: isolation and characterization. Mol. Immunol. 21, 397–404

  53. Harding, F. A. et al. Two distinct immunoglobulin heavy-chain isotypes in a primitive, cartilaginous fish, Raja erinacea. Nucleic Acids Res. 18, 6369–6376 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bernstein, R. M. et al. A new high molecular weight immunoglobulin class from the carcharhine shark: implications for the properties of the primordial immunoglobulin. Proc. Natl Acad. Sci. USA 93, 3289–3293 (1996).

    Article  CAS  Google Scholar 

  55. Greenberg, A. S. et al. A novel 'chimeric' antibody class in cartilaginous fish: IgM may not be the primordial immunoglobulin. Eur. J. Immunol. 26, 1123–1129 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Higgins, D. A. & Warr, G. W. Duck immunoglobulins: structure, function and molecular genetics. Avian Pathol. 22, 211–236 (1993).

    Article  CAS  PubMed  Google Scholar 

  57. Miracle, A. L. et al. Complex expression patterns of lymphocyte-specific genes during the development of cartilaginous fish implicate unique lymphoid tissues in generating an immune repertoire. Int. Immunol. 13, 567–580 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Rumfelt, L. L. et al. A shark antibody heavy chain encoded by a nonsomatically rearranged VDJ is preferentially expressed in early development and is convergent with mammalian IgG. Proc. Natl Acad. Sci. USA 98, 1775–1780 (2001).A description of an unusual immunoglobulin heavy chain in sharks with a germ-line-joined V region that is expressed early in ontogeny.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Anderson, M. K. et al. Evolution of hematopoiesis: three members of the PU.1 transcription factor family in a cartilaginous fish, Raja eglanteria. Proc. Natl Acad. Sci. USA 98, 553–558 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kokubu, F. et al. Diverse organization of immunoglobulin VH gene loci in a primitive vertebrate. EMBO J. 7, 3413–3422 (1988).The first description of germ-line-joined immunoglobulin genes in cartilaginous fish.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yoder, J. A. & Litman, G. W. Immune-type diversity in the absence of somatic rearrangement. Curr. Top. Microbiol. Immunol. 248, 271–282 (2000).

    CAS  PubMed  Google Scholar 

  62. Lee, S. S., Fitch, D., Flajnik, M. F. & Hsu, E. Rearrangement of immunoglobulin genes in shark germ cells. J. Exp. Med. 191, 1637–1648 (2000).Definitive proof that germ-line-joined genes in cartilaginous fish are not primitive, but the result of ongoing RAG activity in the germ line.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hohman, V. S., Schichman, D. B., Schluter, S. F. & Marchalonis, J. J. Genomic clone for sandbar shark λ light chain: generation of diversity in the absence of gene rearrangement. Proc. Natl Acad. Sci. USA 90, 9882–9886 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Anderson, M. K., Shamblott, M. J., Litman, R. T. & Litman, G. W. Generation of immunoglobulin light-chain gene diversity in Raja erinacea is not associated with somatic rearrangement, an exception to a central paradigm of B-cell immunity. J. Exp. Med. 182, 109–119 (1995).

    Article  CAS  PubMed  Google Scholar 

  65. Herzenberg, L. A. & Herzenberg, L. A. Toward a layered immune system. Cell 59, 953–954 (1989).

    Article  CAS  PubMed  Google Scholar 

  66. Wilson, M. et al. A novel chimeric Ig heavy chain from a teleost fish shares similarities to IgD. Proc. Natl Acad. Sci. USA 94, 4593–4597 (1997).The discovery of an unusual bony-fish immunoglobulin isotype that is most related to primate and rodent IgD. As in mammals, IgD expression is a result of alternative splicing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Stenvik, J. & Jorgensen, T. O. Immunoglobulin D (IgD) of Atlantic cod has a unique structure. Immunogenetics 51, 452–461 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Clem, L. W. et al. Fish immunology: the utility of immortalized lymphoid cells — a minireview. Vet. Immunol. Immunopathol. 54, 137–144 (1996).

    Article  CAS  PubMed  Google Scholar 

  69. Schwager, J. & Hadji-Azimi, I. Mitogen-induced B-cell differentiation in Xenopus laevis. Differentiation 27, 182–188 (1984).

    Article  CAS  PubMed  Google Scholar 

  70. Hsu, E., Flajnik, M. F. & Du Pasquier, L. A third immunoglobulin class in amphibians. J. Immunol. 135, 1998–2004 (1985).

    CAS  PubMed  Google Scholar 

  71. Amemiya, C. T., Haire, R. N. & Litman, G. W. Nucleotide sequence of a cDNA encoding a third distinct Xenopus immunoglobulin heavy-chain isotype. Nucleic Acids Res. 17, 5388 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Müssmann, R., Du Pasquier, L. & Hsu, E. Is Xenopus IgX an analog of IgA? Eur. J. Immunol. 26, 2823–2830 (1996).Reference 72 (together with reference 75 ) shows the expression of a T-cell-independent immunoglobulin isotype that is expressed predominantly in the gut. Reference 75 showed the role of commensal bacteria in the induction of particular IgA specificities.

    Article  PubMed  Google Scholar 

  73. Leslie, G. A. & Clem, L. W. Phylogeny of immunoglobulin structure and function. III. Immunoglobulins of the chicken. J. Exp. Med. 130, 1337–1352 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Müssmann, R. et al. Membrane exon sequences of the three Xenopus Ig classes explain the evolutionary origin of mammalian isotypes. Eur. J. Immunol. 26, 409–416 (1996).

    Article  PubMed  Google Scholar 

  75. Macpherson, A. J. et al. A primitive T-cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288, 2222–2226 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Martin, S. W. & Goodnow, C. C. Burst-enhancing role of the IgG membrane tail as a molecular determinant of memory. Nature Immunol. 3, 182–188 (2002).This paper elegantly showed the role of the IgG cytosolic tail in the rapid accumulation of memory B cells. Reference 74 showed that the IgG tail is evolutionarily conserved in amphibians, the oldest group to have the related isotype.

    Article  CAS  Google Scholar 

  77. Pollara, B., Cain, W. A., Finstad, J. & Good, R. A. in Biology of Amphibian Tumors (ed. Mizell, M.) 177–183 (Springer–Verlag, New York, 1969).

    Book  Google Scholar 

  78. Müssmann, R., Courtet, M., Schwager, J. & Du Pasquier, L. Microsites for immunoglobulin switch recombination breakpoints from Xenopus to mammals. Eur. J. Immunol. 27, 2610–2619 (1997).

    Article  PubMed  Google Scholar 

  79. Tashiro, J., Kinoshita, K. & Honjo, T. Palindromic but not G-rich sequences are targets of class-switch recombination. Int. Immunol. 13, 495–505 (2001).References 78 and 79 show that DNA secondary structure (prediction of stem-to-loop structures in single-stranded DNA), not nucleotide composition, is important for the initiation of immunoglobulin isotype switching.

    Article  CAS  PubMed  Google Scholar 

  80. Hinds-Frey, K. R., Nishikita, H., Litman, R. T. & Litman, G. W. Somatic variation precedes extensive diversification of germline sequences and combinatorial joining in the evolution of immunoglobulin heavy-chain diversity. J. Exp. Med. 178, 815–824 (1993).

    Article  CAS  PubMed  Google Scholar 

  81. Wilson, M. et al. What limits affinity maturation of antibodies in Xenopus — the rate of somatic mutation or the ability to select mutants? EMBO J. 11, 4337–4347 (1992).The first work to show somatic hypermutation in cold-blooded vertebrates.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rada, C., Ehrenstein, M. R., Neuberger, M. S. & Milstein, C. Hotspot focusing of somatic hypermutation in MSH2-deficient mice suggests two stages of mutational targeting. Immunity 9, 135–141 (1998).

    Article  CAS  PubMed  Google Scholar 

  83. Petersen-Mahrt, S. K., Harris, R. S. & Neuberger, M. S. AID mutates E. coli suggesting a deamination mechanism for antibody diversification. Nature 418, 99–103 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Greenberg, A. S. et al. A new antigen receptor gene family that undergoes rearrangement and extensive diversification in sharks. Nature 374, 168–173 (1995).

    Article  CAS  PubMed  Google Scholar 

  85. Diaz, M. et al. Mutational pattern if the nurse shark antigen receptor (NAR) gene is similar to that of mammalian Ig genes and to spontaneous mutations in evolution: the translesion synthesis model of somatic mutation. Int. Immunol. 11, 825–833 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Diaz, M., Greenberg, A. S. & Flajnik, M. F. Somatic hypermutation of the new antigen receptor (NAR) gene in the nurse shark does not generate the repertoire: possible role in antigen-driven reactions in the absence of germinal centers. Proc. Natl Acad. Sci. USA 95, 14343–14348 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lee, S. S. et al. Hypermutation in shark immunoglobulin light-chain genes results in contiguous substitutions. Immunity 16, 1–20 (2002).

    Article  Google Scholar 

  88. Muramatsu, M. et al. Class-switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Revy, P. et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the hyper-IgM syndrome (HIGM2). Cell 102, 565–575 (2000).References 88 and 89 identify AID as being required for both somatic hypermutation and class-switch recombination in mouse and human.

    Article  CAS  PubMed  Google Scholar 

  90. Kim, S. et al. Ongoing diversification of the rearranged immunoglobulin light-chain gene in a bursal lymphoma cell line. Mol. Cell. Biol. 10, 3224–3231 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Arakawa, H., Hauschild, J. & Buerstedde, J.-M. Requirement of the activation-induced deaminase (AID) gene for immunoglobulin gene conversion. Science 295, 1301–1305 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Harris, R. S., Sale, J. E., Petersen-Mahrt, S. K. & Neuberger, M. S. AID is essential for immunoglobulin V-gene conversion in a cultured B-cell line. Curr. Biol. 12, 435–438 (2002).References 91 and 92 show that AID is required for gene conversion of the chicken V gene, and so AID is a central player in mutation, class-switch recombination and gene conversion.

    Article  CAS  PubMed  Google Scholar 

  93. Honjo, T., Kinoshita, K. & Muramatsu, M. Molecular mechanism of switch recombination: linkage with somatic hypermutation. Annu. Rev. Immunol. 20, 165–196 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Sale, J. E. et al. Ablation of XRCC2/3 transforms immunoglobulin V-gene conversion into somatic hypermutation. Nature 412, 921–926 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Maizels, N. Somatic hypermutation: how many mechanisms diversify V-region sequences? Cell 83, 9–12 (1995).

    Article  CAS  PubMed  Google Scholar 

  96. Diaz, M. & Flajnik, M. F. Evolution of somatic hypermutation and gene conversion in adaptive immunity. Immunol. Rev. 162, 13–24 (1998).References 95 and 96 discuss how the somatic-hypermutation and gene-conversion mechanisms might share fundamental characteristics.

    Article  CAS  PubMed  Google Scholar 

  97. Sakano, H., Huppi, K., Heinrich, G. & Tonegawa, S. Sequences at the somatic recombination sites of immunoglobulin light-chain genes. Nature 280, 288–294 (1979).

    Article  CAS  PubMed  Google Scholar 

  98. Max, E. E., Seidman, J. G. & Leder, P. Sequences of five potential recombination sites encoded close to an immunoglobulin κ constant-region gene. Proc. Natl Acad. Sci. USA 76, 3450–3454 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bartl, S., Baltimore, D. & Weissman, I. L. Molecular evolution of the vertebrate immune system. Proc. Natl Acad. Sci. USA 91, 10769–10770 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Thompson, C. B. New insights into V(D)J recombination and its role in the evolution of the immune system. Immunity 3, 531–539 (1995).

    Article  CAS  PubMed  Google Scholar 

  101. Bernstein, R. M., Schluter, S. F., Bernstein, H. & Marchalonis, J. J. Primordial emergence of the recombination-activating gene 1 (RAG1): sequence of the complete shark gene indicates homology to microbial integrases. Proc. Natl Acad. Sci. USA 93, 9454–9459 (1996).This paper details the 'big bang' theory for the emergence of the vertebrate adaptive immune system.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Schatz, D. G. Transposition mediated by RAG1 and RAG2 and the evolution of the adaptive immune system. Immunol. Res. 19, 169–182 (1999).

    Article  CAS  PubMed  Google Scholar 

  103. Agrawal, A., Eastman, Q. M. & Schatz, D. G. Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394, 744–751 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. Hiom, K., Melek, M. & Gellert, M. Transposition by the RAG1 and RAG2 proteins: a possible source of oncogenic translocations. Cell 94, 463–470 (1998).References 103 and 104 show that RAG1 and/or RAG2 can transpose RSS-containing DNA into many different (random) sites of double-stranded DNA. This function is consistent with the hypothesis that a RAG-dependent transposition event initiated the V(D)J recombination system and, therefore, the adaptive immune system.

    Article  CAS  PubMed  Google Scholar 

  105. Daggfeldt, A., Bengtén, E. & Pilström, L. A cluster-type organization of the loci of the immunoglobulin light chain in the Atlantic cod (Gadus moruha L.) and rainbow trout (Oncorhynchus mykiss Walbaum) indicated by nucleotide sequences of cDNAs and hybridization analysis. Immunogenetics 38, 199–209 (1993).

    Article  CAS  PubMed  Google Scholar 

  106. Kaattari, S., Evans, D. & Klemer, J. Varied forms of teleost IgM: an alternative to isotypic diversity? Immunol. Rev. 166, 133–142 (1998).

    Article  CAS  PubMed  Google Scholar 

  107. Shen, S. X., Bernstein, R. M., Schluter, S. F. & Marchalonis, J. J. Heavy-chain variable regions in carcharhine sharks: development of a comprehensive model for the evolution of VH domains among the gnathostomes. Immunol. Cell. Biol. 74, 357–364 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is dedicated to the memory of Jeanette. Thorbecke, who was perhaps the scientist who was most instrumental in identifying the function of germinal centres. I thank M. Diaz, L. Du Pasquier, H. Dooley and M. Cooper for reading of the manuscript at different stages. I also thank my colleagues E. Hsu, L. Rumfelt, J. Cerny, C. McKinney and A. Greenberg for helping to formulate some of the ideas that are presented here. I am supported by grants from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

AID

APOBEC1

RAD51B

RAG1

RAG2

TDT

XRCC2

XRCC3

FURTHER INFORMATION

Encyclopedia of Life Sciences

immunoglobulin gene rearrangements

immune response: evolution

immunology: comparative immunology of mammals

somatic hypermutation in antibody evolution

Glossary

SOMATIC HYPERMUTATION

The substitution of 'untemplated' single (or tandem) nucleotides targeted to a rearranged VDJ or VJ segment that occurs only in B cells. The mutations are found between the promoter and enhancer of the rearranged gene. This process occurs in all jawed vertebrates after mature B cells have been stimulated by antigen and helper T cells, but it also occurs at the sheep λ locus and rabbit heavy-chain locus in immature B cells to generate the pre-immune repertoire.

GENE CONVERSION

A homologous recombination event in which the donor gene(s) remains unmodified and an acceptor gene acquires the recombined segment. In chickens, variable (V) pseudogenes are donors that modify the functional, rearranged V gene in bursal follicles to generate a diverse pre-immune repertoire.

CLASS-SWITCH RECOMBINATION

The mechanism by which a functional VDJ segment in mammalian antigen-stimulated B cells is rearranged by a deletional mechanism from upstream of the μ gene to upstream of a γ, ɛ or α heavy-chain gene. The effector function of the secreted B-cell receptor post-switch is changed without the modification of antibody specificity. Although all vertebrates have many immunoglobulin isotypes, only the tetrapods (amphibians, reptiles, birds and mammals) have the isotype-switch mechanism.

VERTEBRATES

Animals that have a dorsal hollow nerve cord, gill slits derived from all three germ layers, a dorsal notochord and a postanal tail at some time during their lives. There are only two living species of jawless vertebrate, the lamprey and hagfish. Only the jawed vertebrates (gnathostomes), including cartilaginous fish, bony fish, amphibians, reptiles, birds and mammals, have an adaptive immune system.

GERMINAL CENTRE

A structure that is found in the follicles of secondary lymphoid tissues that is composed of proliferating B cells that are induced to undergo somatic hypermutation. B cells that have modified B-cell receptors that cannot bind to antigen die by apoptosis, whereas those that do bind are positively selected to exit the germinal centre as memory cells. Although all vertebrates have secondary lymphoid tissues that contain B-cell follicles (at least, accumulations of B cells), only birds and mammals can form germinal centres.

AFFINITY MATURATION

The mutation of antibody variable (V)-region genes followed by selection for higher-affinity variants in the germinal centre leads to an increase in average antibody affinity as an immune response progresses. The selection is thought to be a competitive process in which B cells compete with each other to capture decreasing amounts of antigen.

V(D)J RECOMBINATION

The recombination-activating gene (RAG)-dependent somatic rearrangement of variable (V), diversity (D) (in heavy-chain genes) and joining (J) regions of antigen-receptor-encoding genes, which is responsible for the repertoire diversity of T-cell receptors in all vertebrates and of B-cell receptors in all non-GALT species.

HAPTENIC ANTIGEN

A molecule that can bind antibody but cannot by itself elicit an immune response. Antibodies that are specific for a hapten can be generated when the hapten is chemically linked to a protein carrier that can elicit a T-cell response.

COMPLEMENTARITY-DETERMINING REGIONS

Amino acids that are found in three areas of each of the heavy and light chains that physically contact antigen; that is, they are complementary to the antigen.

HOTSPOT

Frequently mutated G or C nucleotides in RGYW or WRCY motifs, respectively.

RECOMBINATION SIGNAL SEQUENCE

A sequence adjacent to germ-line V, D and J segments that is required for RAG-mediated rearrangement of such segments. An RSS is composed of a heptamer directly adjacent to the rearranging segment followed by a spacer of 12 or 23 nucleotides and then a nonamer. Rearrangement occurs only between RSSs with 12- and 23-nucleotide spacers.

TRANSPOSABLE ELEMENTS

Segments of genomic DNA of ancient origins that are acquired generally by horizontal transfer and can move from one chromosomal location to another.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flajnik, M. Comparative analyses of immunoglobulin genes: surprises and portents. Nat Rev Immunol 2, 688–698 (2002). https://doi.org/10.1038/nri889

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri889

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing