Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Plant vascular development: from early specification to differentiation

Key Points

  • Owing to recent advances, plant vascular developmental can now be described from early specification during embryogenesis up to late differentiation events.

  • Plant vascular tissues display both deterministic and plastic properties during development.

  • Most of the molecular pathways controlling vascular tissue patterning involve mobile signals.

  • Although a rather elaborate transcriptional network has been established for xylem differentiation processes, very little is known about phloem differentiation.

  • We propose a model in which two distinctly regulated orthogonal meristems each controls a separate axis of growth to sustain tissue development as a whole.

Abstract

Vascular tissues in plants are crucial to provide physical support and to transport water, sugars and hormones and other small signalling molecules throughout the plant. Recent genetic and molecular studies have identified interconnections among some of the major signalling networks that regulate plant vascular development. Using Arabidopsis thaliana as a model system, these studies enable the description of vascular development from the earliest tissue specification events during embryogenesis to the differentiation of phloem and xylem tissues. Moreover, we propose a model for how oriented cell divisions give rise to a three-dimensional vascular bundle within the root meristem.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Vascular development in the Arabidopsis thaliana lifecycle.
Figure 2: Regulatory networks controlling early vascular development.
Figure 3: Key factors regulating early phloem development.
Figure 4: Differentiation events during xylem and phloem development.
Figure 5: Orthogonal meristems control three-dimensional vascular growth in the root meristem.

Similar content being viewed by others

References

  1. Lucas, W. J. et al. The plant vascular system: evolution, development and functions. J. Integr. Plant Biol. 55, 294–388 (2013).

    CAS  PubMed  Google Scholar 

  2. Scheres, B. et al. Embryonic origin of the Arabidopsis primary root and root meristem initials. Development 120, 2475–2487 (1994).

    CAS  Google Scholar 

  3. De Rybel, B. et al. A bHLH complex controls embryonic vascular tissue establishment and indeterminate growth in Arabidopsis. Dev. Cell 24, 426–437 (2013).

    CAS  PubMed  Google Scholar 

  4. Yoshida, S. et al. Genetic control of plant development by overriding a geometric division rule. Dev. Cell 14, 75–87 (2014).

    Google Scholar 

  5. Nieminen, K., Blomster, T., Helariutta, Y. & Mähönen, A. P. Vascular cambium development. Arabidopsis Book 13, e0177 (2015).

    PubMed  PubMed Central  Google Scholar 

  6. Jouannet, V., Brackmann, K. & Greb, T. (Pro)cambium formation and proliferation: two sides of the same coin? Curr. Opin. Plant Biol. 23, 54–60 (2015).

    PubMed  Google Scholar 

  7. Scarpella, E., Barkoulas, M. & Tsiantis, M. Control of leaf and vein development by auxin. Cold Spring Harb. Perspect. Biol. 2, a001511 (2010).

    PubMed  PubMed Central  Google Scholar 

  8. Scheres, B. et al. Mutations affecting the radial organisation of the Arabidopsis root display specific defects throughout the embryonic axis. Development 121, 53–62 (1995).

    CAS  Google Scholar 

  9. De Rybel, B. et al. Integration of growth and patterning during vascular tissue formation in Arabidopsis. Science 345, 1255215 (2014). In this study, combined experimental and computational analyses indicate that auxin-dependent cytokinin biosynthesis is crucial for growth and patterning of the embryonic vascular tissue.

    PubMed  Google Scholar 

  10. De Rybel, B., Breda, A. S. & Weijers, D. Prenatal plumbing — vascular tissue formation in the plant embryo. Physiol. Plant 151, 126–133 (2014).

    CAS  PubMed  Google Scholar 

  11. Bonke, M., Thitamadee, S., Mahonen, A. P., Hauser, M. T. & Helariutta, Y. APL regulates vascular tissue identity in Arabidopsis. Nature 426, 181–186 (2003).

    CAS  PubMed  Google Scholar 

  12. Truernit, E., Bauby, H., Belcram, K., Barthelemy, J. & Palauqui, J. C. OCTOPUS, a polarly localised membrane-associated protein, regulates phloem differentiation entry in Arabidopsis thaliana. Development 139, 1306–1315 (2012).

    CAS  PubMed  Google Scholar 

  13. Bauby, H., Divol, F., Truernit, E., Grandjean, O. & Palauqui, J. C. Protophloem differentiation in early Arabidopsis thaliana development. Plant Cell Physiol. 48, 97–109 (2007).

    CAS  PubMed  Google Scholar 

  14. Melnyk, C. W., Schuster, C., Leyser, O. & Meyerowitz, E. M. A. Developmental framework for graft formation and vascular reconnection in Arabidopsis thaliana. Curr. Biol. 25, 1306–1318 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Sachs, T. The control of patterned differentiation of vascular tissues. Adv. Bot. Res. 9, 151–262 (1981).

    Google Scholar 

  16. Sauer, M. et al. Canalization of auxin flow by Aux/IAA-ARF-dependent feedback regulation of PIN polarity. Genes Dev. 20, 2902–2911 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Help, H., Mahonen, A. P., Helariutta, Y. & Bishopp, A. Bisymmetry in the embryonic root is dependent on cotyledon number and position. Plant Signal. Behav. 6, 1837–1840 (2011).

    PubMed  PubMed Central  Google Scholar 

  18. Lloyd, C. W. How does the cytoskeleton read the laws of geometry in aligning the division plane of cells? Dev. 113, 55–65 (1991).

    Google Scholar 

  19. Friml, J. et al. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426, 147–153 (2003).

    CAS  PubMed  Google Scholar 

  20. Reinhardt, D. et al. Regulation of phyllotaxis by polar auxin transport. Nature 426, 255–260 (2003).

    CAS  PubMed  Google Scholar 

  21. Salehin, M., Bagchi, R. & Estelle, M. SCFTIR1/AFB-based auxin perception: mechanism and role in plant growth and development. Plant Cell 27, 9–19 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hardtke, C. S. & Berleth, T. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J. 17, 1405–1411 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Schlereth, A. et al. MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor. Nature 464, 913–916 (2010).

    CAS  PubMed  Google Scholar 

  24. Ohashi-Ito, K. & Bergmann, D. C. Regulation of the Arabidopsis root vascular initial population by LONESOME HIGHWAY. Development 134, 2959–2968 (2007). This paper identifies and characterizes the LHW gene, which is a key factor in vascular tissue development.

    CAS  PubMed  Google Scholar 

  25. Ohashi-Ito, K., Matsukawa, M. & Fukuda, H. An atypical bHLH transcription factor regulates early xylem development downstream of auxin. Plant Cell Physiol. 54, 398–405 (2013).

    CAS  PubMed  Google Scholar 

  26. Mähönen, A. P. et al. A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root. Genes Dev. 14, 2938–2943 (2000).

    PubMed  PubMed Central  Google Scholar 

  27. Mähönen, A. P. et al. Cytokinin signaling and its inhibitor AHP6 regulate cell fate during vascular development. Science 311, 94–98 (2006).

    PubMed  Google Scholar 

  28. Mähönen, A. P. et al. Cytokinins regulate a bidirectional phosphorelay network in Arabidopsis. Curr. Biol. 16, 1116–1122 (2006).

    PubMed  Google Scholar 

  29. Bishopp, A. et al. A mutually inhibitory interaction between auxin and cytokinin specifies vascular pattern in roots. Curr. Biol. 21, 917–926 (2011).

    CAS  PubMed  Google Scholar 

  30. Ohashi-Ito, K. et al. A bHLH complex activates vascular cell division via cytokinin action in root apical meristem. Curr. Biol. 24, 2053–2058 (2014).

    CAS  PubMed  Google Scholar 

  31. Muraro, D. et al. Integration of hormonal signaling networks and mobile microRNAs is required for vascular patterning in Arabidopsis roots. Proc. Natl Acad. Sci. USA 111, 857–862 (2014). A modelling paper that shows how auxin–cytokinin, as well as miRNA–HD-ZipIII interactions contribute to vascular pattern formation in the post-embryonic root.

    CAS  PubMed  Google Scholar 

  32. Zhou, J., Wang, X., Lee, J. Y. & Lee, J. Y. Cell-to-cell movement of two interacting AT-hook factors in Arabidopsis root vascular tissue patterning. Plant Cell 25, 187–201 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Helariutta, Y. et al. The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell 101, 555–567 (2000).

    CAS  PubMed  Google Scholar 

  34. Benfey, P. N. et al. Root development in Arabidopsis: four mutants with dramatically altered root morphogenesis. Development 119, 57–70 (1993).

    CAS  PubMed  Google Scholar 

  35. Carlsbecker, A. et al. Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 465, 316–321 (2010). This work reveals how miRNAs control the specification of the different xylem cell types by regulating HD-ZipIII transcript levels.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Cui, H. et al. An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants. Science 316, 421–425 (2007).

    CAS  PubMed  Google Scholar 

  37. Di Laurenzio, L. et al. The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell 86, 423–433 (1996).

    CAS  PubMed  Google Scholar 

  38. Baima, S. et al. The Arabidopsis ATHB-8 HD-Zip protein acts as a differentiation-promoting transcription factor of the vascular meristems. Plant Physiol. 126, 643–655 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Talbert, P. B., Adler, H. T., Parks, D. W. & Comai, L. The REVOLUTA gene is necessary for apical meristem development and for limiting cell divisions in the leaves and stems of Arabidopsis thaliana. Development 121, 2723–2735 (1995).

    CAS  PubMed  Google Scholar 

  40. McConnell, J. R. et al. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411, 709–713 (2001).

    CAS  PubMed  Google Scholar 

  41. Green, K. A., Prigge, M. J., Katzman, R. B. & Clark, S. E. CORONA, a member of the class III homeodomain leucine zipper gene family in Arabidopsis, regulates stem cell specification and organogenesis. Plant Cell 17, 691–704 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Prigge, M. J. et al. Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. Plant Cell 17, 61–76 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ursache, R. et al. Tryptophan-dependent auxin biosynthesis is required for HD-ZIP III-mediated xylem patterning. Development 141, 1250–1259 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee, J. Y. et al. Transcriptional and posttranscriptional regulation of transcription factor expression in Arabidopsis roots. Proc. Natl Acad. Sci. USA 103, 6055–6060 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Miyashima, S. et al. A comprehensive expression analysis of the Arabidopsis MICRORNA165/6 gene family during embryogenesis reveals a conserved role in meristem specification and a non-cell-autonomous function. Plant Cell Physiol. 54, 375–384 (2013).

    CAS  PubMed  Google Scholar 

  46. Emery, J. F. et al. Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr. Biol. 13, 1768–1774 (2003).

    CAS  PubMed  Google Scholar 

  47. Smith, Z. R. & Long, J. A. Control of Arabidopsis apical–basal embryo polarity by antagonistic transcription factors. Nature 464, 423–426 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Williams, L., Grigg, S. P., Xie, M., Christensen, S. & Fletcher, J. C. Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes. Development 132, 3657–3668 (2005).

    CAS  PubMed  Google Scholar 

  49. Vanneste, S. & Friml, J. Auxin: a trigger for change in plant development. Cell 136, 1005–1016 (2009).

    CAS  PubMed  Google Scholar 

  50. Vaten, A. et al. Callose biosynthesis regulates symplastic trafficking during root development. Dev. Cell 21, 1144–1155 (2011).

    CAS  PubMed  Google Scholar 

  51. Wu, S. & Gallagher, K. L. The movement of the non-cell-autonomous transcription factor, SHORT-ROOT relies on the endomembrane system. Plant J. 80, 396–409 (2014).

    CAS  PubMed  Google Scholar 

  52. Gallagher, K. L., Sozzani, R. & Lee, C. M. Intercellular protein movement: deciphering the language of development. Annu. Rev. Cell Dev. Biol. 30, 207–233 (2014).

    CAS  PubMed  Google Scholar 

  53. Burkle, L. et al. Transport of cytokinins mediated by purine transporters of the PUP family expressed in phloem, hydathodes, and pollen of Arabidopsis. Plant J. 34, 13–26 (2003).

    CAS  PubMed  Google Scholar 

  54. Ko, D. et al. Arabidopsis ABCG14 is essential for the root-to-shoot translocation of cytokinin. Proc. Natl Acad. Sci. USA 111, 7150–7155 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Mouchel, C. F., Osmont, K. S. & Hardtke, C. S. BRX mediates feedback between brassinosteroid levels and auxin signalling in root growth. Nature 443, 458–461 (2006).

    CAS  PubMed  Google Scholar 

  56. Scacchi, E. et al. Spatio-temporal sequence of cross-regulatory events in root meristem growth. Proc. Natl Acad. Sci. USA 107, 22734–22739 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Scacchi, E. et al. Dynamic, auxin-responsive plasma membrane-to-nucleus movement of Arabidopsis BRX. Development 136, 2059–2067 (2009).

    CAS  PubMed  Google Scholar 

  58. Depuydt, S. et al. Suppression of Arabidopsis protophloem differentiation and root meristem growth by CLE45 requires the receptor-like kinase BAM3. Proc. Natl Acad. Sci. USA 110, 7074–7079 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Rodriguez-Villalon, A. et al. Molecular genetic framework for protophloem formation. Proc. Natl Acad. Sci. USA 111, 11551–11556 (2014). The authors demonstrate the role of antagonistic regulatory pathways in controlling early protophloem development.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Escamez, S. & Tuominen, H. Programmes of cell death and autolysis in tracheary elements: when a suicidal cell arranges its own corpse removal. J. Exp. Bot. 65, 1313–1321 (2014).

    CAS  PubMed  Google Scholar 

  61. Zhong, R. & Ye, Z. H. Secondary cell walls: biosynthesis, patterned deposition and transcriptional regulation. Plant Cell Physiol. 56, 195–214 (2015).

    CAS  PubMed  Google Scholar 

  62. Furuta, K. M., Hellmann, E. & Helariutta, Y. Molecular control of cell specification and cell differentiation during procambial development. Annu. Rev. Plant Biol. 65, 607–638 (2014).

    CAS  PubMed  Google Scholar 

  63. Kubo, M. et al. Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev. 19, 1855–1860 (2005). This paper reports that VND transcription factors are sufficient to induce cell wall modifications that are typical of xylem cells in various other cell types.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ohashi-Ito, K., Oda, Y. & Fukuda, H. Arabidopsis VASCULAR-RELATED NAC-DOMAIN6 directly regulates the genes that govern programmed cell death and secondary wall formation during xylem differentiation. Plant Cell 22, 3461–3473 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Yamaguchi, M. et al. VASCULAR-RELATED NAC-DOMAIN7 directly regulates the expression of a broad range of genes for xylem vessel formation. Plant J. 66, 579–590 (2011).

    CAS  PubMed  Google Scholar 

  66. Yamaguchi, M. et al. VND-INTERACTING2, a NAC domain transcription factor, negatively regulates xylem vessel formation in Arabidopsis. Plant Cell 22, 1249–1263 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Taylor-Teeples, M. et al. An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature 517, 571–575 (2015).

    CAS  PubMed  Google Scholar 

  68. Xu, B. et al. Contribution of NAC transcription factors to plant adaptation to land. Science 343, 1505–1508 (2014). This paper demonstrates that VND transcription factors that mediate xylem differentiation in vascular plants control differentiation of water-conducting cells in a moss.

    CAS  PubMed  Google Scholar 

  69. Fisher, K. & Turner, S. PXY, a receptor-like kinase essential for maintaining polarity during plant vascular-tissue development. Curr. Biol. 17, 1061–1066 (2007).

    CAS  PubMed  Google Scholar 

  70. Hirakawa, Y. et al. Non-cell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system. Proc. Natl Acad. Sci. USA 105, 15208–15213 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Hirakawa, Y., Kondo, Y. & Fukuda, H. TDIF peptide signaling regulates vascular stem cell proliferation via the WOX4 homeobox gene in Arabidopsis. Plant Cell 22, 2618–2629 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Ito, Y. et al. Dodeca-CLE peptides as suppressors of plant stem cell differentiation. Science 313, 842–845 (2006).

    CAS  PubMed  Google Scholar 

  73. Kondo, Y. et al. Plant GSK3 proteins regulate xylem cell differentiation downstream of TDIF–TDR signalling. Nat. Commun. 5, 3504 (2014).

    PubMed  Google Scholar 

  74. Dettmer, J. et al. CHOLINE TRANSPORTER-LIKE1 is required for sieve plate development to mediate long-distance cell-to-cell communication. Nat. Commun. 5, 4276 (2014).

    CAS  PubMed  Google Scholar 

  75. Furuta, K. M. et al. Arabidopsis NAC45/86 direct sieve element morphogenesis culminating in enucleation. Science 345, 933–937 (2014). The authors identify nucleases that mediate phloem cell differentiation, as well as their transcriptional regulators.

    CAS  PubMed  Google Scholar 

  76. Clowes, F. The cytogenerative centre in roots with broad columellas. New Phytol. 52, 48–57 (1953).

    Google Scholar 

  77. Clowes, F. The promeristem and the minimal constructional centre in grass root apices. New Phytol. 53, 108–116 (1954).

    Google Scholar 

  78. Sabatini, S. et al. An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99, 463–472 (1999).

    CAS  PubMed  Google Scholar 

  79. Brunoud, G. et al. A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature 482, 103–106 (2012).

    CAS  PubMed  Google Scholar 

  80. Liao, C. Y. et al. Reporters for sensitive and quantitative measurement of auxin response. Nat. Methods 12, 207–210 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Sarkar, A. K. et al. Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446, 811–814 (2007).

    CAS  PubMed  Google Scholar 

  82. Wildwater, M. et al. The RETINOBLASTOMA-RELATED gene regulates stem cell maintenance in Arabidopsis roots. Cell 123, 1337–1349 (2005).

    CAS  PubMed  Google Scholar 

  83. Willemsen, V. et al. The NAC domain transcription factors FEZ and SOMBRERO control the orientation of cell division plane in Arabidopsis root stem cells. Dev. Cell 15, 913–922 (2008).

    CAS  PubMed  Google Scholar 

  84. van den Berg, C., Willemsen, V., Hage, W., Weisbeek, P. & Scheres, B. Cell fate in the Arabidopsis root meristem determined by directional signalling. Nature 378, 62–65 (1995).

    CAS  PubMed  Google Scholar 

  85. van den Berg, C., Willemsen, V., Hendriks, G., Weisbeek, P. & Scheres, B. Short-range control of cell differentiation in the Arabidopsis root meristem. Nature 390, 287–289 (1997).

    CAS  PubMed  Google Scholar 

  86. Aida, M. et al. The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119, 109–120 (2004).

    CAS  PubMed  Google Scholar 

  87. Galinha, C. et al. PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development. Nature 449, 1053–1057 (2007).

    CAS  PubMed  Google Scholar 

  88. Mähönen, A. P. et al. PLETHORA gradient formation mechanism separates auxin responses. Nature 515, 125–129 (2014).

    PubMed  PubMed Central  Google Scholar 

  89. Matsumoto-Kitano, M. et al. Cytokinins are central regulators of cambial activity. Proc. Natl Acad. Sci. USA 105, 20027–20031 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Kuroha, T. et al. Functional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the direct activation pathway in Arabidopsis. Plant Cell 21, 3152–3169 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Tokunaga, H. et al. Arabidopsis lonely guy (LOG) multiple mutants reveal a central role of the LOG-dependent pathway in cytokinin activation. Plant J. 69, 355–365 (2012).

    CAS  PubMed  Google Scholar 

  92. Nieminen, K. et al. Cytokinin signaling regulates cambial development in poplar. Proc. Natl Acad. Sci. USA 105, 20032–20037 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Dello Ioio, R. et al. A genetic framework for the control of cell division and differentiation in the root meristem. Science 322, 1380–1384 (2008).

    CAS  PubMed  Google Scholar 

  94. Dello Ioio, R. et al. A PHABULOSA/cytokinin feedback loop controls root growth in Arabidopsis. Curr. Biol. 22, 1699–1704 (2012).

    CAS  PubMed  Google Scholar 

  95. Whitford, R., Fernandez, A., De Groodt, R., Ortega, E. & Hilson, P. Plant CLE peptides from two distinct functional classes synergistically induce division of vascular cells. Proc. Natl Acad. Sci. USA 105, 18625–18630 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Etchells, J. P. & Turner, S. R. The PXY-CLE41 receptor ligand pair defines a multifunctional pathway that controls the rate and orientation of vascular cell division. Development 137, 767–774 (2010).

    CAS  PubMed  Google Scholar 

  97. Suer, S., Agusti, J., Sanchez, P., Schwarz, M. & Greb, T. WOX4 imparts auxin responsiveness to cambium cells in Arabidopsis. Plant Cell 23, 3247–3259 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Jos Wendrich, Wouter Smet and Colette ten Hove for critical reading of the manuscript. B.D.R. was funded by the Netherlands Organisation for Scientific Research (NWO; VIDI-864.13.001) and by The Research Foundation — Flanders (FWO; Odysseus II G0D0515N and Postdoc grant 12D1815N). A.P.M was funded by the Academy of Finland Centre of Excellence programme, the Academy Research Fellowship grant and the University of Helsinki. Y.H. was funded by the Gatsby Foundation, University of Helsinki, the European Research Council Advanced Investigator Grant SYMDEV, Tekes (the Finnish Funding Agency for Technology and Innovation) and the Academy of Finland Centre of Excellence programme. Research on vascular development in D.W.'s group is funded by the European Research Council (CELLPATTERN; contract number 281573) and the Netherlands Organisation for Scientific Research (NWO; ALW-831.14.003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dolf Weijers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Ground tissues

One of the three major tissue types in plants, located between the outer layer (epidermis) and the inner vascular cylinder.

Hypocotyl

The embryonic stem connecting the cotyledons with the embryonic root.

Meristem

The actively dividing part of the plant, containing the stem cell niche.

Periclinal division

Cell divisions that occur parallel to the surface of the plant body, resulting in radial growth.

Cotyledons

The embryonic leaves of the plant; post-embryonically, the first true leaves are formed from the shoot apical meristem.

Abaxial and adaxial

Refers to the under and upper sides of leaves, respectively.

Anticlinal divisions

Cell divisions that occur perpendicular to the surface of the plant body, resulting in longitudinal growth.

Stem cell niche

A group of cells and the associated organizing centre, which contribute to plant growth through local cell divisions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Rybel, B., Mähönen, A., Helariutta, Y. et al. Plant vascular development: from early specification to differentiation. Nat Rev Mol Cell Biol 17, 30–40 (2016). https://doi.org/10.1038/nrm.2015.6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm.2015.6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing