Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Coenzyme A: to make it or uptake it?

Subjects

Abstract

The consensus has been that intracellular coenzyme A (CoA) is obtained exclusively by de novo biosynthesis via a universal, conserved five-step pathway in the cell cytosol. However, old and new evidence suggest that cells (and some microorganisms) have several strategies to obtain CoA, with 4′-phosphopantetheine (P-PantSH; the fourth intermediate in the canonical CoA biosynthetic pathway) serving as a 'nexus' metabolite.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Lipmann, F., Kaplan, N. O., Novelli, G. D., Tuttle, L. C. & Guirard, B. M. Coenzyme for acetylation, a pantothenic acid derivative. J. Biol. Chem. 167, 869–870 (1947).

    CAS  Google Scholar 

  2. Pietrocola, F., Galluzzi, L., Bravo- San Pedro, J. M., Madeo, F. & Kroemer, G. Acetyl coenzyme A: a central metabolite and second messenger. Cell Metab. 21, 805–821 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Strauss, E. in Comprehensive Natural Products II Chemistry and Biology Vol. 7 (eds Mander, L. & Hung-Wen, L.) 351–410 (Elsevier, 2010).

    Google Scholar 

  4. Leonardi, R., Zhang, Y.-M., Rock, C. O. & Jackowski, S. Coenzyme A: back in action. Prog. Lipid Res. 44, 125–153 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Fiermonte, G., Paradies, E., Todisco, S., Marobbio, C. M. T. & Palmieri, F. A. Novel member of solute carrier family 25 (SLC25A42) is a transporter of coenzyme A and adenosine 3′,5′-diphosphate in human mitochondria. J. Biol. Chem. 284, 18152–18159 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Agrimi, G., Russo, A., Scarcia, P. & Palmieri, F. The human gene SLC25A17 encodes a peroxisomal transporter of coenzyme A, FAD and NAD+. Biochem. J. 443, 241–247 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Jonas, M. C., Pehar, M. & Puglielli, L. AT-1 is the ER membrane acetyl-CoA transporter and is essential for cell viability. J. Cell Sci. 123, 3378–3388 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Siudeja, K. et al. Impaired coenzyme A metabolism affects histone and tubulin acetylation in Drosophila and human cell models of pantothenate kinase associated neurodegeneration. EMBO Mol. Med. 3, 755–766 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Srinivasan, B. et al. Extracellular 4′-phosphopantetheine is a source for intracellular coenzyme A synthesis. Nat. Chem. Biol. 11, 784–792 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Jackowski, S. & Rock, C. O. Turnover of the 4′-phosphopantetheine prosthetic group of acyl-carrier protein. J. Biol. Chem. 259, 1891–1895 (1984).

    CAS  PubMed  Google Scholar 

  11. Balibar, C. J., Hollis-Symynkywicz, M. F. & Tao, J. Pantethine rescues phosphopantothenoylcysteine synthetase and phosphopantothenoylcysteine decarboxylase deficiency in Escherichia coli but not in Pseudomonas aeruginosa. J. Bacteriol. 193, 3304–3312 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jackowski, S. & Rock, C. O. Metabolism of 4′-phosphopantetheine in Escherichia coli. J. Bacteriol. 158, 115–120 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Stein, E. D. & Diamond, J. M. Do dietary levels of pantothenic acid regulate its intestinal uptake in mice? J. Nutr. 119, 1973–1983 (1989).

    Article  CAS  PubMed  Google Scholar 

  14. Steinman, H. G., Oyama, V. I. & Schulze, H. O. Carbon dioxide, cocarboxylase, citrovorum factor, and coenzyme A as essential growth factors for a saprophytic treponeme. J. Biol. Chem. 211, 327–335 (1954).

    CAS  PubMed  Google Scholar 

  15. Hutchison, C. A. et al. Design and synthesis of a minimal bacterial genome. Science 351, aad6253 (2016).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank S. Hayflick for valuable comments. O.C.M.S. is supported by a Netherlands Organisation for Scientific Research (NWO) VICI grant, and E.S. by grants from the South African National Research Foundation (NRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erick Strauss.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (figure)

a) Structure of coenzyme A (CoA) with its constituent parts highlighted by different coloured shading. (PDF 237 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sibon, O., Strauss, E. Coenzyme A: to make it or uptake it?. Nat Rev Mol Cell Biol 17, 605–606 (2016). https://doi.org/10.1038/nrm.2016.110

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm.2016.110

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing