Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Glucocorticoid receptor control of transcription: precision and plasticity via allostery

Key Points

  • Glucocorticoid receptor (GR), the founding member of the nuclear receptor superfamily, is a ubiquitously expressed, ligand-regulated vertebrate transcriptional regulatory factor (TRF) that regulates precisely determined gene networks.

  • Although precise, GR-regulated gene networks are highly plastic, changing dramatically with changes in cell or physiological context.

  • GR is regulated by multiple signals (ligands, DNA-binding sequences, post-translational modifications and non-GR TRFs). We propose that each of these signals acts as an allosteric effector that conveys gene, cell or physiological context information to GR by specifically altering its conformation.

  • Integrated signal-driven conformational modifications of GR produce context-specific patterns of GR protein surfaces that are recognized by unique combinations of co-regulator proteins.

  • GR, and perhaps many or all other TRFs, seems to lack intrinsic transcription regulatory activity and instead may be a molecular scaffold whose signal-driven structures nucleate the assembly of enzymatic machineries that confer distinct regulatory outcomes.

  • Regulatory precision, signal-driven allostery and context-specified network plasticity are properties that are likely shared by most, if not all, metazoan TRFs.

Abstract

The glucocorticoid receptor (GR) is a constitutively expressed transcriptional regulatory factor (TRF) that controls many distinct gene networks, each uniquely determined by particular cellular and physiological contexts. The precision of GR-mediated responses seems to depend on combinatorial, context-specific assembly of GR-nucleated transcription regulatory complexes at genomic response elements. In turn, evidence suggests that context-driven plasticity is conferred by the integration of multiple signals, each serving as an allosteric effector of GR conformation, a key determinant of regulatory complex composition and activity. This structural and mechanistic perspective on GR regulatory specificity is likely to extend to other eukaryotic TRFs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GR signalling and DNA binding.
Figure 2: Modes of site-specific GR–genome interactions.
Figure 3: Context-specific GR occupancy and gene regulation.
Figure 4: GR–ligand interactions.
Figure 5: Sites of glucocorticoid receptor post-translational modifications.
Figure 6: A model for transcription regulation: precision and plasticity of TRF function achieved via allostery.

Similar content being viewed by others

References

  1. Bridgham, J. T. et al. Protein evolution by molecular tinkering: diversification of the nuclear receptor superfamily from a ligand-dependent ancestor. PLoS Biol. 8, e1000497 (2010).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Revollo, J. R. & Cidlowski, J. A. Mechanisms generating diversity in glucocorticoid receptor signaling. Ann. NY Acad. Sci. 1179, 167–178 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Kadmiel, M. & Cidlowski, J. A. Glucocorticoid receptor signaling in health and disease. Trends Pharmacol. Sci. 34, 518–530 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lewis-Tuffin, L. J., Jewell, C. M., Bienstock, R. J., Collins, J. B. & Cidlowski, J. A. Human glucocorticoid receptor binds RU-486 and is transcriptionally active. Mol. Cell. Biol. 27, 2266–2282 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Picard, D. et al. Reduced levels of hsp90 compromise steroid receptor action in vivo. Nature 348, 166–168 (1990).

    Article  CAS  PubMed  Google Scholar 

  6. Chandler, V. L., Maler, B. A. & Yamamoto, K. R. DNA sequences bound specifically by glucocorticoid receptor in vitro render a heterologous promoter hormone responsive in vivo. Cell 33, 489–499 (1983).

    Article  CAS  PubMed  Google Scholar 

  7. Yamamoto, K. R. Steroid receptor regulated transcription of specific genes and gene networks. Annu. Rev. Genet. 19, 209–252 (1985).

    Article  CAS  PubMed  Google Scholar 

  8. Yamamoto, K. R., Darimont, B. D., Wagner, R. L. & Iñiguez-Lluhí, J. A. Building transcriptional regulatory complexes: signals and surfaces. Cold Spring Harb. Symp. Quant. Biol. 63, 587–598 (1998). Presents the idea that TRFs nucleate different multi-subunit regulatory complexes on chromatin that drive alternative transcriptional outcomes.

    Article  CAS  PubMed  Google Scholar 

  9. McNally, J. G. The glucocorticoid receptor: Rapid exchange with regulatory sites in living cells. Science 287, 1262–1265 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Becker, M. Dynamic behavior of transcription factors on a natural promoter in living cells. EMBO Rep. 3, 1188–1194 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stavreva, D. A., Muller, W. G., Hager, G. L., Smith, C. L. & McNally, J. G. Rapid glucocorticoid receptor exchange at a promoter is coupled to transcription and regulated by chaperones and proteasomes. Mol. Cell. Biol. 24, 2682–2697 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Meijsing, S. H., Elbi, C., Luecke, H. F., Hager, G. L. & Yamamoto, K. R. The ligand binding domain controls glucocorticoid receptor dynamics independent of ligand release. Mol. Cell. Biol. 27, 2442–2451 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sacta, M. A., Chinenov, Y. & Rogatsky, I. Glucocorticoid signaling: An update from a genomic perspective. Annu. Rev. Physiol. 78, 155–180 (2016). This review presents new insights into GR biology that have emerged with the development and refinement of systems approaches.

    Article  CAS  PubMed  Google Scholar 

  14. Wyllie, A. H. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284, 555–556 (1980).

    Article  CAS  PubMed  Google Scholar 

  15. Patel, R., Williams-Dautovich, J. & Cummins, C. L. Minireview: New molecular mediators of glucocorticoid receptor activity in metabolic tissues. Mol. Endocrinol. 28, 999–1011 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Kumar, R. & Thompson, E. B. The structure of the nuclear hormone receptors. Steroids 64, 310–319 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Luisi, B. F. et al. Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature 352, 497–505 (1991). Provides the first crystallographic analysis of the GR DBD–GBS complex and details how two GR DBDs dimerize on a canonical DNA-binding element.

    Article  CAS  PubMed  Google Scholar 

  18. Meijsing, S. H. et al. DNA binding site sequence directs glucocorticoid receptor structure and activity. Science 324, 407–410 (2009). Uses crystallographic analysis and functional assays done on multiple different GR DBD–GBS complexes to demonstrate that DNA binding acts as an allosteric effector of GR.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Watson, L. C. et al. The glucocorticoid receptor dimer interface allosterically transmits sequence-specific DNA signals. Nat. Struct. Mol. Biol. 20, 876–883 (2013). Uses biophysical analysis and NMR chemical-shift difference mapping to measure cooperative dimerization and to probe a potential allosteric pathway that extends from a GR DBD bound to one GBS half site, through specific regions within the bound GR DBD and the DBD dimerization domain, to the partner GR DBD bound to the other GBS half site.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Heck, S. et al. A distinct modulating domain in glucocorticoid receptor monomers in the repression of activity of the transcription factor AP-1. EMBO J. 13, 4087–4095 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schiller, B. J., Chodankar, R., Watson, L. C., Stallcup, M. R. & Yamamoto, K. R. Glucocorticoid receptor binds half sites as a monomer and regulates specific target genes. Genome Biol. 15, 418 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Reichardt, H. M. et al. DNA binding of the glucocorticoid receptor is not essential for survival. Cell 93, 531–541 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Bledsoe, R. K. et al. Crystal structure of the glucocorticoid receptor ligand binding domain reveals a novel mode of receptor dimerization and coactivator recognition. Cell 110, 93–105 (2002). Provides the first crystal structure of ligand-bound GR LBD, which reveals the intricate network of protein–ligand interactions that define GR ligand selectivity.

    Article  CAS  PubMed  Google Scholar 

  24. Surjit, M. et al. Widespread negative response elements mediate direct repression by agonist–liganded glucocorticoid receptor. Cell 145, 224–241 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Hudson, W. H., Youn, C. & Ortlund, E. A. The structural basis of direct glucocorticoid-mediated transrepression. Nat. Struct. Mol. Biol. 20, 53–58 (2013). Uses crystallographic analysis of the GR DBD–IR-GBS complex to reveal a new mode of GR–DNA recognition, in which two GR monomers bind opposite sides of the DNA.

    Article  CAS  PubMed  Google Scholar 

  26. Hudson, W. H. et al. Distal substitutions drive divergent DNA specificity among paralogous transcription factors through subdivision of conformational space. Proc. Natl Acad. Sci. USA 113, 326–331 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Lim, H. et al. Genomic redistribution of GR monomers and dimers mediates transcriptional response to exogenous glucocorticoid in vivo. Genome Res. 25, 836–844 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Miner, J. N. & Yamamoto, K. R. The basic region of AP-1 specifies glucocorticoid receptor activity at a composite response element. Genes Dev. 6, 2491–2501 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. De Bosscher, K., Vanden Berghe, W. & Haegeman, G. Glucocorticoid repression of AP-1 is not mediated by competition for nuclear coactivators. Mol. Endocrinol. 15, 219–227 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Luecke, H. F. & Yamamoto, K. R. The glucocorticoid receptor blocks P-TEFb recruitment by NFκB to effect promoter-specific transcriptional repression. Genes Dev. 19, 1116–1127 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. De Bosscher, K., Vanden Berghe, W. & Haegeman, G. The interplay between the glucocorticoid receptor and nuclear factor-κB or activator protein-1: Molecular mechanisms for gene repression. Endocr. Rev. 24, 488–522 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Landt, S. G. et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 22, 1813–1831 (2012). Highlights the differences in experimental methodology and analysis of ChIP-Seq, which has become a mainstream method of analysing TRF–DNA interactions on a genome-wide scale.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Steger, D. J. et al. Propagation of adipogenic signals through an epigenomic transition state. Genes Dev. 24, 1035–1044 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. John, S. et al. Chromatin accessibility pre-determines glucocorticoid receptor binding patterns. Nat. Genet. 43, 264–268 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Grøntved, L. et al. C/EBP maintains chromatin accessibility in liver and facilitates glucocorticoid receptor recruitment to steroid response elements. EMBO J. 32, 1568–1583 (2013).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. So, A. Y. L., Chaivorapol, C., Bolton, E. C., Li, H. & Yamamoto, K. R. Determinants of cell- and gene-specific transcriptional regulation by the glucocorticoid receptor. PLoS Genet. 3, e94 (2007). Examines cell-type-specific GR occupancy on chromatin.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Reddy, T. E. et al. Genomic determination of the glucocorticoid response reveals unexpected mechanisms of gene regulation. Genome Res. 19, 2163–2171 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Merkenschlager, M. & Nora, E. P. CTCF and cohesin in genome folding and transcriptional gene regulation. Annu. Rev. Genomics Hum. Genet. 17, 17–43 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Burd, C. J. et al. Analysis of chromatin dynamics during glucocorticoid receptor activation. Mol. Cell. Biol. 32, 1805–1817 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Telorac, J. et al. Identification and characterization of DNA sequences that prevent glucocorticoid receptor binding to nearby response elements. Nucleic Acids Res. 44, 6142–6156 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Uhlenhaut, N. H. et al. Insights into negative regulation by the glucocorticoid receptor from genome-wide profiling of inflammatory cistromes. Mol. Cell 49, 158–171 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Presman, D. M. et al. Live cell imaging unveils multiple domain requirements for in vivo dimerization of the glucocorticoid receptor. PLoS Biol. 12, e1001813 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Starick, S. R. et al. ChIP-exo signal associated with DNA-binding motifs provides insight into the genomic binding of the glucocorticoid receptor and cooperating transcription factors. Genome Res. 25, 825–835 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. So, A. Y. L., Bernal, T. U., Pillsbury, M. L., Yamamoto, K. R. & Feldman, B. J. Glucocorticoid regulation of the circadian clock modulates glucose homeostasis. Proc. Natl Acad. Sci. USA 106, 17582–17587 (2009). Identifies and characterizes the only gene–GRE pair confirmed to date, at its endogenous locus in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rogatsky, I. et al. Target-specific utilization of transcriptional regulatory surfaces by the glucocorticoid receptor. Proc. Natl Acad. Sci. USA 100, 13845–13850 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Thomas-Chollier, M. et al. A naturally occuring insertion of a single amino acid rewires transcriptional regulation by glucocorticoid receptor isoforms. Proc. Natl Acad. Sci. USA 110, 17826–17831 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen, S. H., Masuno, K., Cooper, S. B. & Yamamoto, K. R. Incoherent feed-forward regulatory logic underpinning glucocorticoid receptor action. Proc. Natl Acad. Sci. USA 110, 1964–1969 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mangan, S. & Alon, U. Structure and function of the feed-forward loop network motif. Proc. Natl Acad. Sci. USA 100, 11980–11985 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chinenov, Y., Coppo, M., Gupte, R., Sacta, M. A. & Rogatsky, I. Glucocorticoid receptor coordinates transcription factor-dominated regulatory network in macrophages. BMC Genomics 15, 656 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hudson, W. H. & Ortlund, E. A. The structure, function and evolution of proteins that bind DNA and RNA. Nat. Rev. Mol. Cell Biol. 15, 749–760 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lefstin, J. A. & Yamamoto, K. R. Allosteric effects of DNA on transcriptional regulators. Nature 392, 885–888 (1998). Introduces the concept of DNA as an allosteric regulator of DNA-binding proteins.

    Article  CAS  PubMed  Google Scholar 

  53. Presman, D. M. et al. DNA binding triggers tetramerization of the glucocorticoid receptor in live cells. Proc. Natl Acad. Sci. USA 113, 8236–8241 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gebhardt, J. C. M. et al. Single-molecule imaging of transcription factor binding to DNA in live mammalian cells. Nat. Methods 10, 421–426 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Robblee, J. P., Miura, M. T. & Bain, D. L. Glucocorticoid receptor–promoter interactions: Energetic dissection suggests a framework for the specificity of steroid receptor-mediated gene regulation. Biochemistry 51, 4463–4472 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Bain, D. L. et al. Glucocorticoid receptor–DNA interactions: Binding energetics are the primary determinant of sequence-specific transcriptional activity. J. Mol. Biol. 422, 18–32 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Schöne, S. et al. Sequences flanking the core-binding site modulate glucocorticoid receptor structure and activity. Nat. Commun. 7, 12621 (2016).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Zhang, J. et al. DNA binding alters coactivator interaction surfaces of the intact VDR–RXR complex. Nat. Struct. Mol. Biol. 18, 556–563 (2011).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Thornton, J. W. Evolution of vertebrate steroid receptors from an ancestral estrogen receptor by ligand exploitation and serial genome expansions. Proc. Natl Acad. Sci. USA 98, 5671–5676 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Eick, G. N., Colucci, J. K., Harms, M. J., Ortlund, E. A. & Thornton, J. W. Evolution of minimal specificity and promiscuity in steroid hormone receptors. PLoS Genet. 8, e1003072 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. He, Y. et al. Structures and mechanism for the design of highly potent glucocorticoids. Cell Res. 24, 713–726 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kauppi, B. et al. The three-dimensional structures of antagonistic and agonistic forms of the glucocorticoid receptor ligand-binding domain: RU-486 induces a transconformation that leads to active antagonism. J. Biol. Chem. 278, 22748–22754 (2003). Describes crystallographic analysis of the GR LBD bound to the non-standard ligand RU-486, which highlights the conformational malleability within GR to accommodate binding to ligands with disparate structures.

    Article  CAS  PubMed  Google Scholar 

  63. Wang, J.-C. et al. Novel arylpyrazole compounds selectively modulate glucocorticoid receptor regulatory activity. Genes Dev. 20, 689–699 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ricketson, D., Hostick, U., Fang, L., Yamamoto, K. R. & Darimont, B. D. A conformational switch in the ligand-binding domain regulates the dependence of the glucocorticoid receptor on Hsp90. J. Mol. Biol. 368, 729–741 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ismaili, N. & Garabedian, M. J. Modulation of glucocorticoid receptor function via phosphorylation. Ann. NY Acad. Sci. 1024, 86–101 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Tian, S., Poukka, H., Palvimo, J. J. & Jänne, O. A. Small ubiquitin-related modifier-1 (SUMO-1) modification of the glucocorticoid receptor. Biochem. J. 367, 907–911 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wallace, A. D. & Cidlowski, J. A. Proteasome-mediated glucocorticoid receptor degradation restricts transcriptional signaling by glucocorticoids. J. Biol. Chem. 276, 42714–42721 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Itoh, M. et al. Nuclear export of glucocorticoid receptor is enhanced by c-Jun N-terminal kinase-mediated phosphorylation. Mol. Endocrinol. 16, 2382–2392 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Galigniana, M. D., Piwien-Pilipuk, G. & Assreuy, J. Inhibition of glucocorticoid receptor binding by nitric oxide. Mol. Pharmacol. 55, 317–323 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Ward, R. D. & Weigel, N. L. Steroid receptor phosphorylation: Assigning function to site-specific phosphorylation. BioFactors 35, 528–536 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Housley, P. R. & Pratt, W. B. Direct demonstration of glucocorticoid receptor phosphorylation by intact L-cells. J. Biol. Chem. 258, 4630–4635 (1983).

    CAS  PubMed  Google Scholar 

  72. Wang, Z., Chen, W., Kono, E., Dang, T. & Garabedian, M. J. Modulation of glucocorticoid receptor phosphorylation and transcriptional activity by a C-terminal-associated protein phosphatase. Mol. Endocrinol. 21, 625–634 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Bodwell, J. E. et al. Glucocorticoid receptor phosphorylation: Overview, function and cell cycle-dependence. J. Steroid Biochem. Mol. Biol. 65, 91–99 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Krstic, M. D., Rogatsky, I., Yamamoto, K. R. & Garabedian, M. J. Mitogen-activated and cyclin-dependent protein kinases selectively and differentially modulate transcriptional enhancement by the glucocorticoid receptor. Mol. Cell. Biol. 17, 3947–3954 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mason, S. A. & Housley, P. R. Site-directed mutagenesis of the phosphorylation sites in the mouse glucocorticoid receptor. J. Biol. Chem. 268, 21501–21504 (1993).

    CAS  PubMed  Google Scholar 

  76. Jewell, C. M. Mouse glucocorticoid receptor phosphorylation status influences multiple functions of the receptor protein. J. Biol. Chem. 272, 9287–9293 (1997).

    Article  PubMed  Google Scholar 

  77. Chen, W. et al. Glucocorticoid receptor phosphorylation differentially affects target gene expression. Mol. Endocrinol. 22, 1754–1766 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Garza, A. M. S., Khan, S. H. & Kumar, R. Site-specific phosphorylation induces functionally active conformation in the intrinsically disordered N-terminal activation function (AF1) domain of the glucocorticoid receptor. Mol. Cell. Biol. 30, 220–230 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Miller, A. L. et al. p38 mitogen-activated protein kinase (MAPK) is a key mediator in glucocorticoid-induced apoptosis of lymphoid cells: Correlation between p38 MAPK activation and site-specific phosphorylation of the human glucocorticoid receptor at serine 211. Mol. Endocrinol. 19, 1569–1583 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Wang, Z., Frederick, J. & Garabedian, M. J. Deciphering the phosphorylation 'code' of the glucocorticoid receptor in vivo. J. Biol. Chem. 277, 26573–26580 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. King, K. L. & Cidlowski, J. A. Cell cycle regulation and apoptosis. Annu. Rev. Physiol. 60, 601–617 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. Galliher-Beckley, A. J., Williams, J. G., Collins, J. B. & Cidlowski, J. A. Glycogen synthase kinase 3-mediated serine phosphorylation of the human glucocorticoid receptor redirects gene expression profiles. Mol. Cell. Biol. 28, 7309–7322 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Galliher-Beckley, A. J. & Cidlowski, J. A. Emerging roles of glucocorticoid receptor phosphorylation in modulating glucocorticoid hormone action in health and disease. IUBMB Life 61, 979–986 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Deroo, B. J. et al. Proteasomal inhibition enhances glucocorticoid receptor transactivation and alters its subnuclear trafficking. Mol. Cell. Biol. 22, 4113–4123 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wallace, A. D., Cao, Y., Chandramouleeswaran, S. & Cidlowski, J. A. Lysine 419 targets human glucocorticoid receptor for proteasomal degradation. Steroids 75, 1016–1023 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kino, T., Liou, S. H., Charmandari, E. & Chrousos, G. P. Glucocorticoid receptor mutants demonstrate increased motility inside the nucleus of living cells: Time of fluorescence recovery after photobleaching (FRAP) is an integrated measure of receptor function. Mol. Med. 10, 80–88 (2006).

    Article  CAS  Google Scholar 

  87. Gill, G. Something about SUMO inhibits transcription. Curr. Opin. Genet. Dev. 15, 536–541 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Le Drean, Y., Mincheneau, N., Le Goff, P. & Michel, D. Potentiation of glucocorticoid receptor transcriptional activity by sumoylation. Endocrinology 143, 3482–3489 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Paakinaho, V., Kaikkonen, S., Makkonen, H., Benes, V. & Palvimo, J. J. SUMOylation regulates the chromatin occupancy and anti-proliferative gene programs of glucocorticoid receptor. Nucleic Acids Res. 42, 1575–1592 (2014).

    Article  CAS  PubMed  Google Scholar 

  90. Treuter, E. & Venteclef, N. Transcriptional control of metabolic and inflammatory pathways by nuclear receptor SUMOylation. Biochim. Biophys. Acta 1812, 909–918 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Flotho, A. & Melchior, F. Sumoylation: A regulatory protein modification in health and disease. Annu. Rev. Biochem. 82, 357–385 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Hua, G., Paulen, L. & Chambon, P. GR SUMOylation and formation of an SUMO-SMRT/NCoR1-HDAC3 repressing complex is mandatory for GC-induced IR nGRE-mediated transrepression. Proc. Natl Acad. Sci. USA 113, E626–E634 (2016).

    Article  CAS  PubMed  Google Scholar 

  93. Hua, G., Ganti, K. P. & Chambon, P. Glucocorticoid-induced tethered transrepression requires SUMOylation of GR and formation of a SUMO-SMRT/NCoR1-HDAC3 repressing complex. Proc. Natl Acad. Sci. USA 113, E635–E643 (2016).

    Article  CAS  PubMed  Google Scholar 

  94. Nader, N., Chrousos, G. P. & Kino, T. Circadian rhythm transcription factor CLOCK regulates the transcriptional activity of the glucocorticoid receptor by acetylating its hinge region lysine cluster: potential physiological implications. FASEB J. 23, 1572–1583 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kino, T. & Chrousos, G. P. Acetylation-mediated epigenetic regulation of glucocorticoid receptor activity: Circadian rhythm-associated alterations of glucocorticoid actions in target tissues. Mol. Cell. Endocrinol. 336, 23–30 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Ito, K. et al. Histone deacetylase 2-mediated deacetylation of the glucocorticoid receptor enables NF-κB suppression. J. Exp. Med. 203, 7–13 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kröncke, K. D. & Carlberg, C. Inactivation of zinc finger transcription factors provides a mechanism for a gene regulatory role of nitric oxide. FASEB J. 14, 166–173 (2000).

    Article  PubMed  Google Scholar 

  98. Diamond, M., Miner, J., Yoshinaga, S. & Yamamoto, K. Transcription factor interactions: Selectors of positive or negative regulation from a single DNA element. Science 249, 1266–1272 (1990). Introduces differential context-specific regulation through the alternative interactions of GR with non-GR TRFs at composite elements.

    Article  CAS  PubMed  Google Scholar 

  99. Miner, J. N., Diamond, M. I. & Yamamoto, K. R. Joints in the regulatory lattice: Composite regulation by steroid receptor–AP1 complexes. Cell Growth Differ. 2, 525–530 (1991).

    CAS  PubMed  Google Scholar 

  100. Jenkins, B. D., Pullen, C. B. & Darimont, B. D. Novel glucocorticoid receptor coactivator effector mechanisms. Trends Endocrinol. Metab. 12, 122–126 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Bannister, A. J. & Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 21, 381–395 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Millard, C. J., Watson, P. J., Fairall, L. & Schwabe, J. W. R. An evolving understanding of nuclear receptor coregulator proteins. J. Mol. Endocrinol. 51, T23–T36 (2013). Provides a review of nuclear receptor co-regulator proteins, with a focus on the structural analysis of nuclear receptor–co-regulator interactions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Vandevyver, S., Dejager, L. & Libert, C. Comprehensive overview of the structure and regulation of the glucocorticoid receptor. Endocr. Rev. 35, 671–693 (2014).

    Article  CAS  PubMed  Google Scholar 

  104. Parker, M. G. & White, R. Nuclear receptors spring into action. Nat. Struct. Biol. 3, 113–115 (1996).

    Article  CAS  PubMed  Google Scholar 

  105. Wang, Z. et al. Structure and function of Nurr1 identifies a class of ligand-independent nuclear receptors. Nature 423, 555–560 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Torchia, J. et al. The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature 387, 677–684 (1997).

    Article  CAS  PubMed  Google Scholar 

  107. Heery, D. M., Kalkhoven, E., Hoare, S. & Parker, M. G. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387, 733–736 (1997).

    Article  CAS  PubMed  Google Scholar 

  108. Hu, X. & Lazar, M. A. The CoRNR motif controls the recruitment of corepressors by nuclear hormone receptors. Nature 402, 93–96 (1999).

    Article  CAS  PubMed  Google Scholar 

  109. Khan, S. H. et al. Binding of the N-terminal region of coactivator TIF2 to the intrinsically disordered AF1 domain of the glucocorticoid receptor is accompanied by conformational reorganizations. J. Biol. Chem. 287, 44546–44560 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Khan, S. H., Ling, J. & Kumar, R. TBP binding-induced folding of the glucocorticoid receptor AF1 domain facilitates its interaction with steroid receptor coactivator-1. PLoS ONE 6, e21939 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Dahlman-Wright, K., Almlöf, T., McEwan, I. J., Gustafsson, J. A. & Wright, A. P. Delineation of a small region within the major transactivation domain of the human glucocorticoid receptor that mediates transactivation of gene expression. Proc. Natl Acad. Sci. USA 91, 1619–1623 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Yang, L., Guerrero, J., Hong, H., DeFranco, D. B. & Stallcup, M. R. Interaction of the τ2 transcriptional activation domain of glucocorticoid receptor with a novel steroid receptor coactivator, Hic-5, which localizes to both focal adhesions and the nuclear matrix. Mol. Biol. Cell 11, 2007–2018 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Chodankar, R., Wu, D. Y., Schiller, B. J., Yamamoto, K. R. & Stallcup, M. R. Hic-5 is a transcription coregulator that acts before and/or after glucocorticoid receptor genome occupancy in a gene-selective manner. Proc. Natl Acad. Sci. USA 111, 4007–4012 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Dasgupta, S., Lonard, D. M. & O'Malley, B. W. Nuclear receptor coactivators: Master regulators of human health and disease. Annu. Rev. Med. 65, 279–292 (2014).

    Article  CAS  PubMed  Google Scholar 

  115. Perissi, V. & Rosenfeld, M. G. Controlling nuclear receptors: The circular logic of cofactor cycles. Nat. Rev. Mol. Cell Biol. 6, 542–554 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Lonard, D. M. & O'Malley, B. W. Nuclear receptor coregulators: Judges, juries, and executioners of cellular regulation. Mol. Cell 27, 691–700 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Fonte, C. et al. Involvement of β-catenin and unusual behavior of CBP and p300 in glucocorticosteroid signaling in Schwann cells. Proc. Natl Acad. Sci. USA 102, 14260–14265 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Xu, J., Wu, R. C. & O'Malley, B. W. Normal and cancer-related functions of the p160 steroid receptor co-activator (SRC) family. Nat. Rev. Cancer 9, 615–630 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kim, J. H., Li, H. & Stallcup, M. R. CoCoA, a nuclear receptor coactivator which acts through an N-terminal activation domain of p160 coactivators. Mol. Cell 12, 1537–1549 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Stallcup, M. R. et al. The roles of protein–protein interactions and protein methylation in transcriptional activation by nuclear receptors and their coactivators. J. Steroid Biochem. Mol. Biol. 85, 139–145 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Kim, J. H. et al. CCAR1, a key regulator of mediator complex recruitment to nuclear receptor transcription complexes. Mol. Cell 31, 510–519 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Szapary, D., Huang, Y. & Simons, S. S. Opposing effects of corepressor and coactivators in determining the dose-response curve of agonists, and residual agonist activity of antagonists, for glucocorticoid receptor-regulated gene expression. Mol. Endocrinol. 13, 2108–2121 (1999).

    Article  CAS  PubMed  Google Scholar 

  123. Trousson, A. et al. Recruitment of the p160 coactivators by the glucocorticoid receptor: Dependence on the promoter context and cell type but not hypoxic conditions. J. Steroid Biochem. Mol. Biol. 104, 305–311 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Voegel, J. J. et al. The coactivator TIF2 contains three nuclear receptor-binding motifs and mediates transactivation through CBP binding-dependent and -independent pathways. EMBO J. 17, 507–519 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Darimont, B. D. et al. Structure and specificity of nuclear receptor-coactivator interactions. Genes Dev. 12, 3343–3356 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Li, X., Wong, J., Tsai, S. Y., Tsai, M. & O'Malley, B. W. Progesterone and glucocorticoid receptors recruit distinct coactivator complexes and promote distinct patterns of local chromatin modification. Mol. Cell. Biol. 23, 3763–3773 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kurihara, I. et al. Expression and regulation of nuclear receptor coactivators in glucocorticoid action. Mol. Cell. Endocrinol. 189, 181–189 (2002).

    Article  CAS  PubMed  Google Scholar 

  128. Ronacher, K. et al. Ligand-selective transactivation and transrepression via the glucocorticoid receptor: role of cofactor interaction. Mol. Cell. Endocrinol. 299, 219–231 (2009).

    Article  CAS  PubMed  Google Scholar 

  129. Ogawa, H. et al. Nuclear structure-associated TIF2 recruits glucocorticoid receptor and its target DNA. Biochem. Biophys. Res. Commun. 320, 218–225 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Dobrovolna, J., Chinenov, Y., Kennedy, M. A., Liu, B. & Rogatsky, I. Glucocorticoid-dependent phosphorylation of the transcriptional coregulator GRIP1. Mol. Cell. Biol. 32, 730–739 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Rogatsky, I., Luecke, H. F., Leitman, D. C. & Yamamoto, K. R. Alternate surfaces of transcriptional coregulator GRIP1 function in different glucocorticoid receptor activation and repression contexts. Proc. Natl Acad. Sci. USA 99, 16701–16706 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kamei, Y. et al. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85, 403–414 (1996).

    Article  CAS  PubMed  Google Scholar 

  133. Sheppard, K.-A. et al. Nuclear integration of glucocorticoid receptor and nuclear factor-κB signaling by CREB-binding protein and steroid receptor coactivator-1. J. Biol. Chem. 273, 29291–29294 (1998).

    Article  CAS  PubMed  Google Scholar 

  134. De Bosscher, K. et al. Glucocorticoids repress NF-κB-driven genes by disturbing the interaction of p65 with the basal transcription machinery, irrespective of coactivator levels in the cell. Proc. Natl Acad. Sci. USA 97, 3919–3924 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Allen, B. L. & Taatjes, D. J. The Mediator complex: A central integrator of transcription. Nat. Rev. Mol. Cell Biol. 16, 155–166 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Knuesel, M. T. & Taatjes, D. J. Mediator and post-recruitment regulation of RNA polymerase II. Transcription 2, 28–31 (2011).

    Article  PubMed  Google Scholar 

  137. Meyer, K. D., Lin, S. C., Bernecky, C., Gao, Y. & Taatjes, D. J. p53 activates transcription by directing structural shifts in Mediator. Nat. Struct. Mol. Biol. 17, 753–760 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Taatjes, D. J., Näär, A. M., Andel, F., Nogales, E. & Tjian, R. Structure, function, and activator-induced conformations of the CRSP coactivator. Science 295, 1058–1062 (2002).

    Article  CAS  PubMed  Google Scholar 

  139. Knuesel, M. T., Meyer, K. D., Bernecky, C. & Taatjes, D. J. The human CDK8 subcomplex is a molecular switch that controls Mediator coactivator function. Genes Dev. 23, 439–451 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Bernecky, C., Grob, P., Ebmeier, C. C., Nogales, E. & Taatjes, D. J. Molecular architecture of the human Mediator–RNA polymerase II–TFIIF assembly. PLoS Biol. 9, e1000603 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Meyer, K. D. et al. Cooperative activity of cdk8 and GCN5L within Mediator directs tandem phosphoacetylation of histone H3. EMBO J. 27, 1447–1457 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Hittelman, A. B., Burakov, D., Iñiguez-Lluhí, J. A., Freedman, L. P. & Garabedian, M. J. Differential regulation of glucocorticoid receptor transcriptional activation via AF-1-associated proteins. EMBO J. 18, 5380–5388 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Chen, W., Rogatsky, I. & Garabedian, M. J. MED14 and MED1 differentially regulate target-specific gene activation by the glucocorticoid receptor. Mol. Endocrinol. 20, 560–572 (2006).

    Article  CAS  PubMed  Google Scholar 

  144. Narlikar, G. J., Sundaramoorthy, R. & Owen-Hughes, T. Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell 154, 490–503 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Pazin, M. J. & Kadonaga, J. T. SWI2/SNF2 and related proteins: ATP-driven motors that disrupt protein–DNA interactions? Cell 88, 737–740 (1997).

    Article  CAS  PubMed  Google Scholar 

  146. Fryer, C. J. & Archer, T. K. Chromatin remodelling by the glucocorticoid receptor requires the BRG1 complex. Nature 393, 88–91 (1998).

    Article  CAS  PubMed  Google Scholar 

  147. Engel, K. B. & Yamamoto, K. R. The glucocorticoid receptor and the coregulator Brm selectively modulate each other's occupancy and activity in a gene-specific manner. Mol. Cell. Biol. 31, 3267–3276 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Ostlund Farrants, A. K., Blomquist, P., Kwon, H. & Wrange, O. Glucocorticoid receptor–glucocorticoid response element binding stimulates nucleosome disruption by the SWI/SNF complex. Mol. Cell. Biol. 17, 895–905 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Collingwood, T. N., Urnov, F. D. & Wolffe, A. P. Nuclear receptors: Coactivators, corepressors and chromatin remodeling in the control of transcription. J. Mol. Endocrinol. 23, 255–275 (1999).

    Article  CAS  PubMed  Google Scholar 

  150. King, H. A., Trotter, K. W. & Archer, T. K. Chromatin remodeling during glucocorticoid receptor regulated transactivation. Biochim. Biophys. Acta 1819, 716–726 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Yoshinaga, S., Peterson, C., Herskowitz, I. & Yamamoto, K. R. Roles of SWI1, SWI2, and SWI3 proteins for transcriptional enhancement by steroid receptors. Science 258, 1598–1604 (1992).

    Article  CAS  PubMed  Google Scholar 

  152. Wallberg, A. E. et al. Recruitment of the SWI–SNF chromatin remodeling complex as a mechanism of gene activation by the glucocorticoid receptor τ1 activation domain. Mol. Cell. Biol. 20, 2004–2013 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Muratcioglu, S. et al. Structural modeling of GR interactions with the SWI/SNF chromatin remodeling complex and C/EBP. Biophys. J. 109, 1227–1239 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Chen, D. et al. Regulation of transcription by a protein methyltransferase. Science 284, 2174–2177 (1999).

    Article  CAS  PubMed  Google Scholar 

  155. Bittencourt, D. et al. G9a functions as a molecular scaffold for assembly of transcriptional coactivators on a subset of glucocorticoid receptor target genes. Proc. Natl Acad. Sci. USA 109, 19673–19678 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Lee, K. K. & Workman, J. L. Histone acetyltransferase complexes: one size doesn't fit all. Nat. Rev. Mol. Cell Biol. 8, 284–295 (2007).

    Article  CAS  PubMed  Google Scholar 

  157. Almlöf, T., Wallberg, A. E., Gustafsson, J. Å. & Wright, A. P. H. Role of important hydrophobic amino acids in the interaction between the glucocorticoid receptor τ1-core activation domain and target factors. Biochemistry 37, 9586–9594 (1998).

    Article  PubMed  Google Scholar 

  158. Yao, T. P., Ku, G., Zhou, N., Scully, R. & Livingston, D. M. The nuclear hormone receptor coactivator SRC-1 is a specific target of p300. Proc. Natl Acad. Sci. USA 93, 10626–10631 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Wallberg, A. E. et al. Histone acetyltransferase complexes can mediate transcriptional activation by the major glucocorticoid receptor activation domain. Mol. Cell. Biol. 19, 5952–5959 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Fonte, C., Trousson, A., Grenier, J., Schumacher, M. & Massaad, C. Opposite effects of CBP and p300 in glucocorticoid signaling in astrocytes. J. Steroid Biochem. Mol. Biol. 104, 220–227 (2007).

    Article  CAS  PubMed  Google Scholar 

  161. Verdin, E. & Ott, M. 50 years of protein acetylation: From gene regulation to epigenetics, metabolism and beyond. Nat. Rev. Mol. Cell Biol. 16, 258–264 (2015).

    Article  CAS  PubMed  Google Scholar 

  162. Shahbazian, M. D. & Grunstein, M. Functions of site-specific histone acetylation and deacetylation. Annu. Rev. Biochem. 76, 75–100 (2007).

    Article  CAS  PubMed  Google Scholar 

  163. Stewart, M. D. & Wong, J. Nuclear receptor repression: Regulatory mechanisms and physiological implications. Prog. Mol. Biol. Transl Sci. 87, 235–259 (2009).

    Article  CAS  PubMed  Google Scholar 

  164. Schoch, G. A. et al. Molecular switch in the glucocorticoid receptor: Active and passive antagonist conformations. J. Mol. Biol. 395, 568–577 (2010).

    Article  CAS  PubMed  Google Scholar 

  165. Kuznetsova, T. et al. Glucocorticoid receptor and nuclear factor kappa-b affect three-dimensional chromatin organization. Genome Biol. 16, 264 (2015).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  166. Ogryzko, V. V. et al. Histone-like TAFs within the PCAF histone acetylase complex. Cell 94, 35–44 (1998).

    Article  CAS  PubMed  Google Scholar 

  167. Guenther, M. G., Barak, O. & Lazar, M. A. The SMRT and N-CoR corepressors are activating cofactors for histone deacetylase 3. Mol. Cell. Biol. 21, 6091–6101 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Chen, J. D. & Evans, R. M. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377, 454–457 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the members of the Yamamoto laboratory for critical reading of the manuscript, with special note to Elaine Kirschke for insightful discussions, Samantha Cooper, Sheng-Hong Chen and Benjamin Schiller for use of unpublished data, and Kirk Ehmsen for use of unpublished data and assistance with Figure 3. E.R.W. is supported by US National Institutes of Health (NIH) predoctoral National Research Service Award (NRSA) 1G31GM113397-01A1 from the National Institute of General Medical Sciences. M.T.K. is supported by NIH postdoctoral NRSA 5T32HL007731-20 from the National Heart, Lung, and Blood Institute and by NIH grant R01CA020535 from the National Cancer Institute. E.A.O. is supported by NIH grant R01DK095750 from the National Institute of Diabetes and Digestive and Kidney Diseases, by American Heart Association (AHA) grant 14GRNT20460124 and by a W.M. Keck Foundation Medical Research Grant. K.R.Y. is supported by NIH grants R01CA020535 from the National Cancer Institute and R21ES026068 from the National Institute of Environmental Health Sciences, and by grant MCB-1615826 from the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eric A. Ortlund or Keith R. Yamamoto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Supplementary information

Supplementary information S1 (table)

Methods to probe glucocorticoid receptor (GR)–DNA Interactions (PDF 202 kb)

Related links

Related links

DATABASES

RCSB Protein Data Bank

Glossary

Transcriptional regulatory factors

(TRFs). A general class of sequence-specific DNA-binding proteins that regulate transcription (for example, glucocorticoid receptor).

Nuclear receptor

A member of a superfamily of potentially ligand-gated DNA-binding transcriptional regulatory factors.

Glucocorticoid

A natural hormone that binds to glucocorticoid receptor, or a synthetic derivative with physiological effects similar to the natural hormone, cortisol.

Dexamethasone

A synthetic glucocorticoid receptor (GR) ligand, developed in 1957, which is GR specific, unlike cortisol (the natural ligand), which also binds to mineralocorticoid receptor with high affinity. Dexamethasone is universally used clinically as an anti- inflammatory agent and immunosuppressant.

Apo-GR

Inactive glucocorticoid receptor (GR) protein in a ligand-unbound state.

Glucocorticoid response elements

(GREs). Genomic DNA segments (typically 0.5–2 kb long) that confer a specific glucocorticoid receptor response in particular contexts in vivo. The term 'response element' is appropriately unbiased with respect to potential activation ('enhancement') or repression of target gene transcription.

Allostery

Conformational changes in one region of a molecule (usually a protein) that alter its function and are induced by binding of a modulator to a different, remote site on the target molecule.

GR-binding sequence

(GBS). A short DNA sequence motif bound specifically and with high affinity by glucocorticoid receptor in vitro.

Nuclear magnetic resonance

(NMR). A technique that uses the magnetic properties of atomic nuclei to probe chemical environments experienced by atoms, for example, within a small molecule, protein or protein–DNA complex. See Supplementary information S1 (table).

3-Keto steroid receptors

Members of nuclear receptor subfamily 3 (NR3), including the glucocorticoid receptor (encoded by NR3 group C member 1 (NR3C1)), mineralocorticoid receptor (encoded by NR3C2), progesterone receptor (encoded by NR3C3) and androgen receptor (encoded by NR3C4).

Epistatic mutations

Gene alterations that display a phenotype only in the context of another mutation.

Chromatin immunoprecipitation followed by sequencing

(ChIP-Seq). A technique to identify genomic segments occupied genome-wide in vivo by a particular antigen surface, such as a transcriptional regulatory factor epitope. See Supplementary information S1 (table).

GR-occupied regions

(GORs). Genomic DNA segments occupied by glucocorticoid receptor (GR) in particular contexts in vivo. GOR terminology, typically identified by chromatin immunoprecipitation (ChIP), improves on the previously used GR-binding region (GBR or GRBR) nomenclature, which implies direct DNA binding rather than a broader proximity to DNA, the parameter measured by ChIP.

DNase I-hypersensitive sites

(DHSs). Short genomic regions that are cleaved by brief exposure to low concentrations of DNase I in permeabilized cells or isolated nuclei. See Supplementary information S1 (table).

Negative regulatory DNA sequence

(NRS). A short DNA sequence motif, under-represented at glucocorticoid receptor (GR)-occupied regions within the genome, that interferes with the ability of GR to functionally interact with DNA proximal to the motif.

Molecular dynamics simulations

A computer simulation method to model the physical movements of atoms within a macromolecule that occur over short, fixed time intervals, giving information about dynamics within a macromolecule. See Supplementary information S1 (table).

RU-486

A synthetic glucocorticoid receptor (GR) ligand, developed in 1980, which also has high affinity for progesterone receptor. As a non-standard ligand, binding of RU-486 results in both an altered GR conformation and a distinct pattern of transcription regulation compared to binding of standard glucocorticoids, such as dexamethasone and cortisol.

Selective GR modulators

(SGRMs). Glucocorticoid receptor (GR) ligands with a regulatory range distinct from that of the standard glucocorticoid ligands cortisol and dexamethasone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weikum, E., Knuesel, M., Ortlund, E. et al. Glucocorticoid receptor control of transcription: precision and plasticity via allostery. Nat Rev Mol Cell Biol 18, 159–174 (2017). https://doi.org/10.1038/nrm.2016.152

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm.2016.152

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing