Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms and functions of nuclear envelope remodelling

Key Points

  • The organization of the nuclear envelope (NE) is perfectly adapted to its function as a compartment boundary and protective coat for the genome.

  • The plasticity of the NE allows it to withstand considerable mechanical challenges, whether cells are embedded within tissues or during migration. In the case of NE rupture, membrane lesions are rapidly repaired to avoid genome damage.

  • Local NE remodelling is required for the biogenesis of nuclear pore complexes, the nuclear egress of large particles such as ribonucleoprotein complexes or certain viruses and the elimination of defective NE components.

  • Distinct modes of NE re-organization evolved for the process of nuclear division, of which the complete disassembly and reassembly of the NE during open mitosis represents an extreme case.

  • Changes in NE composition and morphology accompany differentiation and contribute to tissue-specific cell function.

Abstract

As a compartment border, the nuclear envelope (NE) needs to serve as both a protective membrane shell for the genome and a versatile communication interface between the nucleus and the cytoplasm. Despite its important structural role in sheltering the genome, the NE is a dynamic and highly adaptable boundary that changes composition during differentiation, deforms in response to mechanical challenges, can be repaired upon rupture and even rapidly disassembles and reforms during open mitosis. NE remodelling is fundamentally involved in cell growth, division and differentiation, and if perturbed can lead to devastating diseases such as muscular dystrophies or premature ageing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nuclear envelope architecture and the integration of new components.
Figure 2: Nuclear envelope remodelling in response to mechanical cues and rupture.
Figure 3: Mechanisms governing nuclear envelope breakdown and reassembly in animal cells undergoing open mitosis.
Figure 4: Nuclear egress of herpesviruses.
Figure 5: Nuclear envelope remodelling during cell differentiation.

Similar content being viewed by others

References

  1. Knockenhauer, K. E. & Schwartz, T. U. The nuclear pore complex as a flexible and dynamic gate. Cell 164, 1162–1171 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Terry, L. J. & Wente, S. R. Flexible gates: dynamic topologies and functions for FG nucleoporins in nucleocytoplasmic transport. Eukaryot. Cell 8, 1814–1827 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Starr, D. A. & Fridolfsson, H. N. Interactions between nuclei and the cytoskeleton are mediated by SUN-KASH nuclear-envelope bridges. Annu. Rev. Cell Dev. Biol. 26, 421–444 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sosa, B. A., Kutay, U. & Schwartz, T. U. Structural insights into LINC complexes. Curr. Opin. Struct. Biol. 23, 285–291 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gruenbaum, Y. & Foisner, R. Lamins: nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation. Annu. Rev. Biochem. 84, 131–164 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Koreny, L. & Field, M. C. Ancient eukaryotic origin and evolutionary plasticity of nuclear lamina. Genome Biol. Evol. 8, 2663–2671 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Burke, B. & Stewart, C. L. The nuclear lamins: flexibility in function. Nat. Rev. Mol. Cell Biol. 14, 13–24 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Shimi, T. et al. The A- and B-type nuclear lamin networks: microdomains involved in chromatin organization and transcription. Genes Dev. 22, 3409–3421 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Guelen, L. et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453, 948–951 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Towbin, B. D., Gonzalez-Sandoval, A. & Gasser, S. M. Mechanisms of heterochromatin subnuclear localization. Trends Biochem. Sci. 38, 356–363 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Kind, J. & van Steensel, B. Genome–nuclear lamina interactions and gene regulation. Curr. Opin. Cell Biol. 22, 320–325 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Hellberg, T., Passvogel, L., Schulz, K. S., Klupp, B. G. & Mettenleiter, T. C. Nuclear egress of herpesviruses: the prototypic vesicular nucleocytoplasmic transport. Adv. Virus Res. 94, 81–140 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Speese, S. D. et al. Nuclear envelope budding enables large ribonucleoprotein particle export during synaptic Wnt signaling. Cell 149, 832–846 (2012). This study provides the first evidence for a nuclear egress pathway for the export of large RNP granules by vesicular transport across the NE in postsynaptic myonuclei.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Maeshima, K. et al. Nuclear pore formation but not nuclear growth is governed by cyclin-dependent kinases (Cdks) during interphase. Nat. Struct. Mol. Biol. 17, 1065–1071 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Dultz, E. & Ellenberg, J. Live imaging of single nuclear pores reveals unique assembly kinetics and mechanism in interphase. J. Cell Biol. 191, 15–22 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zuleger, N. et al. System analysis shows distinct mechanisms and common principles of nuclear envelope protein dynamics. J. Cell Biol. 193, 109–123 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Soullam, B. & Worman, H. J. Signals and structural features involved in integral membrane protein targeting to the inner nuclear membrane. J. Cell Biol. 130, 15–27 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Ungricht, R., Klann, M., Horvath, P. & Kutay, U. Diffusion and retention are major determinants of protein targeting to the inner nuclear membrane. J. Cell Biol. 209, 687–703 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Boni, A. et al. Live imaging and modeling of inner nuclear membrane targeting reveals its molecular requirements in mammalian cells. J. Cell Biol. 209, 705–720 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kralt, A. et al. Conservation of inner nuclear membrane targeting sequences in mammalian Pom121 and yeast Heh2 membrane proteins. Mol. Biol. Cell 26, 3301–3312 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Meinema, A. C. et al. Long unfolded linkers facilitate membrane protein import through the nuclear pore complex. Science 333, 90–93 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Funakoshi, T., Clever, M., Watanabe, A. & Imamoto, N. Localization of Pom121 to the inner nuclear membrane is required for an early step of interphase nuclear pore complex assembly. Mol. Biol. Cell 22, 1058–1069 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yavuz, S. et al. NLS-mediated NPC functions of the nucleoporin Pom121. FEBS Lett. 584, 3292–3298 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Doucet, C. M., Talamas, J. A. & Hetzer, M. W. Cell cycle-dependent differences in nuclear pore complex assembly in metazoa. Cell 141, 1030–1041 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Makio, T. et al. The nucleoporins Nup170p and Nup157p are essential for nuclear pore complex assembly. J. Cell Biol. 185, 459–473 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Scarcelli, J. J., Hodge, C. A. & Cole, C. N. The yeast integral membrane protein Apq12 potentially links membrane dynamics to assembly of nuclear pore complexes. J. Cell Biol. 178, 799–812 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wente, S. R. & Blobel, G. A temperature-sensitive NUP116 null mutant forms a nuclear envelope seal over the yeast nuclear pore complex thereby blocking nucleocytoplasmic traffic. J. Cell Biol. 123, 275–284 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Onischenko, E., Stanton, L. H., Madrid, A. S., Kieselbach, T. & Weis, K. Role of the Ndc1 interaction network in yeast nuclear pore complex assembly and maintenance. J. Cell Biol. 185, 475–491 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Otsuka, S. et al. Nuclear pore assembly proceeds by an inside-out extrusion of the nuclear envelope. eLife 5, e19071 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Talamas, J. A. & Hetzer, M. W. POM121 and Sun1 play a role in early steps of interphase NPC assembly. J. Cell Biol. 194, 27–37 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vollmer, B. et al. Nup153 recruits the Nup107–160 complex to the inner nuclear membrane for interphasic nuclear pore complex assembly. Dev. Cell 33, 717–728 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Mitchell, J. M., Mansfeld, J., Capitanio, J., Kutay, U. & Wozniak, R. W. Pom121 links two essential subcomplexes of the nuclear pore complex core to the membrane. J. Cell Biol. 191, 505–521 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mészáros, N. et al. Nuclear pore basket proteins are tethered to the nuclear envelope and can regulate membrane curvature. Dev. Cell 33, 285–298 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Vollmer, B. et al. Dimerization and direct membrane interaction of Nup53 contribute to nuclear pore complex assembly. EMBO J. 31, 4072–4084 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Drin, G. et al. A general amphipathic α-helical motif for sensing membrane curvature. Nat. Struct. Mol. Biol. 14, 138–146 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Dawson, T. R., Lazarus, M. D., Hetzer, M. W. & Wente, S. R. ER membrane-bending proteins are necessary for de novo nuclear pore formation. J. Cell Biol. 184, 659–675 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang, D. & Oliferenko, S. Tts1, the fission yeast homologue of the TMEM33 family, functions in NE remodeling during mitosis. Mol. Biol. Cell 25, 2970–2983 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chadrin, A. et al. Pom33, a novel transmembrane nucleoporin required for proper nuclear pore complex distribution. J. Cell Biol. 189, 795–811 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Boban, M., Pantazopoulou, M., Schick, A., Ljungdahl, P. O. & Foisner, R. A nuclear ubiquitin–proteasome pathway targets the inner nuclear membrane protein Asi2 for degradation. J. Cell Sci. 127, 3603–3613 (2014).

    CAS  PubMed  Google Scholar 

  40. Deng, M. & Hochstrasser, M. Spatially regulated ubiquitin ligation by an ER/nuclear membrane ligase. Nature 443, 827–831 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Khmelinskii, A. et al. Protein quality control at the inner nuclear membrane. Nature 516, 410–413 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Foresti, O., Rodriguez-Vaello, V., Funaya, C. & Carvalho, P. Quality control of inner nuclear membrane proteins by the Asi complex. Science 346, 751–755 (2014). Together with reference 41, these studies identify a dedicated arm of the ERAD pathway at the INM.

    Article  CAS  PubMed  Google Scholar 

  43. Zargari, A. et al. Inner nuclear membrane proteins Asi1, Asi2, and Asi3 function in concert to maintain the latent properties of transcription factors Stp1 and Stp2. J. Biol. Chem. 282, 594–605 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Zattas, D., Berk, J. M., Kreft, S. G. & Hochstrasser, M. A. Conserved C-terminal element in the yeast Doa10 and human MARCH6 ubiquitin ligases required for selective substrate degradation. J. Biol. Chem. 291, 12105–12118 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Coyaud, E. et al. BioID-based identification of Skp Cullin F-box (SCF)β-TrCP1/2 E3 ligase substrates. Mol. Cell. Proteomics 14, 1781–1795 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Toyama, B. H. et al. Identification of long-lived proteins reveals exceptional stability of essential cellular structures. Cell 154, 971–982 (2013). This systematic proteomic analysis reveals the identity of long-lived proteins in the rat brain, among them a subset of scaffold NUPs with exceptionally long half-lives.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Savas, J. N., Toyama, B. H., Xu, T., Yates, J. R. & Hetzer, M. W. Extremely long-lived nuclear pore proteins in the rat brain. Science 335, 942 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. D'Angelo, M. A., Raices, M., Panowski, S. H. & Hetzer, M. W. Age-dependent deterioration of nuclear pore complexes causes a loss of nuclear integrity in postmitotic cells. Cell 136, 284–295 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mochida, K. et al. Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus. Nature 522, 359–362 (2015). Two novel autophagy receptors, Atg39 and Atg40, are shown to function in selective autophagy of ER and NE membranes, respectively.

    Article  CAS  PubMed  Google Scholar 

  50. Dou, Z. et al. Autophagy mediates degradation of nuclear lamina. Nature 527, 105–109 (2015). This study describes a selective autophagy pathway that involves the NE component lamin B1 and is linked to oncogene-induced senescence in primary human cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lenain, C., Gusyatiner, O., Douma, S., van den Broek, B. & Peeper, D. S. Autophagy-mediated degradation of nuclear envelope proteins during oncogene-induced senescence. Carcinogenesis 36, 1263–1274 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Ivanov, A. et al. Lysosome-mediated processing of chromatin in senescence. J. Cell Biol. 202, 129–143 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Swift, J. et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341, 1240104 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Harada, T. et al. Nuclear lamin stiffness is a barrier to 3D migration, but softness can limit survival. J. Cell Biol. 204, 669–682 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shin, J.-W. et al. Lamins regulate cell trafficking and lineage maturation of hematopoietic cells. Proc. Natl Acad. Sci. USA 110, 18892–18897 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rowat, A. C. et al. Nuclear envelope composition determines the ability of neutrophil-type cells to passage through micron-scale constrictions. J. Biol. Chem. 288, 8610–8618 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lombardi, M. L. et al. The interaction between nesprins and sun proteins at the nuclear envelope is critical for force transmission between the nucleus and cytoskeleton. J. Biol. Chem. 286, 26743–26753 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schreiner, S. M., Koo, P. K., Zhao, Y., Mochrie, S. G. J. & King, M. C. The tethering of chromatin to the nuclear envelope supports nuclear mechanics. Nat. Commun. 6, 7159 (2015).

    Article  PubMed  Google Scholar 

  59. Furusawa, T. et al. Chromatin decompaction by the nucleosomal binding protein HMGN5 impairs nuclear sturdiness. Nat. Commun. 6, 6138 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Guilluy, C. et al. Isolated nuclei adapt to force and reveal a mechanotransduction pathway in the nucleus. Nat. Cell Biol. 16, 376–381 (2014). This study reveals that isolated nuclei are able to stiffen in response to force and pinpoints changes in posttranslational modifications and the interactions of NE components as the underlying mechanisms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ihalainen, T. O. et al. Differential basal-to-apical accessibility of lamin A/C epitopes in the nuclear lamina regulated by changes in cytoskeletal tension. Nat. Mater. 14, 1252–1261 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Versaevel, M. et al. Super-resolution microscopy reveals LINC complex recruitment at nuclear indentation sites. Sci. Rep. 4, 7362 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chambliss, A. B. et al. The LINC-anchored actin cap connects the extracellular milieu to the nucleus for ultrafast mechanotransduction. Sci. Rep. 3, 1087 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Fedorchak, G. R., Kaminski, A. & Lammerding, J. Cellular mechanosensing: getting to the nucleus of it all. Prog. Biophys. Mol. Biol. 115, 76–92 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ho, C. Y., Jaalouk, D. E., Vartiainen, M. K. & Lammerding, J. Lamin A/C and emerin regulate MKL1-SRF activity by modulating actin dynamics. Nature 497, 507–511 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Holaska, J. M., Rais-Bahrami, S. & Wilson, K. L. Lmo7 is an emerin-binding protein that regulates the transcription of emerin and many other muscle-relevant genes. Hum. Mol. Genet. 15, 3459–3472 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Qi, Y.-X. et al. Nuclear envelope proteins modulate proliferation of vascular smooth muscle cells during cyclic stretch application. Proc. Natl Acad. Sci. USA 113, 5293–5298 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Han, Y. et al. Nuclear envelope proteins Nesprin2 and LaminA regulate proliferation and apoptosis of vascular endothelial cells in response to shear stress. Biochim. Biophys. Acta 1853, 1165–1173 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gundersen, G. G. & Worman, H. J. Nuclear positioning. Cell 152, 1376–1389 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Luxton, G. W. G., Gomes, E. R., Folker, E. S., Vintinner, E. & Gundersen, G. G. Linear arrays of nuclear envelope proteins harness retrograde actin flow for nuclear movement. Science 329, 956–959 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Raab, M. et al. ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science 352, 359–362 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Denais, C. M. et al. Nuclear envelope rupture and repair during cancer cell migration. Science 352, 353–358 (2016). Together with reference 71, these are landmark studies that describe NE rupturing events that are induced by the migration of cells through constrictions and are subsequently repaired by the ESCRT-III machinery.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. De Vos, W. H. et al. Repetitive disruptions of the nuclear envelope invoke temporary loss of cellular compartmentalization in laminopathies. Hum. Mol. Genet. 20, 4175–4186 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Chial, H. J., Rout, M. P., Giddings, T. H. Jr & Winey, M. Saccharomyces cerevisiae Ndc1p is a shared component of nuclear pore complexes and spindle pole bodies. J. Cell Biol. 143, 1789–1800 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Casey, A. K. et al. Integrity and function of the Saccharomyces cerevisiae spindle pole body depends on connections between the membrane proteins Ndc1, Rtn1, and Yop1. Genetics 192, 441–455 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kupke, T. et al. Targeting of Nbp1 to the inner nuclear membrane is essential for spindle pole body duplication. EMBO J. 30, 3337–3352 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tamm, T. et al. Brr6 drives the Schizosaccharomyces pombe spindle pole body nuclear envelope insertion/extrusion cycle. J. Cell Biol. 195, 467–484 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Witkin, K. L., Friederichs, J. M., Cohen-Fix, O. & Jaspersen, S. L. Changes in the nuclear envelope environment affect spindle pole body duplication in Saccharomyces cerevisiae. Genetics 186, 867–883 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Makarova, M. et al. Temporal regulation of lipin activity diverged to account for differences in mitotic programs. Curr. Biol. 26, 237–243 (2016). This paper posits the interesting hypothesis that the ability of the NE to expand defines the mitotic programme of either closed or semi-open mitosis in two related yeast species and proposes that regulation of lipin activity is a determining mechanism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Dultz, E. et al. Systematic kinetic analysis of mitotic dis- and reassembly of the nuclear pore in living cells. J. Cell Biol. 180, 857–865 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Laurell, E. et al. Phosphorylation of Nup98 by multiple kinases is crucial for NPC disassembly during mitotic entry. Cell 144, 539–550 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Molitor, T. P. & Traktman, P. Depletion of the protein kinase VRK1 disrupts nuclear envelope morphology and leads to BAF retention on mitotic chromosomes. Mol. Biol. Cell 25, 891–903 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Gorjánácz, M. et al. Caenorhabditis elegans BAF-1 and its kinase VRK-1 participate directly in post-mitotic nuclear envelope assembly. EMBO J. 26, 132–143 (2007).

    Article  PubMed  CAS  Google Scholar 

  84. Hirota, T., Lipp, J. J., Toh, B.-H. & Peters, J.-M. Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature 438, 1176–1180 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Tseng, L.-C. & Chen, R.-H. Temporal control of nuclear envelope assembly by phosphorylation of lamin B receptor. Mol. Biol. Cell 22, 3306–3317 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gerace, L. & Blobel, G. The nuclear envelope lamina is reversibly depolymerized during mitosis. Cell 19, 277–287 (1980).

    Article  CAS  PubMed  Google Scholar 

  87. Goss, V. L. et al. Identification of nuclear βII protein kinase C as a mitotic lamin kinase. J. Biol. Chem. 269, 19074–19080 (1994).

    Article  CAS  PubMed  Google Scholar 

  88. Peter, M., Nakagawa, J., Dorée, M., Labbé, J. C. & Nigg, E. A. In vitro disassembly of the nuclear lamina and M phase-specific phosphorylation of lamins by cdc2 kinase. Cell 61, 591–602 (1990).

    Article  CAS  PubMed  Google Scholar 

  89. Heald, R. & McKeon, F. Mutations of phosphorylation sites in lamin A that prevent nuclear lamina disassembly in mitosis. Cell 61, 579–589 (1990).

    Article  CAS  PubMed  Google Scholar 

  90. Mall, M. et al. Mitotic lamin disassembly is triggered by lipid-mediated signaling. J. Cell Biol. 198, 981–990 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gorjánácz, M. & Mattaj, I. W. Lipin is required for efficient breakdown of the nuclear envelope in Caenorhabditis elegans. J. Cell Sci. 122, 1963–1969 (2009).

    Article  PubMed  CAS  Google Scholar 

  92. Golden, A., Liu, J. & Cohen-Fix, O. Inactivation of the C. elegans lipin homolog leads to ER disorganization and to defects in the breakdown and reassembly of the nuclear envelope. J. Cell Sci. 122, 1970–1978 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bahmanyar, S. et al. Spatial control of phospholipid flux restricts endoplasmic reticulum sheet formation to allow nuclear envelope breakdown. Genes Dev. 28, 121–126 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Raaijmakers, J. A. et al. Nuclear envelope-associated dynein drives prophase centrosome separation and enables Eg5-independent bipolar spindle formation. EMBO J. 31, 4179–4190 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. De Simone, A., Nédélec, F. & Gönczy, P. Dynein transmits polarized actomyosin cortical flows to promote centrosome separation. Cell Rep. 14, 2250–2262 (2016).

    Article  CAS  PubMed  Google Scholar 

  96. Splinter, D. et al. Bicaudal D2, dynein, and kinesin-1 associate with nuclear pore complexes and regulate centrosome and nuclear positioning during mitotic entry. PLoS Biol. 8, e1000350 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Bolhy, S. et al. A Nup133-dependent NPC-anchored network tethers centrosomes to the nuclear envelope in prophase. J. Cell Biol. 192, 855–871 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Beaudouin, J., Gerlich, D., Daigle, N., Eils, R. & Ellenberg, J. Nuclear envelope breakdown proceeds by microtubule-induced tearing of the lamina. Cell 108, 83–96 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Salina, D. et al. Cytoplasmic dynein as a facilitator of nuclear envelope breakdown. Cell 108, 97–107 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Turgay, Y. et al. SUN proteins facilitate the removal of membranes from chromatin during nuclear envelope breakdown. J. Cell Biol. 204, 1099–1109 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mühlhäusser, P. & Kutay, U. An in vitro nuclear disassembly system reveals a role for the RanGTPase system and microtubule-dependent steps in nuclear envelope breakdown. J. Cell Biol. 178, 595–610 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Schlaitz, A.-L., Thompson, J., Wong, C. C. L., Yates, J. R. & Heald, R. REEP3/4 ensure endoplasmic reticulum clearance from metaphase chromatin and proper nuclear envelope architecture. Dev. Cell 26, 315–323 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Schweizer, N., Pawar, N., Weiss, M. & Maiato, H. An organelle-exclusion envelope assists mitosis and underlies distinct molecular crowding in the spindle region. J. Cell Biol. 210, 695–704 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ulbert, S., Platani, M., Boue, S. & Mattaj, I. W. Direct membrane protein–DNA interactions required early in nuclear envelope assembly. J. Cell Biol. 173, 469–476 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Anderson, D. J., Vargas, J. D., Hsiao, J. P. & Hetzer, M. W. Recruitment of functionally distinct membrane proteins to chromatin mediates nuclear envelope formation in vivo. J. Cell Biol. 186, 183–191 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Haraguchi, T. et al. Live cell imaging and electron microscopy reveal dynamic processes of BAF-directed nuclear envelope assembly. J. Cell Sci. 121, 2540–2554 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Schooley, A., Moreno-Andrés, D., De Magistris, P., Vollmer, B. & Antonin, W. The lysine demethylase LSD1 is required for nuclear envelope formation at the end of mitosis. J. Cell Sci. 128, 3466–3477 (2015).

    CAS  PubMed  Google Scholar 

  108. Afonso, O. et al. Feedback control of chromosome separation by a midzone Aurora B gradient. Science 345, 332–336 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Vagnarelli, P. et al. Repo-Man coordinates chromosomal reorganization with nuclear envelope reassembly during mitotic exit. Dev. Cell 21, 328–342 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Ramadan, K. et al. Cdc48/p97 promotes reformation of the nucleus by extracting the kinase Aurora B from chromatin. Nature 450, 1258–1262 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Fischle, W. et al. Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 438, 1116–1122 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Wandke, C. & Kutay, U. Enclosing chromatin: reassembly of the nucleus after open mitosis. Cell 152, 1222–1225 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Antonin, W., Franz, C., Haselmann, U., Antony, C. & Mattaj, I. W. The integral membrane nucleoporin pom121 functionally links nuclear pore complex assembly and nuclear envelope formation. Mol. Cell 17, 83–92 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Walther, T. C. et al. The conserved Nup107–160 complex is critical for nuclear pore complex assembly. Cell 113, 195–206 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Harel, A. et al. Removal of a single pore subcomplex results in vertebrate nuclei devoid of nuclear pores. Mol. Cell 11, 853–864 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Zierhut, C., Jenness, C., Kimura, H. & Funabiki, H. Nucleosomal regulation of chromatin composition and nuclear assembly revealed by histone depletion. Nat. Struct. Mol. Biol. 21, 617–625 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Inoue, A. & Zhang, Y. Nucleosome assembly is required for nuclear pore complex assembly in mouse zygotes. Nat. Struct. Mol. Biol. 21, 609–616 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Franz, C. et al. MEL-28/ELYS is required for the recruitment of nucleoporins to chromatin and postmitotic nuclear pore complex assembly. EMBO Rep. 8, 165–172 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Rasala, B. A., Ramos, C., Harel, A. & Forbes, D. J. Capture of AT-rich chromatin by ELYS recruits POM121 and NDC1 to initiate nuclear pore assembly. Mol. Biol. Cell 19, 3982–3996 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hampoelz, B. et al. Pre-assembled nuclear pores insert into the nuclear envelope during early development. Cell 166, 664–678 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Anderson, D. J. & Hetzer, M. W. Nuclear envelope formation by chromatin-mediated reorganization of the endoplasmic reticulum. Nat. Cell Biol. 9, 1160–1166 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Dechat, T. et al. LAP2α and BAF transiently localize to telomeres and specific regions on chromatin during nuclear assembly. J. Cell Sci. 117, 6117–6128 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Mora-Bermúdez, F., Gerlich, D. & Ellenberg, J. Maximal chromosome compaction occurs by axial shortening in anaphase and depends on Aurora kinase. Nat. Cell Biol. 9, 822–831 (2007).

    Article  PubMed  CAS  Google Scholar 

  124. Zhuang, X., Semenova, E., Maric, D. & Craigie, R. Dephosphorylation of barrier-to-autointegration factor by protein phosphatase 4 and its role in cell mitosis. J. Biol. Chem. 289, 1119–1127 (2014).

    Article  CAS  PubMed  Google Scholar 

  125. Vietri, M. et al. Spastin and ESCRT-III coordinate mitotic spindle disassembly and nuclear envelope sealing. Nature 522, 231–235 (2015).

    Article  CAS  PubMed  Google Scholar 

  126. Olmos, Y., Hodgson, L., Mantell, J., Verkade, P. & Carlton, J. G. ESCRT-III controls nuclear envelope reformation. Nature 522, 236–239 (2015). Together with reference 125, these studies show that ESCRT-III and VPS4 are critically involved in membrane sealing during NE reformation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Olmos, Y., Perdrix-Rosell, A. & Carlton, J. G. Membrane binding by CHMP7 coordinates ESCRT-III-dependent nuclear envelope reformation. Curr. Biol. 26, 2635–2641 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hetzer, M. et al. Distinct AAA-ATPase p97 complexes function in discrete steps of nuclear assembly. Nat. Cell Biol. 3, 1086–1091 (2001).

    Article  CAS  PubMed  Google Scholar 

  129. Dobrynin, G. et al. Cdc48/p97–Ufd1–Npl4 antagonizes Aurora B during chromosome segregation in HeLa cells. J. Cell Sci. 124, 1571–1580 (2011).

    Article  CAS  PubMed  Google Scholar 

  130. Pante, N. & Kann, M. Nuclear pore complex is able to transport macromolecules with diameters of about 39 nm. Mol. Biol. Cell 13, 425–434 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Granzow, H. et al. Egress of alphaherpesviruses: comparative ultrastructural study. J. Virol. 75, 3675–3684 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Park, R. & Baines, J. D. Herpes simplex virus type 1 infection induces activation and recruitment of protein kinase C to the nuclear membrane and increased phosphorylation of lamin B. J. Virol. 80, 494–504 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Muranyi, W., Haas, J., Wagner, M., Krohne, G. & Koszinowski, U. H. Cytomegalovirus recruitment of cellular kinases to dissolve the nuclear lamina. Science 297, 854–857 (2002).

    Article  CAS  PubMed  Google Scholar 

  134. Reynolds, A. E. et al. UL31 and UL34 proteins of herpes simplex virus type 1 form a complex that accumulates at the nuclear rim and is required for envelopment of nucleocapsids. J. Virol. 75, 8803–8817 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Klupp, B. G. et al. Vesicle formation from the nuclear membrane is induced by coexpression of two conserved herpesvirus proteins. Proc. Natl Acad. Sci. USA 104, 7241–7246 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Bigalke, J. M. & Heldwein, E. E. Structural basis of membrane budding by the nuclear egress complex of herpesviruses. EMBO J. 34, 2921–2936 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hagen, C. et al. Structural basis of vesicle formation at the inner nuclear membrane. Cell 163, 1692–1701 (2015). In this study, an electron cryotomography approach revealed how the herpesvirus NEC assembles into a vesicle coat beneath the INM.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Zeev-Ben-Mordehai, T. et al. Crystal structure of the herpesvirus nuclear egress complex provides insights into inner nuclear membrane remodeling. Cell Rep. 13, 2645–2652 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Lorenz, M. et al. A single herpesvirus protein can mediate vesicle formation in the nuclear envelope. J. Biol. Chem. 290, 6962–6974 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Lee, C.-P. et al. The ESCRT machinery is recruited by the viral BFRF1 protein to the nucleus-associated membrane for the maturation of Epstein–Barr Virus. PLoS Pathog. 8, e1002904 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Lee, C.-P. et al. The ubiquitin ligase Itch and ubiquitination regulate BFRF1-mediated nuclear envelope modification for Epstein–Barr virus maturation. J. Virol. 90, 8994–9007 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Maric, M. et al. A functional role for TorsinA in herpes simplex virus 1 nuclear egress. J. Virol. 85, 9667–9679 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Turner, E. M., Brown, R. S. H., Laudermilch, E., Tsai, P.-L. & Schlieker, C. The Torsin activator LULL1 is required for efficient growth of HSV-1. J. Virol. 89, 8444–8452 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Sosa, B. A. et al. How lamina-associated polypeptide 1 (LAP1) activates Torsin. eLife 3, e03239 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Brown, R. S. H., Zhao, C., Chase, A. R., Wang, J. & Schlieker, C. The mechanism of Torsin ATPase activation. Proc. Natl Acad. Sci. USA 111, E4822–E4831 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Jokhi, V. et al. Torsin mediates primary envelopment of large ribonucleoprotein granules at the nuclear envelope. Cell Rep. 3, 988–995 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Naismith, T. V., Heuser, J. E., Breakefield, X. O. & Hanson, P. I. TorsinA in the nuclear envelope. Proc. Natl Acad. Sci. USA 101, 7612–7617 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Goodchild, R. E., Kim, C. E. & Dauer, W. T. Loss of the dystonia-associated protein torsinA selectively disrupts the neuronal nuclear envelope. Neuron 48, 923–932 (2005).

    Article  CAS  PubMed  Google Scholar 

  149. Kim, C. E., Perez, A., Perkins, G., Ellisman, M. H. & Dauer, W. T. A molecular mechanism underlying the neural-specific defect in torsinA mutant mice. Proc. Natl Acad. Sci. USA 107, 9861–9866 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Liang, C.-C., Tanabe, L. M., Jou, S., Chi, F. & Dauer, W. T. TorsinA hypofunction causes abnormal twisting movements and sensorimotor circuit neurodegeneration. J. Clin. Invest. 124, 3080–3092 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Mattout, A., Cabianca, D. S. & Gasser, S. M. Chromatin states and nuclear organization in development — a view from the nuclear lamina. Genome Biol. 16, 284–215 (2015).

    Article  CAS  Google Scholar 

  152. Solovei, I. et al. LBR and lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation. Cell 152, 584–598 (2013). This intriguing study explores heterochromatin organization in different tissues and species and correlates the peripheral localization of heterochromatin with the expression of LBR and lamin A/C.

    Article  CAS  PubMed  Google Scholar 

  153. Peric-Hupkes, D. et al. Molecular maps of the reorganization of genome–nuclear lamina interactions during differentiation. Mol. Cell 38, 603–613 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Zullo, J. M. et al. DNA sequence-dependent compartmentalization and silencing of chromatin at the nuclear lamina. Cell 149, 1474–1487 (2012).

    Article  CAS  PubMed  Google Scholar 

  155. Szczerbal, I., Foster, H. A. & Bridger, J. M. The spatial repositioning of adipogenesis genes is correlated with their expression status in a porcine mesenchymal stem cell adipogenesis model system. Chromosoma 118, 647–663 (2009).

    Article  CAS  PubMed  Google Scholar 

  156. Robson, M. I. et al. Tissue-specific gene repositioning by muscle nuclear membrane proteins enhances repression of critical developmental genes during myogenesis. Mol. Cell 62, 834–847 (2016). This study investigates the role of three tissue-specific NE proteins, which critically contribute to myogenesis, in specifying NE–genome contacts and the repression of pluripotency genes in the context of differentiation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Zuleger, N. et al. Specific nuclear envelope transmembrane proteins can promote the location of chromosomes to and from the nuclear periphery. Genome Biol. 14, R14 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Wong, X., Luperchio, T. R. & Reddy, K. L. NET gains and losses: the role of changing nuclear envelope proteomes in genome regulation. Curr. Opin. Cell Biol. 28, 105–120 (2014).

    Article  CAS  PubMed  Google Scholar 

  159. Worman, H. J. & Schirmer, E. C. Nuclear membrane diversity: underlying tissue-specific pathologies in disease? Curr. Opin. Cell Biol. 34, 101–112 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Huber, M. D., Guan, T. & Gerace, L. Overlapping functions of nuclear envelope proteins NET25 (Lem2) and emerin in regulation of extracellular signal-regulated kinase signaling in myoblast differentiation. Mol. Cell. Biol. 29, 5718–5728 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Chen, I.-H. B., Huber, M., Guan, T., Bubeck, A. & Gerace, L. Nuclear envelope transmembrane proteins (NETs) that are up-regulated during myogenesis. BMC Cell Biol. 7, 1 (2006).

    Article  CAS  Google Scholar 

  162. Burke, B. & Stewart, C. L. Functional architecture of the cell's nucleus in development, aging, and disease. Curr. Top. Dev. Biol. 109, 1–52 (2014).

    Article  PubMed  Google Scholar 

  163. Favreau, C., Higuet, D., Courvalin, J.-C. & Buendia, B. Expression of a mutant lamin A that causes Emery–Dreifuss muscular dystrophy inhibits in vitro differentiation of C2C12 myoblasts. Mol. Cell. Biol. 24, 1481–1492 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Perovanovic, J. et al. Laminopathies disrupt epigenomic developmental programs and cell fate. Sci. Transl Med. 8, 335ra58 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Bakay, M. et al. Nuclear envelope dystrophies show a transcriptional fingerprint suggesting disruption of Rb–MyoD pathways in muscle regeneration. Brain 129, 996–1013 (2006).

    Article  PubMed  Google Scholar 

  166. Melcon, G. et al. Loss of emerin at the nuclear envelope disrupts the Rb1/E2F and MyoD pathways during muscle regeneration. Hum. Mol. Genet. 15, 637–651 (2006).

    Article  CAS  PubMed  Google Scholar 

  167. Frock, R. L. et al. Lamin A/C and emerin are critical for skeletal muscle satellite cell differentiation. Genes Dev. 20, 486–500 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Méjat, A. et al. Lamin A/C-mediated neuromuscular junction defects in Emery–Dreifuss muscular dystrophy. J. Cell Biol. 184, 31–44 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Grady, R. M., Starr, D. A., Ackerman, G. L., Sanes, J. R. & Han, M. Syne proteins anchor muscle nuclei at the neuromuscular junction. Proc. Natl Acad. Sci. USA 102, 4359–4364 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Zhang, X. et al. Syne-1 and Syne-2 play crucial roles in myonuclear anchorage and motor neuron innervation. Development 134, 901–908 (2007).

    Article  CAS  PubMed  Google Scholar 

  171. Lei, K. et al. SUN1 and SUN2 play critical but partially redundant roles in anchoring nuclei in skeletal muscle cells in mice. Proc. Natl Acad. Sci. USA 106, 10207–10212 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Gros-Louis, F. et al. Mutations in SYNE1 lead to a newly discovered form of autosomal recessive cerebellar ataxia. Nat. Genet. 39, 80–85 (2007).

    Article  CAS  PubMed  Google Scholar 

  173. Hoffmann, K. et al. Mutations in the gene encoding the lamin B receptor produce an altered nuclear morphology in granulocytes (Pelger–Huët anomaly). Nat. Genet. 31, 410–414 (2002).

    Article  CAS  PubMed  Google Scholar 

  174. Gravemann, S. et al. Dosage effect of zero to three functional LBR-genes in vivo and in vitro. Nucleus 1, 179–189 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Penkner, A. et al. The nuclear envelope protein Matefin/SUN-1 is required for homologous pairing in C. elegans meiosis. Dev. Cell 12, 873–885 (2007).

    Article  CAS  PubMed  Google Scholar 

  176. Horn, H. F. et al. A mammalian KASH domain protein coupling meiotic chromosomes to the cytoskeleton. J. Cell Biol. 202, 1023–1039 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Morimoto, A. et al. A conserved KASH domain protein associates with telomeres, SUN1, and dynactin during mammalian meiosis. J. Cell Biol. 198, 165–172 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Ding, X. et al. SUN1 is required for telomere attachment to nuclear envelope and gametogenesis in mice. Dev. Cell 12, 863–872 (2007).

    Article  CAS  PubMed  Google Scholar 

  179. Lee, C.-Y. et al. Mechanism and regulation of rapid telomere prophase movements in mouse meiotic chromosomes. Cell Rep. 11, 551–563 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Jahn, D., Schramm, S., Benavente, R. & Alsheimer, M. Dynamic properties of meiosis-specific lamin C2 and its impact on nuclear envelope integrity. Nucleus 1, 273–283 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Link, J. et al. The meiotic nuclear lamina regulates chromosome dynamics and promotes efficient homologous recombination in the mouse. PLoS Genet. 9, e1003261 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Göb, E., Schmitt, J., Benavente, R. & Alsheimer, M. Mammalian sperm head formation involves different polarization of two novel LINC complexes. PLoS ONE 5, e12072 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Frohnert, C., Schweizer, S. & Hoyer-Fender, S. SPAG4L/SPAG4L-2 are testis-specific SUN domain proteins restricted to the apical nuclear envelope of round spermatids facing the acrosome. Mol. Hum. Reprod. 17, 207–218 (2011).

    Article  CAS  PubMed  Google Scholar 

  184. Calvi, A. et al. SUN4 is essential for nuclear remodeling during mammalian spermiogenesis. Dev. Biol. 407, 321–330 (2015).

    Article  CAS  PubMed  Google Scholar 

  185. Pasch, E., Link, J., Beck, C., Scheuerle, S. & Alsheimer, M. The LINC complex component Sun4 plays a crucial role in sperm head formation and fertility. Biol. Open 4, 1792–1802 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Webster, B. M., Colombi, P., Jäger, J. & Lusk, C. P. Surveillance of nuclear pore complex assembly by ESCRT-III/Vps4. Cell 159, 388–401 (2014). This study is the first to establish a functional link between the NE and the ESCRT-III–Vps4 machinery in a quality control pathway that is devoted to the elimination of defective NPC assembly intermediates in yeast.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Alonso, Y., Adell, M., Migliano, S. M. & Teis, D. ESCRT-III and Vps4: a dynamic multipurpose tool for membrane budding and scission. FEBS J. 283, 3288–3302 (2016).

    Article  CAS  Google Scholar 

  188. Kaganovich, D., Kopito, R. & Frydman, J. Misfolded proteins partition between two distinct quality control compartments. Nature 454, 1088–1095 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Spokoini, R. et al. Confinement to organelle-associated inclusion structures mediates asymmetric inheritance of aggregated protein in budding yeast. Cell Rep. 2, 738–747 (2012).

    Article  CAS  PubMed  Google Scholar 

  190. Hill, S. M. et al. Asymmetric inheritance of aggregated proteins and age reset in yeast are regulated by Vac17-dependent vacuolar functions. Cell Rep. 16, 826–838 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Saarikangas, J., Barral, Y. & Schekman, R. Protein aggregates are associated with replicative aging without compromising protein quality control. eLife 4, e06197 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Zwerger, M. et al. Myopathic lamin mutations impair nuclear stability in cells and tissue and disrupt nucleo-cytoskeletal coupling. Hum. Mol. Genet. 22, 2335–2349 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Mewborn, S. K. et al. Altered chromosomal positioning, compaction, and gene expression with a lamin A/C gene mutation. PLoS ONE 5, e14342 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Vadrot, N. et al. The p.R482W substitution in A-type lamins deregulates SREBP1 activity in Dunnigan-type familial partial lipodystrophy. Hum. Mol. Genet. 24, 2096–2109 (2015).

    Article  CAS  PubMed  Google Scholar 

  195. Oldenburg, A. R., Delbarre, E., Thiede, B., Vigouroux, C. & Collas, P. Deregulation of Fragile X-related protein 1 by the lipodystrophic lamin A p.R482W mutation elicits a myogenic gene expression program in preadipocytes. Hum. Mol. Genet. 23, 1151–1162 (2014).

    Article  CAS  PubMed  Google Scholar 

  196. Navarro, C. L. et al. Loss of ZMPSTE24 (FACE-1) causes autosomal recessive restrictive dermopathy and accumulation of lamin A precursors. Hum. Mol. Genet. 14, 1503–1513 (2005).

    Article  CAS  PubMed  Google Scholar 

  197. Agarwal, A. K., Fryns, J.-P., Auchus, R. J. & Garg, A. Zinc metalloproteinase, ZMPSTE24, is mutated in mandibuloacral dysplasia. Hum. Mol. Genet. 12, 1995–2001 (2003).

    Article  CAS  PubMed  Google Scholar 

  198. De Sandre-Giovannoli, A. et al. Lamin a truncation in Hutchinson–Gilford progeria. Science 300, 2055–2055 (2003).

    Article  CAS  PubMed  Google Scholar 

  199. Eriksson, M. et al. Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome. Nature 423, 293–298 (2003).

    Article  CAS  PubMed  Google Scholar 

  200. Gordon, L. B., Rothman, F. G., López-Otín, C. & Misteli, T. Progeria: a paradigm for translational medicine. Cell 156, 400–407 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Kubben, N. et al. Repression of the antioxidant NRF2 pathway in premature aging. Cell 165, 1361–1374 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Mostoslavsky, R. et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124, 315–329 (2006).

    Article  CAS  PubMed  Google Scholar 

  203. Ghosh, S., Liu, B., Wang, Y., Hao, Q. & Zhou, Z. Lamin A is an endogenous SIRT6 activator and promotes SIRT6-mediated DNA repair. Cell Rep. 13, 1396–1406 (2015).

    Article  CAS  PubMed  Google Scholar 

  204. Puente, X. S. et al. Exome sequencing and functional analysis identifies BANF1 mutation as the cause of a hereditary progeroid syndrome. Am. J. Hum. Genet. 88, 650–656 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Holaska, J. M., Lee, K. K., Kowalski, A. K. & Wilson, K. L. Transcriptional repressor germ cell-less (GCL) and barrier to autointegration factor (BAF) compete for binding to emerin in vitro. J. Biol. Chem. 278, 6969–6975 (2003).

    Article  CAS  PubMed  Google Scholar 

  206. Hatch, E. M., Fischer, A. H., Deerinck, T. J. & Hetzer, M. W. Catastrophic nuclear envelope collapse in cancer cell micronuclei. Cell 154, 47–60 (2013). This work reveals that micronuclei frequently undergo NE rupture without repair, which can trigger massive micronuclear DNA damage.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Crasta, K. et al. DNA breaks and chromosome pulverization from errors in mitosis. Nature 482, 53–58 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Zhang, C.-Z. et al. Chromothripsis from DNA damage in micronuclei. Nature 522, 179–184 (2015). This ground-breaking study demonstrates that DNA damage in micronuclear chromatin can lead to DNA fragmentation and the subsequent random reassembly of DNA fragments, which provides a mechanistic explanation for the phenomenon of chromothripsis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Stephens, P. J. et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27–40 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. von Appen, A. et al. In situ structural analysis of the human nuclear pore complex. Nature 526, 140–143 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors apologize for not citing all primary literature owing to space limitations. The authors thank L. Champion, K. Frischer-Ordu and L. Bammert for critical reading of the manuscript, the ETH Zurich and the Swiss National Science Foundation for continuous financial support and the ERC for funding NE research in the Kutay laboratory by the ERC Advanced Grant NucEnv to U.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrike Kutay.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Related links

Related links

DATABASES

Electron Microscopy Data Bank

Glossary

Ribonucleoprotein complexes

(RNP complexes). Large complexes composed of RNA and proteins, which are involved in a wide range of cellular processes such as translation, RNA processing and telomere function.

Perinuclear space

The lumen enclosed by the inner and outer nuclear membranes that is continuous with the lumen of the endoplasmic reticulum.

Amphipathic helix

An -helix that contains hydrophobic and polar amino acid side chains on its opposing faces.

Autophagy

A lysosome-based degradation pathway for the destruction and recycling of cellular material.

Endoplasmic reticulum-associated degradation

(ERAD). A cellular quality-control pathway that targets misfolded proteins of the ER for ubiquitylation and subsequent degradation by the proteasome in the cytosol.

RING finger

(Really interesting new gene finger). A specialized zinc-binding protein domain of 40–60 amino acids that mediates protein–protein interactions of factors involved in protein ubiquitylation.

F-Box proteins

Proteins that contain a structural motif of approximately 50 amino acids called the F-box. They were first identified as substrate-specific adaptors of E3 ubiquitin ligase complexes that contain cullin1 and SKP1 (to collectively form the SCF complex).

Retinoic acid receptor

A member of the nuclear receptor family of transcription factors that is activated by the binding of retinoic acid. It binds to retinoic acid-responsive elements as a heterodimer with a retinoic X receptor.

ESCRT-III

(Endosomal sorting complex required for transport-III). An assembly of filamentous proteins that form spiral- shaped structures within annular membrane holes and mediate membrane scission, which results in the closure of membrane pores.

Spindle pole bodies

(SPBs). The microtubule-organizing centres in yeast that are functionally equivalent to the centrosomes in higher eukaryotes.

Semi-open mitosis

A form of mitosis in which the nuclear envelope is partially dismantled, accompanied by increased nuclear envelope permeability.

Cyclin-dependent kinase 1

(CDK1). A member of the family of cyclin-dependent protein kinases that are functionalized by complex formation with a cyclin protein. CDK1 in complex with cyclin B promotes entry into mitosis in mammalian cells.

Lipin

A member of the family of phosphatidate phosphatases that converts phosphatidic acid into diacylglycerol (DAG), which can be used for the production of storage lipids or structural phospholipids.

LAP2, emerin, MAN1 domain

(LEM domain). A bi-helical structural module found in the nucleoplasmic domain of some INM and nuclear proteins that mediates interaction with barrier-to-autointegration factor (BAF).

Barrier-to-autointegration factor

(BAF). A homodimeric DNA-binding protein that directly interacts with members of the LEM domain protein family.

Aurora kinase B

A member of the Aurora family of Ser/Thr kinases. A component of the chromosomal passenger complex that orchestrates several distinct steps of mitosis, including the fidelity of spindle assembly and cytokinesis.

Nucleosomes

The fundamental packing units of chromatin, which comprise a segment of DNA and a core histone octamer.

Importins

RAN·GTP-binding nuclear transport receptors that recognize nuclear localization signals (NLSs) and mediate passage of NLS-containing proteins through nuclear pore complexes.

RAN·GTP

GTP-bound form of the small GTPase RAS-related nuclear protein (RAN) that confers directionality to nucleocytoplasmic transport. A high concentration of nuclear RAN·GTP, which is maintained by the chromatin-bound RAN guanine nucleotide exchange factor, facilitates unloading of transport cargo from importins in the nucleus.

Annulate lamellae

Stacks of endoplasmic reticulum membrane sheets that contain nuclear pore complexes.

Nucleoplasmic reticulation

Nuclear envelope-derived membrane invaginations, tubules or reticular structures that project into or traverse the nucleoplasm.

AAA-ATPase

(ATPases associated with diverse cellular activities-ATPase). A protein family defined by a structurally conserved ATPase domain that assembles into oligomeric rings. ATP hydrolysis is used to power the conformational remodelling of macromolecules.

Nuclear egress

An unusual vesicular transport pathway across the nuclear envelope that is used for nuclear export of herpesvirus particles.

Torsin family

A family of AAA-ATPases that reside in the ER lumen and the contiguous perinuclear space. An amino acid deletion in torsin 1A (TOR1A), TOR1AE, causes a severe movement disorder, early-onset dystonia.

RB

(Retinoblastoma protein). A tumour suppressor protein that inhibits cell cycle progression in its hypophosphorylated form.

MYOD

(Myoblast determination protein). A myogenic transcription factor and early marker for myogenic commitment.

Acrosome

A Golgi-derived intracellular organelle that is positioned on top of the anterior half of the sperm head.

Manchette

A transient structure built by microtubule bundles that surrounds the posterior part of the nucleus in the developing sperm head.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ungricht, R., Kutay, U. Mechanisms and functions of nuclear envelope remodelling. Nat Rev Mol Cell Biol 18, 229–245 (2017). https://doi.org/10.1038/nrm.2016.153

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm.2016.153

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing