Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular features of cellular reprogramming and development

Key Points

  • We discuss the control and maintenance of cellular identity during developmental transitions as they have been studied using direct reprogramming to pluripotency with OCT4, SRY-box 2 (SOX2), Krüppel-like factor 4 (KLF4) and MYC, collectively known as OSKM, with an emphasis on transcriptional induction and epigenetic regulation, as well as on defining molecular features of pluripotent stem cells.

  • Initial responses to ectopic reprogramming factors in somatic cells are limited to changes in the cell cycle and metabolism, as well as the transcription of epithelial genes, which represent permissive induction of shared genetic modules between pluripotent and differentiated cells.

  • The pluripotent state can be distinguished from those of differentiated cells by several additional molecular features, including the maintenance of bivalent chromatin at developmental genes, persistence of self-renewal in the absence of epigenetic repressors and dynamic regulation of retrotransposons.

  • The observed latency and low efficiency of induced pluripotent stem cell generation during direct reprogramming reflect epigenetic barriers that are imposed during differentiation. Once these have been surmounted, direct reprogramming proceeds deterministically to consolidate the pluripotent state.

  • OCT4, SOX2 and KLF4 cooperatively bind to select cis-regulatory elements of silenced genes embedded in compact chromatin but cannot immediately induce their transcription without additional cofactors, chromatin remodellers and epigenetic modifiers. MYC largely functions independently to enhance transcription at genes that have functions in pluripotent cells as well as in somatic cells.

Abstract

Differentiating somatic cells are progressively restricted to specialized functions during ontogeny, but they can be experimentally directed to form other cell types, including those with complete embryonic potential. Early nuclear reprogramming methods, such as somatic cell nuclear transfer (SCNT) and cell fusion, posed significant technical hurdles to precise dissection of the regulatory programmes governing cell identity. However, the discovery of reprogramming by ectopic expression of a defined set of transcription factors, known as direct reprogramming, provided a tractable platform to uncover molecular characteristics of cellular specification and differentiation, cell type stability and pluripotency. We discuss the control and maintenance of cellular identity during developmental transitions as they have been studied using direct reprogramming, with an emphasis on transcriptional and epigenetic regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Approaches for reprogramming somatic nuclei.
Figure 2: Direct reprogramming traverses stable somatic and pluripotent state boundaries.
Figure 3: Molecular features of pluripotent cells.
Figure 4: Differentiation establishes epigenetic barriers to reprogramming.
Figure 5: Transcriptional activation of silent pluripotency genes.

Similar content being viewed by others

References

  1. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Davis, R. L., Weintraub, H. & Lassar, A. B. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51, 987–1000 (1987).

    Article  CAS  PubMed  Google Scholar 

  3. Su, A. I. et al. Large-scale analysis of the human and mouse transcriptomes. Proc. Natl Acad. Sci. USA 99, 4465–4470 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Graf, T. & Enver, T. Forcing cells to change lineages. Nature 462, 587–594 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Kondoh, H. & Kamachi, Y. SOX-partner code for cell specification: regulatory target selection and underlying molecular mechanisms. Int. J. Biochem. Cell Biol. 42, 391–399 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Masui, S. et al. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat. Cell Biol. 9, 625–635 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Miyagi, S. et al. Consequence of the loss of Sox2 in the developing brain of the mouse. FEBS Lett. 582, 2811–2815 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Sarkar, A. & Hochedlinger, K. The Sox family of transcription factors: versatile regulators of stem and progenitor cell fate. Cell Stem Cell 12, 15–30 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lodato, M. A. et al. SOX2 co-occupies distal enhancer elements with distinct POU factors in ESCs and NPCs to specify cell state. PLoS Genet. 9, e1003288 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vierbuchen, T. et al. Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463, 1035–1041 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ieda, M. et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142, 375–386 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. D'Alessio, A. C. et al. A systematic approach to identify candidate transcription factors that control cell identity. Stem Cell Rep. 5, 763–775 (2015).

    Article  CAS  Google Scholar 

  13. Lupien, M. et al. FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription. Cell 132, 958–970 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Arvey, A., Agius, P., Noble, W. S. & Leslie, C. Sequence and chromatin determinants of cell-type-specific transcription factor binding. Genome Res. 22, 1723–1734 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Biggin, M. D. Animal transcription networks as highly connected, quantitative continua. Dev. Cell 21, 611–626 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

  17. Roadmap Epigenomics Consortium et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

  18. Mikkelsen, T. S. et al. Dissecting direct reprogramming through integrative genomic analysis. Nature 454, 49–55 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stadtfeld, M., Maherali, N., Breault, D. & Hochedlinger, K. Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell 2, 230–240 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zunder, E. R., Lujan, E., Goltsev, Y., Wernig, M. & Nolan, G. P. A continuous molecular roadmap to iPSC reprogramming through progression analysis of single-cell mass cytometry. Cell Stem Cell 16, 323–337 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hansson, J. et al. Highly coordinated proteome dynamics during reprogramming of somatic cells to pluripotency. Cell Rep. 2, 1579–1592 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Guo, S. et al. Nonstochastic reprogramming from a privileged somatic cell state. Cell 156, 649–662 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Smith, Z. D., Nachman, I., Regev, A. & Meissner, A. Dynamic single-cell imaging of direct reprogramming reveals an early specifying event. Nat. Biotechnol. 28, 521–526 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brambrink, T. et al. Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell 2, 151–159 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Samavarchi-Tehrani, P. et al. Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell 7, 64–77 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Hussein, S. M. et al. Genome-wide characterization of the routes to pluripotency. Nature 516, 198–206 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Koche, R. P. et al. Reprogramming factor expression initiates widespread targeted chromatin remodeling. Cell Stem Cell 8, 96–105 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sridharan, R. et al. Role of the murine reprogramming factors in the induction of pluripotency. Cell 136, 364–377 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee, D. S. et al. An epigenomic roadmap to induced pluripotency reveals DNA methylation as a reprogramming modulator. Nat. Commun. 5, 5619 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Heinz, S., Romanoski, C. E., Benner, C. & Glass, C. K. The selection and function of cell type-specific enhancers. Nat. Rev. Mol. Cell Biol. 16, 144–154 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Onder, T. T. et al. Chromatin-modifying enzymes as modulators of reprogramming. Nature 483, 598–602 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liang, G., He, J. & Zhang, Y. Kdm2b promotes induced pluripotent stem cell generation by facilitating gene activation early in reprogramming. Nat. Cell Biol. 14, 457–466 (2012). References 31 and 32 identify the H3K79 methyltransferase DOT1L and the H3K36 demethylase KDM2B as participating in the early disassembly of epigenetic modifications associated with transcription elongation at somatically active genes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mansour, A. A. et al. The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming. Nature 488, 409–413 (2012). This work reveals that the H3K27 demethylase UTX participates in the activation of pluripotency-associated genes by removing differentiation-associated repressive modifications at CpG island-containing promoters.

    Article  CAS  PubMed  Google Scholar 

  34. Ramirez-Carrozzi, V. R. et al. A unifying model for the selective regulation of inducible transcription by CpG islands and nucleosome remodeling. Cell 138, 114–128 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim, J. et al. A Myc network accounts for similarities between embryonic stem and cancer cell transcription programs. Cell 143, 313–324 (2010). Kim et al . demonstrate that transcriptional signatures shared between ES cells and hyperproliferative cancer cell models reflect a discrete MYC-driven genetic module that is separate from that of OCT4 and SOX2 in pluripotent cells and uniquely present in proliferating, OSKM-dependent intermediates.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nie, Z. et al. c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell 151, 68–79 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rahl, P. B. et al. c-Myc regulates transcriptional pause release. Cell 141, 432–445 (2010). Rahl et al . demonstrate that MYC stabilizes transcription elongation, which explains its contribution to the early phenotypic response to direct reprogramming and its more universal binding to the promoters of cell cycle genes at this stage.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mathieu, J. et al. Hypoxia-inducible factors have distinct and stage-specific roles during reprogramming of human cells to pluripotency. Cell Stem Cell 14, 592–605 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Panopoulos, A. D. et al. The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Res. 22, 168–177 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Folmes, C. D. et al. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab. 14, 264–271 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cao, Y. et al. miR-290/371-Mbd2-Myc circuit regulates glycolytic metabolism to promote pluripotency. EMBO J. 34, 609–623 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang, J., Nuebel, E., Daley, G. Q., Koehler, C. M. & Teitell, M. A. Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal. Cell Stem Cell 11, 589–595 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li, R. et al. A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 7, 51–63 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Thiery, J. P., Acloque, H., Huang, R. Y. & Nieto, M. A. Epithelial-mesenchymal transitions in development and disease. Cell 139, 871–890 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Xu, J., Lamouille, S. & Derynck, R. TGF-β-induced epithelial to mesenchymal transition. Cell Res. 19, 156–172 (2009).

    CAS  PubMed  Google Scholar 

  46. Wang, G. et al. Critical regulation of miR-200/ZEB2 pathway in Oct4/Sox2-induced mesenchymal-to-epithelial transition and induced pluripotent stem cell generation. Proc. Natl Acad. Sci. USA 110, 2858–2863 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ichida, J. K. et al. A small-molecule inhibitor of Tgf-β signaling replaces Sox2 in reprogramming by inducing Nanog. Cell Stem Cell 5, 491–503 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Maherali, N. & Hochedlinger, K. Tgfβ signal inhibition cooperates in the induction of iPSCs and replaces Sox2 and cMyc. Curr. Biol. 19, 1718–1723 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lujan, E. et al. Early reprogramming regulators identified by prospective isolation and mass cytometry. Nature 521, 352–356 (2015). Lujan et al . identified transcriptional activators that are associated with the induction of pluripotency but are not necessary for the maintenance of self-renewal.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jaenisch, R. & Young, R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132, 567–582 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Buganim, Y. et al. Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase. Cell 150, 1209–1222 (2012). This study demonstrates that the consolidation of pluripotency proceeds deterministically following the induction of endogenous SOX2 expression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Golipour, A. et al. A late transition in somatic cell reprogramming requires regulators distinct from the pluripotency network. Cell Stem Cell 11, 769–782 (2012). This paper demonstrates that the terminal steps of reprogramming require withdrawal of exogenous OSKM factors to consolidate autonomous self-renewal and reactivate the endogenous pluripotency network.

    Article  CAS  PubMed  Google Scholar 

  53. Hanna, J. et al. Direct cell reprogramming is a stochastic process amenable to acceleration. Nature 462, 595–601 (2009). This work demonstrates that all perpetually dividing reprogramming cell lineages will eventually generate iPSCs, supporting a single switch-like transition into deterministic reprogramming.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Araki, R. et al. Conversion of ancestral fibroblasts to induced pluripotent stem cells. Stem Cells 28, 213–220 (2010). Araki et al . characterize the morphological, proliferative and molecular properties of iPSC-forming cell lineages from the time of OSKM induction using continuous live-cell imaging.

    CAS  PubMed  Google Scholar 

  55. O'Malley, J. et al. High-resolution analysis with novel cell-surface markers identifies routes to iPS cells. Nature 499, 88–91 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Polo, J. M. et al. A molecular roadmap of reprogramming somatic cells into iPS cells. Cell 151, 1617–1632 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Maherali, N. et al. Global epigenetic remodeling in directly reprogrammed fibroblasts. Cell Stem Cell 1, 55–70 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Wernig, M. et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448, 318–324 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Polo, J. M. et al. Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat. Biotechnol. 28, 848–855 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tonge, P. D. et al. Divergent reprogramming routes lead to alternative stem-cell states. Nature 516, 192–197 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Pasque, V. et al. X chromosome reactivation dynamics reveal stages of reprogramming to pluripotency. Cell 159, 1681–1697 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Maza, I. et al. Transient acquisition of pluripotency during somatic cell transdifferentiation with iPSC reprogramming factors. Nat. Biotechnol. 33, 769–774 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bar-Nur, O. et al. Lineage conversion induced by pluripotency factors involves transient passage through an iPSC stage. Nat. Biotechnol. 33, 761–768 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Okita, K., Ichisaka, T. & Yamanaka, S. Generation of germline-competent induced pluripotent stem cells. Nature 448, 313–317 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Posfai, E., Tam, O. H. & Rossant, J. Mechanisms of pluripotency in vivo and in vitro. Curr. Top. Dev. Biol. 107, 1–37 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Nichols, J. et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, 379–391 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Chambers, I. et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113, 643–655 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Mitsui, K. et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113, 631–642 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Bernstein, B. E., Meissner, A. & Lander, E. S. The mammalian epigenome. Cell 128, 669–681 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Chen, X. et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133, 1106–1117 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Azuara, V. et al. Chromatin signatures of pluripotent cell lines. Nat. Cell Biol. 8, 532–538 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gifford, C. A. et al. Transcriptional and epigenetic dynamics during specification of human embryonic stem cells. Cell 153, 1149–1163 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ziller, M. J. et al. Dissecting neural differentiation regulatory networks through epigenetic footprinting. Nature 518, 355–359 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Boyer, L. A. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349–353 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Singh, A. M. et al. Cell-cycle control of bivalent epigenetic domains regulates the exit from pluripotency. Stem Cell Rep. 5, 323–336 (2015).

    Article  CAS  Google Scholar 

  77. Rada-Iglesias, A. et al. A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470, 279–283 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Creyghton, M. P. et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl Acad. Sci. USA 107, 21931–21936 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Meissner, A. Epigenetic modifications in pluripotent and differentiated cells. Nat. Biotechnol. 28, 1079–1088 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Taberlay, P. C. et al. Polycomb-repressed genes have permissive enhancers that initiate reprogramming. Cell 147, 1283–1294 (2011). Taberlay et al . demonstrate that OCT4 binding to the MyoD enhancer results in H3K4 methylation and H3K27 demethylation at the promoter, which is indicative of a transient topological interaction that precedes transcription.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Marks, H. et al. The transcriptional and epigenomic foundations of ground state pluripotency. Cell 149, 590–604 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Brinkman, A. B. et al. Sequential ChIP-bisulfite sequencing enables direct genome-scale investigation of chromatin and DNA methylation cross-talk. Genome Res. 22, 1128–1138 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chamberlain, S. J., Yee, D. & Magnuson, T. Polycomb repressive complex 2 is dispensable for maintenance of embryonic stem cell pluripotency. Stem Cells 26, 1496–1505 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Galonska, C., Ziller, M. J., Karnik, R. & Meissner, A. Ground state conditions induce rapid reorganization of core pluripotency factor binding before global epigenetic reprogramming. Cell Stem Cell 17, 462–470 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Geula, S. et al. m6A mRNA methylation facilitates resolution of naive pluripotency toward differentiation. Science 347, 1002–1006 (2015). Geula et al . identified a requirement for DNA, H3K27 and mRNA methylation for self-renewal in mouse epiblast stem cells but not for stem cells cultured in 2i/LIF.

    Article  CAS  PubMed  Google Scholar 

  86. Chan, Y. S. et al. A PRC2-dependent repressive role of PRDM14 in human embryonic stem cells and induced pluripotent stem cell reprogramming. Stem Cells 31, 682–692 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Liao, J. et al. Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells. Nat. Genet. 47, 469–478 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Voigt, P., Tee, W. W. & Reinberg, D. A double take on bivalent promoters. Genes Dev. 27, 1318–1338 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Landeira, D. et al. Jarid2 is a PRC2 component in embryonic stem cells required for multi-lineage differentiation and recruitment of PRC1 and RNA polymerase II to developmental regulators. Nat. Cell Biol. 12, 618–624 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Jia, J. et al. Regulation of pluripotency and self- renewal of ESCs through epigenetic-threshold modulation and mRNA pruning. Cell 151, 576–589 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Pasini, D. et al. Regulation of stem cell differentiation by histone methyltransferases and demethylases. Cold Spring Harb. Symp. Quant. Biol. 73, 253–263 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Joshi, O. et al. Dynamic reorganization of extremely long-range promoter-promoter interactions between two states of pluripotency. Cell Stem Cell 17, 748–757 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Deaton, A. M. & Bird, A. CpG islands and the regulation of transcription. Genes Dev. 25, 1010–1022 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mendenhall, E. M. et al. GC-rich sequence elements recruit PRC2 in mammalian ES cells. PLoS Genet. 6, e1001244 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Thomson, J. P. et al. CpG islands influence chromatin structure via the CpG-binding protein Cfp1. Nature 464, 1082–1086 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Simon, J. A. & Kingston, R. E. Mechanisms of Polycomb gene silencing: knowns and unknowns. Nat. Rev. Mol. Cell Biol. 10, 697–708 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. He, J. et al. Kdm2b maintains murine embryonic stem cell status by recruiting PRC1 complex to CpG islands of developmental genes. Nat. Cell Biol. 15, 373–384 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Farcas, A. M. et al. KDM2B links the Polycomb Repressive Complex 1 (PRC1) to recognition of CpG islands. eLife 1, e00205 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Wu, X., Johansen, J. V. & Helin, K. Fbxl10/Kdm2b recruits Polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation. Mol. Cell 49, 1134–1146 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Blackledge, N. P. et al. Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation. Cell 157, 1445–1459 (2014). This study identified a specific complex, normally recruited to CpG islands by the H3K36 demethylase KDM2B, that is sufficient to recruit PRC2 and establish H3K27me3 downstream of PRC1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Li, E. Chromatin modification and epigenetic reprogramming in mammalian development. Nat. Rev. Genet. 3, 662–673 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Weinberger, L., Ayyash, M., Novershtern, N. & Hanna, J. H. Dynamic stem cell states: naive to primed pluripotency in rodents and humans. Nat. Rev. Mol. Cell Biol. http://dx.doi.org/10.1038/nrm.2015.28 (2016).

  103. Tesar, P. J. et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448, 196–199 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Brons, I. G. et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448, 191–195 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Huangfu, D. et al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat. Biotechnol. 26, 795–797 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Fouse, S. et al. Promoter CpG methylation contributes to ES cell gene regulation in parallel with Oct4/Nanog, PcG complex, and histone H3 K4/K27 trimethylation. Cell Stem Cell 2, 1–10 (2008).

    Article  CAS  Google Scholar 

  107. Tsumura, A. et al. Maintenance of self-renewal ability of mouse embryonic stem cells in the absence of DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b. Genes Cells 11, 805–814 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Jackson, M. et al. Severe global DNA hypomethylation blocks differentiation and induces histone hyperacetylation in embryonic stem cells. Mol. Cell. Biol. 24, 8862–8871 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Leeb, M. et al. Polycomb complexes act redundantly to repress genomic repeats and genes. Genes Dev. 24, 265–276 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Pasini, D. et al. Coordinated regulation of transcriptional repression by the RBP2 H3K4 demethylase and Polycomb-Repressive Complex 2. Genes Dev. 22, 1345–1355 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Dovey, O. M., Foster, C. T. & Cowley, S. M. Histone deacetylase 1 (HDAC1), but not HDAC2, controls embryonic stem cell differentiation. Proc. Natl Acad. Sci. USA 107, 8242–8247 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ng, R. K. et al. Epigenetic restriction of embryonic cell lineage fate by methylation of Elf5. Nat. Cell Biol. 10, 1280–1290 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Smith, Z. D. & Meissner, A. DNA methylation: roles in mammalian development. Nat. Rev. Genet. 14, 204–220 (2013).

    Article  CAS  PubMed  Google Scholar 

  114. Yuan, P. et al. Eset partners with Oct4 to restrict extraembryonic trophoblast lineage potential in embryonic stem cells. Genes Dev. 23, 2507–2520 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Bilodeau, S., Kagey, M. H., Frampton, G. M., Rahl, P. B. & Young, R. A. SetDB1 contributes to repression of genes encoding developmental regulators and maintenance of ES cell state. Genes Dev. 23, 2484–2489 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Fei, Q. et al. SETDB1 modulates PRC2 activity at developmental genes independently of H3K9 trimethylation in mouse ES cells. Genome Res. 25, 1325–1335 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Karimi, M. M. et al. DNA methylation and SETDB1/H3K9me3 regulate predominantly distinct sets of genes, retroelements, and chimeric transcripts in mESCs. Cell Stem Cell 8, 676–687 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ficz, G. et al. FGF signaling inhibition in ESCs drives rapid genome-wide demethylation to the epigenetic ground state of pluripotency. Cell Stem Cell 13, 351–359 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Habibi, E. et al. Whole-genome bisulfite sequencing of two distinct interconvertible DNA methylomes of mouse embryonic stem cells. Cell Stem Cell 13, 360–369 (2013).

    Article  CAS  PubMed  Google Scholar 

  120. Hackett, J. A. et al. Synergistic mechanisms of DNA demethylation during transition to ground-state pluripotency. Stem Cell Rep. 1, 518–531 (2013).

    Article  CAS  Google Scholar 

  121. Leitch, H. G. et al. Naive pluripotency is associated with global DNA hypomethylation. Nat. Struct. Mol. Biol. 20, 311–316 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Theunissen, T. W. et al. Nanog overcomes reprogramming barriers and induces pluripotency in minimal conditions. Curr. Biol. 21, 65–71 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Tran, K. A. et al. Collaborative rewiring of the pluripotency network by chromatin and signalling modulating pathways. Nat. Commun. 6, 6188 (2015).

    Article  CAS  PubMed  Google Scholar 

  124. Bar-Nur, O. et al. Small molecules facilitate rapid and synchronous iPSC generation. Nat. Methods 11, 1170–1176 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Jahner, D. et al. De novo methylation and expression of retroviral genomes during mouse embryogenesis. Nature 298, 623–628 (1982).

    Article  CAS  PubMed  Google Scholar 

  126. Gifford, W. D., Pfaff, S. L. & Macfarlan, T. S. Transposable elements as genetic regulatory substrates in early development. Trends Cell Biol. 23, 218–226 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Mouse Genome Sequencing Consortium et al. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562 (2002).

  128. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    CAS  PubMed  Google Scholar 

  129. Smith, Z. D. et al. DNA methylation dynamics of the human preimplantation embryo. Nature 511, 611–615 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Rowe, H. M. et al. KAP1 controls endogenous retroviruses in embryonic stem cells. Nature 463, 237–240 (2010).

    Article  CAS  PubMed  Google Scholar 

  131. Thomas, J. H. & Schneider, S. Coevolution of retroelements and tandem zinc finger genes. Genome Res. 21, 1800–1812 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Jacobs, F. M. et al. An evolutionary arms race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons. Nature 516, 242–245 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Castro-Diaz, N. et al. Evolutionally dynamic L1 regulation in embryonic stem cells. Genes Dev. 28, 1397–1409 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Friedli, M. et al. Loss of transcriptional control over endogenous retroelements during reprogramming to pluripotency. Genome Res. 24, 1251–1259 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ohnuki, M. et al. Dynamic regulation of human endogenous retroviruses mediates factor-induced reprogramming and differentiation potential. Proc. Natl Acad. Sci. USA 111, 12426–12431 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Bourque, G. et al. Evolution of the mammalian transcription factor binding repertoire via transposable elements. Genome Res. 18, 1752–1762 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kunarso, G. et al. Transposable elements have rewired the core regulatory network of human embryonic stem cells. Nat. Genet. 42, 631–634 (2010). Genomic analysis of OCT4 and NANOG binding in mouse and human ES cells revealed substantial divergence that can be partially explained by the species-specific radiation of repetitive elements with OCT4- and NANOG-binding motifs that function as enhancers.

    Article  CAS  PubMed  Google Scholar 

  138. Loewer, S. et al. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat. Genet. 42, 1113–1117 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Lu, X. et al. The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity. Nat. Struct. Mol. Biol. 21, 423–425 (2014). References 135 and 139 demonstrate that endogenous retroviruses of the LTR7 subfamily are specifically bound by OCT4, SOX2 and KLF4 in humans, and that their transcription supports generation of iPSCs.

    Article  CAS  PubMed  Google Scholar 

  140. Durruthy-Durruthy, J. et al. The primate-specific noncoding RNA HPAT5 regulates pluripotency during human preimplantation development and nuclear reprogramming. Nat. Genet. 48, 44–52 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Macfarlan, T. S. et al. Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature 487, 57–63 (2012). Macfarlan et al . find that specific retrotransposons are dynamically expressed in a small population of mouse ES cells that globally resemble early cleavage stage embryos and have an unusual extra-embryonic potential.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Toyooka, Y., Shimosato, D., Murakami, K., Takahashi, K. & Niwa, H. Identification and characterization of subpopulations in undifferentiated ES cell culture. Development 135, 909–918 (2008).

    Article  CAS  PubMed  Google Scholar 

  143. Singh, A. M., Hamazaki, T., Hankowski, K. E. & Terada, N. A heterogeneous expression pattern for Nanog in embryonic stem cells. Stem Cells 25, 2534–2542 (2007).

    Article  CAS  PubMed  Google Scholar 

  144. Singer, Z. S. et al. Dynamic heterogeneity and DNA methylation in embryonic stem cells. Mol. Cell 55, 319–331 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Hayashi, K., Lopes, S. M., Tang, F. & Surani, M. A. Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states. Cell Stem Cell 3, 391–401 (2008).

    Article  CAS  PubMed  Google Scholar 

  146. Papatsenko, D. et al. Single-cell analyses of ESCs reveal alternative pluripotent cell states and molecular mechanisms that control self-renewal. Stem Cell Rep. 5, 207–220 (2015).

    Article  CAS  Google Scholar 

  147. Ishiuchi, T. et al. Early embryonic-like cells are induced by downregulating replication-dependent chromatin assembly. Nat. Struct. Mol. Biol. 22, 662–671 (2015).

    Article  CAS  PubMed  Google Scholar 

  148. Elsasser, S. J., Noh, K. M., Diaz, N., Allis, C. D. & Banaszynski, L. A. Histone H3.3 is required for endogenous retroviral element silencing in embryonic stem cells. Nature 522, 240–244 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Sadic, D. et al. Atrx promotes heterochromatin formation at retrotransposons. EMBO Rep. 16, 836–850 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Yang, B. X. et al. Systematic identification of factors for provirus silencing in embryonic stem cells. Cell 163, 230–245 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Feldman, N. et al. G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis. Nat. Cell Biol. 8, 188–194 (2006).

    Article  CAS  PubMed  Google Scholar 

  152. You, J. S. et al. OCT4 establishes and maintains nucleosome-depleted regions that provide additional layers of epigenetic regulation of its target genes. Proc. Natl Acad. Sci. USA 108, 14497–14502 (2011). You et al . demonstrate that OCT4 can bind to nucleosomal DNA at DNA-hypomethylated enhancers in somatic cells to initiate a preliminary nucleosome-free region.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. MacArthur, B. D. et al. Nanog-dependent feedback loops regulate murine embryonic stem cell heterogeneity. Nat. Cell Biol. 14, 1139–1147 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Epsztejn-Litman, S. et al. De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes. Nat. Struct. Mol. Biol. 15, 1176–1183 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Hochedlinger, K., Yamada, Y., Beard, C. & Jaenisch, R. Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 121, 465–477 (2005).

    Article  CAS  PubMed  Google Scholar 

  156. Shields, J. M., Christy, R. J. & Yang, V. W. Identification and characterization of a gene encoding a gut-enriched Kruppel-like factor expressed during growth arrest. J. Biol. Chem. 271, 20009–20017 (1996).

    Article  CAS  PubMed  Google Scholar 

  157. Garrett-Sinha, L. A., Eberspaecher, H., Seldin, M. F. & de Crombrugghe, B. A gene for a novel zinc-finger protein expressed in differentiated epithelial cells and transiently in certain mesenchymal cells. J. Biol. Chem. 271, 31384–31390 (1996).

    Article  CAS  PubMed  Google Scholar 

  158. Stadler, M. B. et al. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480, 490–495 (2011).

    Article  CAS  PubMed  Google Scholar 

  159. Meshorer, E. & Misteli, T. Chromatin in pluripotent embryonic stem cells and differentiation. Nat. Rev. Mol. Cell Biol. 7, 540–546 (2006).

    Article  CAS  PubMed  Google Scholar 

  160. Kagey, M. H. et al. Mediator and cohesin connect gene expression and chromatin architecture. Nature 467, 430–435 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Whyte, W. A. et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307–319 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Whyte, W. A. et al. Enhancer decommissioning by LSD1 during embryonic stem cell differentiation. Nature 482, 221–225 (2012). References 160–162 demonstrate that super-enhancers regulate cell-type specific genes. The H3K4 demethylase LSD1 interacts with these enhancers in mouseES cells and controls differentiation by removing epigenetic modifications associated with their activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Wang, Y. et al. LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer. Cell 138, 660–672 (2009).

    Article  CAS  PubMed  Google Scholar 

  164. Foster, C. T. et al. Lysine-specific demethylase 1 regulates the embryonic transcriptome and CoREST stability. Mol. Cell. Biol. 30, 4851–4863 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Shi, Y. et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119, 941–953 (2004).

    Article  CAS  PubMed  Google Scholar 

  166. Macfarlan, T. S. et al. Endogenous retroviruses and neighboring genes are coordinately repressed by LSD1/KDM1A. Genes Dev. 25, 594–607 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Rudolph, T. et al. Heterochromatin formation in Drosophila is initiated through active removal of H3K4 methylation by the LSD1 homolog SU(VAR)3-3. Mol. Cell 26, 103–115 (2007).

    Article  CAS  PubMed  Google Scholar 

  168. Reynolds, N. et al. NuRD suppresses pluripotency gene expression to promote transcriptional heterogeneity and lineage commitment. Cell Stem Cell 10, 583–594 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Lessard, J. A. & Crabtree, G. R. Chromatin regulatory mechanisms in pluripotency. Annu. Rev. Cell Dev. Biol. 26, 503–532 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Rais, Y. et al. Deterministic direct reprogramming of somatic cells to pluripotency. Nature 502, 65–70 (2013).

    Article  CAS  PubMed  Google Scholar 

  171. dos Santos, R. L. et al. MBD3/NuRD facilitates induction of pluripotency in a context-dependent manner. Cell Stem Cell 15, 102–110 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Luo, M. et al. NuRD blocks reprogramming of mouse somatic cells into pluripotent stem cells. Stem Cells 31, 1278–1286 (2013).

    Article  CAS  PubMed  Google Scholar 

  173. Cacchiarelli, D. et al. Integrative analyses of human reprogramming reveal dynamic nature of induced pluripotency. Cell 162, 412–424 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Jin, C. et al. H3.3/H2A. Z double variant-containing nucleosomes mark 'nucleosome-free regions' of active promoters and other regulatory regions. Nat. Genet. 41, 941–945 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Mito, Y., Henikoff, J. G. & Henikoff, S. Histone replacement marks the boundaries of cis-regulatory domains. Science 315, 1408–1411 (2007).

    Article  CAS  PubMed  Google Scholar 

  176. He, H. H. et al. Nucleosome dynamics define transcriptional enhancers. Nat. Genet. 42, 343–347 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Zaret, K. S. & Carroll, J. S. Pioneer transcription factors: establishing competence for gene expression. Genes Dev. 25, 2227–2241 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Sherwood, R. I. et al. Discovery of directional and nondirectional pioneer transcription factors by modeling DNase profile magnitude and shape. Nat. Biotechnol. 32, 171–178 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Soufi, A., Donahue, G. & Zaret, K. S. Facilitators and impediments of the pluripotency reprogramming factors' initial engagement with the genome. Cell 151, 994–1004 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Soufi, A. et al. Pioneer transcription factors target partial DNA motifs on nucleosomes to initiate reprogramming. Cell 161, 555–568 (2015). This article demonstrates that the pioneer factor-like activity of OCT4, SOX2 and KLF4 is achieved by cooperatively binding to partially exposed recognition motifs within nucleosomal DNA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Heng, J. C. et al. The nuclear receptor Nr5a2 can replace Oct4 in the reprogramming of murine somatic cells to pluripotent cells. Cell Stem Cell 6, 167–174 (2010).

    Article  CAS  PubMed  Google Scholar 

  182. Hutchins, A. P. et al. Co-motif discovery identifies an Esrrb-Sox2-DNA ternary complex as a mediator of transcriptional differences between mouse embryonic and epiblast stem cells. Stem Cells 31, 269–281 (2013).

    Article  CAS  PubMed  Google Scholar 

  183. Maekawa, M. et al. Direct reprogramming of somatic cells is promoted by maternal transcription factor Glis1. Nature 474, 225–229 (2011).

    Article  CAS  PubMed  Google Scholar 

  184. Tsubooka, N. et al. Roles of Sall4 in the generation of pluripotent stem cells from blastocysts and fibroblasts. Genes Cells 14, 683–694 (2009).

    Article  CAS  PubMed  Google Scholar 

  185. Wang, W. et al. Rapid and efficient reprogramming of somatic cells to induced pluripotent stem cells by retinoic acid receptor gamma and liver receptor homolog 1. Proc. Natl Acad. Sci. USA 108, 18283–18288 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Jolma, A. et al. DNA-binding specificities of human transcription factors. Cell 152, 327–339 (2013).

    Article  CAS  PubMed  Google Scholar 

  187. Nakagawa, M. et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol. 26, 101–106 (2008).

    Article  CAS  PubMed  Google Scholar 

  188. Kingston, R. E. & Narlikar, G. J. ATP-dependent remodeling and acetylation as regulators of chromatin fluidity. Genes Dev. 13, 2339–2352 (1999).

    Article  CAS  PubMed  Google Scholar 

  189. Ho, L. et al. An embryonic stem cell chromatin remodeling complex, esBAF, is essential for embryonic stem cell self-renewal and pluripotency. Proc. Natl Acad. Sci. USA 106, 5181–5186 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Singhal, N. et al. Chromatin-remodeling components of the BAF complex facilitate reprogramming. Cell 141, 943–955 (2010). Singhal et al . demonstrate a requirement for the ES cell-specific BAF (esBAF) complex to reactivate the endogenous Oct4 locus in somatic nuclei during reprogramming.

    Article  CAS  PubMed  Google Scholar 

  191. van den Berg, D. L. et al. An Oct4-centered protein interaction network in embryonic stem cells. Cell Stem Cell 6, 369–381 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Pardo, M. et al. An expanded Oct4 interaction network: implications for stem cell biology, development, and disease. Cell Stem Cell 6, 382–395 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Floer, M. et al. A RSC/nucleosome complex determines chromatin architecture and facilitates activator binding. Cell 141, 407–418 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Cheloufi, S. The histone chaperone CAF-1 safeguards somatic cell identity. Nature 528, 218–224 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Ang, Y. S. et al. Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell 145, 183–197 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Apostolou, E. et al. Genome-wide chromatin interactions of the Nanog locus in pluripotency, differentiation, and reprogramming. Cell Stem Cell 12, 699–712 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Yang, P., Wu, W. & Macfarlan, T. S. Maternal histone variants and their chaperones promote paternal genome activation and boost somatic cell reprogramming. Bioessays 37, 52–59 (2015).

    Article  CAS  PubMed  Google Scholar 

  198. Lin, C. J., Koh, F. M., Wong, P., Conti, M. & Ramalho-Santos, M. Hira-mediated H3.3 incorporation is required for DNA replication and ribosomal RNA transcription in the mouse zygote. Dev. Cell 30, 268–279 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Inoue, A. & Zhang, Y. Nucleosome assembly is required for nuclear pore complex assembly in mouse zygotes. Nature Struct. Mol. Biol. 21, 609–616 (2014).

    Article  CAS  Google Scholar 

  200. Boskovic, A. et al. Higher chromatin mobility supports totipotency and precedes pluripotency in vivo. Genes Dev. 28, 1042–1047 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Oback, B. & Wells, D. N. Donor cell differentiation, reprogramming, and cloning efficiency: elusive or illusive correlation? Mol. Reprod. Dev. 74, 646–654 (2007).

    Article  CAS  PubMed  Google Scholar 

  202. Gonzalez-Munoz, E., Arboleda-Estudillo, Y., Otu, H. H. & Cibelli, J. B. Histone chaperone ASF1A is required for maintenance of pluripotency and cellular reprogramming. Science 345, 822–825 (2014).

    Article  CAS  PubMed  Google Scholar 

  203. Shinagawa, T. et al. Histone variants enriched in oocytes enhance reprogramming to induced pluripotent stem cells. Cell Stem Cell 14, 217–227 (2014).

    Article  CAS  PubMed  Google Scholar 

  204. Miyamoto, K. et al. Nuclear Wave1 is required for reprogramming transcription in oocytes and for normal development. Science 341, 1002–1005 (2013).

    Article  CAS  PubMed  Google Scholar 

  205. Nashun, B., Akiyama, T., Suzuki, M. G. & Aoki, F. Dramatic replacement of histone variants during genome remodeling in nuclear-transferred embryos. Epigenetics 6, 1489–1497 (2011).

    Article  CAS  PubMed  Google Scholar 

  206. Wen, D. et al. Histone variant H3.3 is an essential maternal factor for oocyte reprogramming. Proc. Natl Acad. Sci. USA 111, 7325–7330 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Gao, S. et al. Rapid H1 linker histone transitions following fertilization or somatic cell nuclear transfer: evidence for a uniform developmental program in mice. Dev. Biol. 266, 62–75 (2004).

    Article  CAS  PubMed  Google Scholar 

  208. Burton, A. & Torres-Padilla, M. E. Chromatin dynamics in the regulation of cell fate allocation during early embryogenesis. Nat. Rev. Mol. Cell Biol. 15, 723–734 (2014).

    Article  CAS  PubMed  Google Scholar 

  209. Nakamura, T. et al. PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos. Nature 486, 415–419 (2012).

    Article  CAS  PubMed  Google Scholar 

  210. Eggan, K. et al. X-chromosome inactivation in cloned mouse embryos. Science 290, 1578–1581 (2000).

    Article  CAS  PubMed  Google Scholar 

  211. Pasque, V., Gillich, A., Garrett, N. & Gurdon, J. B. Histone variant macroH2A confers resistance to nuclear reprogramming. EMBO J. 30, 2373–2387 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Inoue, K. et al. Impeding Xist expression from the active X chromosome improves mouse somatic cell nuclear transfer. Science 330, 496–499 (2010).

    Article  CAS  PubMed  Google Scholar 

  213. Chan, M. M., Smith, Z. D., Egli, D., Regev, A. & Meissner, A. Mouse ooplasm confers context-specific reprogramming capacity. Nat. Genet. 44, 978–980 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Matoba, S. et al. Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation. Cell 159, 884–895 (2014). This work identified H3K9 methylation as a significant epigenetic impediment to successful zygotic genome activation and progression of embryonic development during SCNT.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Blelloch, R. et al. Reprogramming efficiency following somatic cell nuclear transfer is influenced by the differentiation and methylation state of the donor nucleus. Stem Cells 24, 2007–2013 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Pereira, C. F. et al. ESCs require PRC2 to direct the successful reprogramming of differentiated cells toward pluripotency. Cell Stem Cell 6, 547–556 (2010).

    Article  CAS  PubMed  Google Scholar 

  217. Piccolo, F. M. et al. Different roles for Tet1 and Tet2 proteins in reprogramming-mediated erasure of imprints induced by EGC fusion. Mol. Cell 49, 1023–1033 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Foshay, K. M. et al. Embryonic stem cells induce pluripotency in somatic cell fusion through biphasic reprogramming. Mol. Cell 46, 159–170 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Han, D. W. et al. Pluripotential reprogramming of the somatic genome in hybrid cells occurs with the first cell cycle. Stem Cells 26, 445–454 (2008).

    Article  CAS  PubMed  Google Scholar 

  220. Looney, T. J. et al. Systematic mapping of occluded genes by cell fusion reveals prevalence and stability of cis-mediated silencing in somatic cells. Genome Res. 24, 267–280 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Weintraub, H. et al. Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proc. Natl Acad. Sci. USA 86, 5434–5438 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank members of the Meissner laboratory, in particular D. Cacchiarelli, J. Charlton, J. Donaghey and A. Arczewska, as well as A. De Los Angeles and T. S. Mikkelsen for thoughtful discussions, and B. E. Bernstein and R. P. Koche for critical reading of the text. A.M. is a New York Stem Cell Foundation Robertson Investigator and is supported by the New York Stem Cell Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Meissner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (box)

Cell fate reprogramming: criteria and concepts (PDF 136 kb)

Supplementary information S2 (box)

Epigenetic maintenance in the absence of transcription factor binding (PDF 125 kb)

Supplementary information S3 (box)

Resolution of bivalent domains during lineage commitment (PDF 117 kb)

Supplementary information S4 (box)

Silencing of retroviral vectors in pluripotent cells (PDF 112 kb)

PowerPoint slides

Glossary

Totipotent

Defines a cell that can autonomously contribute to all of the tissues of a developing organism, including extra-embryonic and placental tissues, as well as those of the embryo proper. This property is restricted during development to the zygote and the first two cleavage divisions.

Pluripotency

The ability of a cell to contribute to all embryonic tissues, including the germ line. Pluripotency is most stringently confirmed by the generation of germline-competent organisms after injection of cells into tetraploidized, embryo-deficient blastocysts.

Direct reprogramming

Stable, experimentally induced changes in cellular state driven by a defined set of ectopic factors or conditions.

Chromatin remodellers

ATP-dependent proteins and complexes that change the relative positioning of nucleosomes to support either the activation or repression of a gene.

p300

Co-activator protein with histone acetyltransferase activity, which associates with transcription factor-occupied enhancers that are actively engaged in promoting gene transcription.

Non-canonical PRC1 complexes

Whereas canonical Polycomb repressive complex 1 (PRC1) contains a chromobox subunit that recognizes PRC2-deposited epigenetic modifications, non-canonical PRC1 complexes are recruited to chromatin by cofactors such as Lys-specific demethylase 2B (KDM2B), which targets unmethylated CpG islands.

CXXC domain

Cysteine-rich zinc-finger domain found in numerous chromatin-modifying complexes that preferentially binds to unmethylated CpG-rich sequences such as CpG islands.

Naive or ground state cells

Pluripotent stem cells with properties of the inner cell mass or early epiblast, directed by culturing in media supplemented with leukaemia inhibitory factor and two kinase inhibitors (2i/LIF) that suppress fibroblast growth factor signalling and support WNT signalling.

Primed state cells

Pluripotent stem cells that require fibroblast growth factor and activin signalling for continuous self-renewal. Associated with non-murine (including human) embryonic stem cells, with phenotypic and molecular features of the post-implantation epiblast.

Endogenous retroviruses

(ERVs). Genomic retrotransposons originating from exogenous retroviruses, but which propagate intracellularly within germline-competent cell states to enable inheritance to the subsequent generation.

Krüppel-associated box domain-containing zinc-finger proteins

(KRAB-ZFPs). Zinc-finger proteins that contain an amino-terminal KRAB domain, which interfaces with the tripartite motif-containing protein 28 (TRIM28)–SETDB1 complex to direct repressive histone H3 Lys9 trimethylation, and a variable number of rapidly evolving zinc-finger domains that can confer sequence specificity to emerging repetitive elements.

Histone H3 variant

Histone H3 variants include H3.1 and H3.2, which are typically incorporated into chromatin during DNA replication, as well as H3.3, which is directed to loci in a replication-independent manner by specific histone chaperones.

Super-enhancers

The topological coordination of multiple, spatially discrete enhancers to direct the expression of a gene through the Mediator complex. Often, super-enhancers are necessary for the expression of essential cell type-specific genes.

Mediator

A large, multi-subunit complex that interacts with and spatially juxtaposes transcription factors at promoters and enhancers to coordinate transcription.

Pioneer factors

Sequence-specific DNA-binding factors that can engage compact chromatin to initiate the formation of nucleosome-free regions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, Z., Sindhu, C. & Meissner, A. Molecular features of cellular reprogramming and development. Nat Rev Mol Cell Biol 17, 139–154 (2016). https://doi.org/10.1038/nrm.2016.6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm.2016.6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing