Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

From polyploidy to aneuploidy, genome instability and cancer

Key Points

  • Polyploidy is a relatively common event in eukaryotic organisms. Polyploid cells can arise during development by cell fusion, endoreplication or an abortive cell cycle. There is also evidence that polyploid cells might form more frequently during ageing or stress.

  • The physiology of polyploids is altered relative to diploids: there are alterations in gene expression and genetic stability, and certain genes that are not essential for viability in diploid yeasts become essential in polyploid yeast, a phenomenon known as ploidy-specific lethality.

  • Increased ploidy in animal cells usually results in a proportional increase in the number of centrosomes. The presence of supernumerary centrosomes can lead to: i) cell-cycle arrest by a recently described tetraploidy checkpoint; ii) apoptosis; iii) a return to a diploid state through a poorly characterized process that is known as a reduction mitosis; or iv) successful propagation after an adaptation that allows the clustering of extra centrosomes.

  • Tumour cells frequently have an increased number of aberrant chromosomes (aneuploidy) and extra centrosomes.

  • It is generally assumed that aneuploidy develops from diploid cells by ongoing chromosomal instability. In light of recent studies on the tetraploidy checkpoint, and because of the need to explain why tumours often have extra centrosomes, we reconsider an old hypothesis about the genesis of aneuploidy: that aneuploidy can develop in cells after an abortive cell cycle that forces cells through a tetraploid intermediate. Furthermore, we consider the possibility that the altered physiology of cells with extra chromosomes, particularly the phenomenon of ploidy-specific lethality, could be exploited to develop new drugs that selectively kill cancer cells but not normal cells.

Abstract

Polyploidy is a frequent phenomenon in the eukaryotic world, but the biological properties of polyploid cells are not well understood. During evolution, polyploidy is thought to be an important mechanism that contributes to speciation. Polyploid, usually non-dividing, cells are formed during development in otherwise diploid organisms. A growing amount of evidence indicates that polyploid cells also arise during a variety of pathological conditions. Genetic instability in these cells might provide a route to aneuploidy and thereby contribute to the development of cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Several routes to polyploidy.
Figure 2: The fate of tetraploid cells.
Figure 3: Potential mechanisms to generate aneuploid cells.

Similar content being viewed by others

References

  1. Stebbins, G. L. Types of polyploids: their classification and significance. Adv. Genet. 1, 403–429 (1947).

    Article  PubMed  Google Scholar 

  2. Otto, S. P. & Whitton, J. Polyploid incidence and evolution. Annu. Rev. Genet. 34, 401–437 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Taylor, M. V. Muscle differentiation: how two cells become one. Curr. Biol. 12, R224–R228 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Vignery, A. Osteoclasts and giant cells: macrophage–macrophage fusion mechanism. Int. J. Exp. Pathol. 81, 291–304 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Deaven, L. L. & Kreizinger, J. D. Cell fusion as a mechanism for the origin of polyploid cells in vitro. Experientia 27, 311–313 (1971).

    Article  CAS  PubMed  Google Scholar 

  6. Secchiero, P. et al. Human herpesvirus 7 infection induces profound cell cycle perturbations coupled to disregulation of cdc2 and cyclin B and polyploidization of CD4(+) T cells. Blood 92, 1685–1696 (1998).

    CAS  PubMed  Google Scholar 

  7. Hernandez, L. D., Hoffman, L. R., Wolfsberg, T. G. & White, J. M. Virus–cell and cell–cell fusion. Annu. Rev. Cell Dev. Biol. 12, 627–661 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Blau, H. M., Brazelton, T. R. & Weimann, J. M. The evolving concept of a stem cell: entity or function? Cell 105, 829–841 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Terada, N. et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416, 542–545 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Vassilopoulos, G., Wang, P. R. & Russell, D. W. Transplanted bone marrow regenerates liver by cell fusion. Nature 422, 901–904 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Wang, X. et al. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 422, 897–901 (2003). One of several examples of stem-cell plasticity that occurs by cell fusion. Uniquely, it shows that the polyploid fusion product can generate cells of normal ploidy by reduction mitosis.

    Article  CAS  PubMed  Google Scholar 

  12. Yang, Y., Geldmacher, D. S. & Herrup, K. DNA replication precedes neuronal cell death in Alzheimer's disease. J. Neurosci. 21, 2661–2668 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Edgar, B. A. & Orr-Weaver, T. L. Endoreplication cell cycles: more for less. Cell 105, 297–306 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Zimmet, J. & Ravid, K. Polyploidy: occurrence in nature, mechanisms, and significance for the megakaryocyte-platelet system. Exp. Hematol. 28, 3–16 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Cebolla, A. et al. The mitotic inhibitor ccs52 is required for endoreduplication and ploidy-dependent cell enlargement in plants. EMBO J. 18, 4476–4484 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kondorosi, E., Roudier, F. & Gendreau, E. Plant cell-size control: growing by ploidy? Curr. Opin. Plant Biol. 3, 488–492 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Ravid, K., Lu, J., Zimmet, J. M. & Jones, M. R. Roads to polyploidy: the megakaryocyte example. J. Cell Physiol. 190, 7–20 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Smith, A. V. & Orr-Weaver, T. L. The regulation of the cell cycle during Drosophila embryogenesis: the transition to polyteny. Development 112, 997–1008 (1991).

    CAS  PubMed  Google Scholar 

  19. Nagata, Y., Muro, Y. & Todokoro, K. Thrombopoietin-induced polyploidization of bone marrow megakaryocytes is due to a unique regulatory mechanism in late mitosis. J. Cell Biol. 139, 449–457 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Waizenegger, I., Gimenez-Abian, J. F., Wernic, D. & Peters, J. M. Regulation of human separase by securin binding and autocleavage. Curr. Biol. 12, 1368–1378 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Minn, A. J., Boise, L. H. & Thompson, C. B. Expression of Bcl-xL and loss of p53 can cooperate to overcome a cell cycle checkpoint induced by mitotic spindle damage. Genes Dev. 10, 2621–2631 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Lanni, J. S. & Jacks, T. Characterization of the p53-dependent postmitotic checkpoint following spindle disruption. Mol. Cell. Biol. 18, 1055–1064 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Andreassen, P. R., Lohez, O. D., Lacroix, F. B. & Margolis, R. L. N. Tetraploid state induces p53-dependent arrest of nontransformed mammalian cells in G1. Mol. Biol. Cell 12, 1315–1328 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Elledge, S. J. Cell cycle checkpoints: preventing an identity crisis. Science 274, 1664–1672 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Andreassen, P. R., Martineau, S. N. & Margolis, R. L. N. Chemical induction of mitotic checkpoint override in mammalian cells results in aneuploidy following a transient tetraploid state. Mutat. Res. 372, 181–194 (1996). A new checkpoint that functions in G1 to block the proliferation of tetraploid cells. The checkpoint is p53 dependent and its failure results in aneuploidy.

    Article  CAS  PubMed  Google Scholar 

  26. Sauer, K., Knoblich, J. A., Richardson, H. & Lehner, C. F. Distinct modes of cyclin E/cdc2c kinase regulation and S-phase control in mitotic and endoreduplication cycles of Drosophila embryogenesis. Genes Dev. 9, 1327–1339 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Guidotti, J. E. et al. Liver cell polyploidization: a pivotal role for binuclear hepatocytes. J. Biol. Chem. 278, 19095–19101 (2003). Polyploid hepatocytes are formed by mitotic failure. The polyploids proceed through mitosis with a bipolar spindle by clustering extra chromosomes.

    Article  CAS  PubMed  Google Scholar 

  28. Gorla, G. R., Malhi, H. & Gupta, S. Polyploidy associated with oxidative injury attenuates proliferative potential of cells. J. Cell Sci. 114, 2943–2951 (2001).

    CAS  PubMed  Google Scholar 

  29. Gupta, S. Hepatic polyploidy and liver growth control. Semin. Cancer Biol. 10, 161–171 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Vliegen, H. W., Eulderink, F., Bruschke, A. V., van der Laarse, A. & Cornelisse, C. J. Polyploidy of myocyte nuclei in pressure overloaded human hearts: a flow cytometric study in left and right ventricular myocardium. Am. J. Cardiovasc. Pathol. 5, 27–31 (1995).

    CAS  PubMed  Google Scholar 

  31. Hixon, M. L. et al. Cks1 mediates vascular smooth muscle cell polyploidization. J. Biol. Chem. 275, 40434–40442 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Oberringer, M. et al. Centrosome multiplication accompanies a transient clustering of polyploid cells during tissue repair. Mol. Cell Biol. Res. Commun. 2, 190–196 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Kudryavtsev, B. N., Kudryavtseva, M. V., Sakuta, G. A. & Stein, G. I. Human hepatocyte polyploidization kinetics in the course of life cycle. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 64, 387–393 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Wagner, M. et al. Replicative senescence of human endothelial cells in vitro involves G1 arrest, polyploidization and senescence-associated apoptosis. Exp. Gerontol. 36, 1327–1347 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Smogorzewska, A. & de Lange, T. Different telomere damage signaling pathways in human and mouse cells. EMBO J. 21, 4338–4348 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Galipeau, P. C. et al. 17p (p53) allelic losses, 4N (G2/tetraploid) populations, and progression to aneuploidy in Barrett's esophagus. Proc. Natl Acad. Sci. USA 93, 7081–7084 (1996). Increased tetraploid populations in Barrett's oesophagus predict progression to aneuploidy, and the development of ploidy abnormalities is interdependent with inactivation of the p53 gene in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Margolis, R. L., Lohez, O. D. & Andreassen, P. R. G1 tetraploidy checkpoint and the suppression of tumorigenesis. J. Cell. Biochem. 88, 673–683 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Vinogradov, A. E., Anatskaya, O. V. & Kudryavtsev, B. N. Relationship of hepatocyte ploidy levels with body size and growth rate in mammals. Genome 44, 350–360 (2001). Comparison of hepatocyte ploidy levels and its relationship to body size, postnatal growth rate and postnatal-development type. The study shows the interdependency of liver ploidy and the maximal metabolic rate.

    Article  CAS  PubMed  Google Scholar 

  39. Brodsky, V. & Delone, G. V. Functional control of hepatocyte proliferation. Comparison with the temporal control of cardiomyocyte proliferation. Biomed. Sci. 1, 467–470 (1990).

    PubMed  Google Scholar 

  40. Torres, S. et al. Thyroid hormone regulation of rat hepatocyte proliferation and polyploidization. Am. J. Physiol. 276, G155–G163 (1999).

    CAS  PubMed  Google Scholar 

  41. Mable, B. K. & Otto, S. P. Masking and purging mutations following EMS treatment in haploid, diploid and tetraploid yeast (Saccharomyces cerevisiae). Genet. Res. 77, 9–26 (2001).

    CAS  PubMed  Google Scholar 

  42. Mortimer, R. K. Radiobiological and genetic studies on a polyploid series (haploid to hexaploid) of Saccharomyces cerevisiae. Radiat. Res. 9, 312–326 (1958).

    Article  CAS  PubMed  Google Scholar 

  43. Epstein, C. J. Cell size, nuclear content, and the development of polyploidy in the mammalian liver. Proc. Natl Acad. Sci. USA 57, 327–334 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tyson, C. B., Lord, P. G. & Wheals, A. E. Dependency of size of Saccharomyces cerevisiae cells on growth rate. J. Bacteriol. 138, 92–98 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Nurse, P., Thuriaux, P. & Nasmyth, K. Genetic control of the cell division cycle in the fission yeast Schizosaccharomyces pombe. Mol. Gen. Genet. 146, 167–178 (1976).

    Article  CAS  PubMed  Google Scholar 

  46. Rupes, I. Checking cell size in yeast. Trends Genet. 18, 479–485 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Hartwell, L. H. & Unger, M. W. Unequal division in Saccharomyces cerevisiae and its implications for the control of cell division. J. Cell Biol. 75, 422–435 (1977).

    Article  CAS  PubMed  Google Scholar 

  48. Brooks, R. F. & Shields, R. Cell growth, cell division and cell size homeostasis in Swiss 3T3 cells. Exp. Cell Res. 156, 1–6 (1985).

    Article  CAS  PubMed  Google Scholar 

  49. Conlon, I. J., Dunn, G. A., Mudge, A. W. & Raff, M. C. Extracellular control of cell size. Nature Cell Biol. 3, 918–921 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Conlon, I. & Raff, M. Differences in the way a mammalian cell and yeast cells coordinate cell growth and cell-cycle progression. J. Biol. 2, 7 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Schulz, H. N. & Jorgensen, B. B. Big bacteria. Annu. Rev. Microbiol. 55, 105–137 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Kato, N. & Lam, E. Chromatin of endoreduplicated pavement cells has greater range of movement than that of diploid guard cells in Arabidopsis thaliana. J. Cell Sci. 116, 2195–2201 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Mayer, V. W. & Aguilera, A. High levels of chromosome instability in polyploids of Saccharomyces cerevisiae. Mutat. Res. 231, 177–186 (1990).

    Article  CAS  PubMed  Google Scholar 

  54. Mayer, V. W., Goin, C. J., Arras, C. A. & Taylor-Mayer, R. E. Comparison of chemically induced chromosome loss in a diploid, triploid, and tetraploid strain of Saccharomyces cerevisiae. Mutat. Res. 279, 41–48 (1992).

    Article  CAS  PubMed  Google Scholar 

  55. Molnar, M. & Sipiczki, M. Polyploidy in the haplontic yeast Schizosaccharomyces pombe: construction and analysis of strains. Curr. Genet. 24, 45–52 (1993).

    Article  CAS  PubMed  Google Scholar 

  56. Martin, G. M. & Sprague, C. A. Parasexual cycle in cultivated human somatic cells. Science 166, 761–763 (1969).

    Article  CAS  PubMed  Google Scholar 

  57. Lengauer, C., Kinzler, K. W. & Vogelstein, B. N. Genetic instability in colorectal cancers. Nature 386, 623–627 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Kondo, Y. Developmental capacity and chromosome number in the offspring of artificially produced autotetraploids of Rana nigromaculata. Zool. Sci. 19, 877–883 (2002).

    Article  Google Scholar 

  59. Diter, A., Guyomard, R. & Chourrout, D. Gene segregation in induced tetraploid rainbow trout: genetic evidence of preferential pairing of homologous chromosomes. Genome 30, 547–553 (1988).

    Article  CAS  PubMed  Google Scholar 

  60. Galitski, T., Saldanha, A. J., Styles, C. A., Lander, E. S. & Fink, G. R. Ploidy regulation of gene expression. Science 285, 251–254 (1999). Microarray-based gene expression analysis identified genes showing ploidy-dependent expression in isogenic Saccharomyces cerevisiae strains.

    Article  CAS  PubMed  Google Scholar 

  61. Osborn, T. C. et al. Understanding mechanisms of novel gene expression in polyploids. Trends Genet. 19, 141–147 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Lin, H. et al. Polyploids require Bik1 for kinetochore–microtubule attachment. J. Cell Biol. 155, 1173–1184 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Martinez-Perez, E., Shaw, P. J. & Moore, G. Polyploidy induces centromere association. J. Cell Biol. 148, 233–238 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Doxsey, S. Re-evaluating centrosome function. Nature Rev. Mol. Cell Biol. 2, 688–698 (2001).

    Article  CAS  Google Scholar 

  65. Hinchcliffe, E. H. & Sluder, G. 'It takes two to tango': understanding how centrosome duplication is regulated throughout the cell cycle. Genes Dev. 15, 1167–1181 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Bartek, J. & Lukas, J. Mammalian G1- and S-phase checkpoints in response to DNA damage. Curr. Opin. Cell Biol. 13, 738–747 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Borel, F., Lohez, O. D., Lacroix, F. B. & Margolis, R. L. Multiple centrosomes arise from tetraploidy checkpoint failure and mitotic centrosome clusters in p53 and RB pocket protein-compromised cells. Proc. Natl Acad. Sci. USA 99, 9819–9824 (2002). Multiple-centrosome occurrence in p53- and Rb-deficient cells results from failure of the tetraploidy checkpoint rather than from a direct effect of p53 and Rb on centrosome overduplication.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Meraldi, P., Honda, R. & Nigg, E. A. Aurora-A overexpression reveals tetraploidization as a major route to centrosome amplification in p53−/− cells. EMBO J. 21, 483–492 (2002). Overexpression of Aurora A, Aurora B and Polo-like kinase results in centrosome amplification and an abortive cell cycle.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Andreassen, P. R., Lacroix, F. B., Lohez, O. D. & Margolis, R. L. Neither p21WAF1 nor 14-3-3σ prevents G2 progression to mitotic catastrophe in human colon carcinoma cells after DNA damage, but p21WAF1 induces stable G1 arrest in resulting tetraploid cells. Cancer Res. 61, 7660–7668 (2001).

    CAS  PubMed  Google Scholar 

  70. Shackney, S. E. et al. Model for the genetic evolution of human solid tumors. Cancer Res. 49, 3344–3354 (1989).

    CAS  PubMed  Google Scholar 

  71. Reid, B. J. et al. Barrett's esophagus: ordering the events that lead to cancer. Eur. J. Cancer Prev. 5 (Suppl. 2), 57–65 (1996).

    Article  PubMed  Google Scholar 

  72. Pera, F. & Rainer, B. Studies of multipolar mitoses in euploid tissue cultures. I. Somatic reduction to exactly haploid and triploid chromosome sets. Chromosoma 42, 71–86 (1973).

    Article  CAS  PubMed  Google Scholar 

  73. Bennett, R. J. & Johnson, A. D. Completion of a parasexual cycle in Candida albicans by induced chromosome loss in tetraploid strains. EMBO J. 22, 2505–2515 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ring, D., Hubble, R. & Kirschner, M. Mitosis in a cell with multiple centrioles. J. Cell Biol. 94, 549–556 (1982).

    Article  CAS  PubMed  Google Scholar 

  75. Nigg, E. A. Centrosome aberrations: cause or consequence of cancer progression? Nature Rev. Cancer 2, 815–825 (2002).

    Article  CAS  Google Scholar 

  76. Martin, G. M. & Sprague, C. A. Vinblastine induces multipolar mitoses in tetraploid human cells. Exp. Cell Res. 63, 466–467 (1970).

    Article  CAS  PubMed  Google Scholar 

  77. Mitelman, F., Johansson, B. & Mertens, F., (eds) Mitelman Database of Chromosome Aberrations in Cancer. http://cgap.nci.gov/Chromosomes/Mitelman (2003).

  78. Matzke, M. A., Mette, M. F., Kanno, T. & Matzke, A. J. Does the intrinsic instability of aneuploid genomes have a causal role in cancer? Trends Genet. 19, 253–256 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Duesberg, P. & Rasnick, D. N. Aneuploidy, the somatic mutation that makes cancer a species of its own. Cell Motil. Cytoskeleton 47, 81–107 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Nowell, P. C. Genetic instability and tumor development. Basic Life Sci. 57, 221–231 (1991).

    CAS  PubMed  Google Scholar 

  81. Cahill, D. P., Kinzler, K. W., Vogelstein, B. & Lengauer, C. Genetic instability and darwinian selection in tumours. Trends Cell Biol. 9, M57–M60 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Nowak, M. A. et al. The role of chromosomal instability in tumor initiation. Proc. Natl Acad. Sci. USA 99, 16226–16231 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kinzler, K. W. & Vogelstein, B. Cancer-susceptibility genes. Gatekeepers and caretakers. Nature 386, 761–763 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Albertson, D. G., Collins, C., McCormick, F. & Gray, J. W. Chromosome aberrations in solid tumors. Nature Genet. 34, 369–376 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Waldman, F. M. et al. Chromosomal alterations in ductal carcinomas in situ and their in situ recurrences. J. Natl Cancer Inst. 92, 313–320 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Kuukasjarvi, T. et al. Genetic heterogeneity and clonal evolution underlying development of asynchronous metastasis in human breast cancer. Cancer Res. 57, 1597–1604 (1997).

    CAS  PubMed  Google Scholar 

  87. Kuukasjarvi, T. et al. Genetic changes in intraductal breast cancer detected by comparative genomic hybridization. Am. J. Pathol. 150, 1465–1471 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Lingle, W. L. et al. Centrosome amplification drives chromosomal instability in breast tumor development. Proc. Natl Acad. Sci. USA 99, 1978–1983 (2002). About 60–80% of breast cancers are aneuploid and 80% have centrosome amplification. This is independent of p53 status and positively correlates with tumour development and progression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. McEachern, M. J., Krauskopf, A. & Blackburn, E. H. Telomeres and their control. Annu. Rev. Genet. 34, 331–358 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Masutomi, K. & Hahn, W. C. Telomerase and tumorigenesis. Cancer Lett. 194, 163–172 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. DePinho, R. A. & Wong, K. K. The age of cancer: telomeres, checkpoints, and longevity. J. Clin. Invest. 111, S9–S14 (2003).

    CAS  PubMed  Google Scholar 

  92. Blasco, M. A. & Hahn, W. C. Evolving views of telomerase and cancer. Trends Cell Biol. 13, 289–294 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Kim, N. W. et al. Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011–2015 (1994).

    Article  CAS  PubMed  Google Scholar 

  94. Bryan, T. M., Englezou, A., Dalla-Pozza, L., Dunham, M. A. & Reddel, R. R. Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nature Med. 3, 1271–1274 (1997).

    Article  CAS  PubMed  Google Scholar 

  95. Artandi, S. E. et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 406, 641–645 (2000). Telomere attrition in ageing telomerase-deficient p53 -mutant mice promotes the development of epithelial cancers by a process of fusion-bridge-breakage that leads to the formation of complex non-reciprocal translocations.

    Article  CAS  PubMed  Google Scholar 

  96. Boveri, T. Zur Frage der Entstehung maligner Tumoren. (Gustav Fisher Verlag, Jena, Germany, 1914).

    Google Scholar 

  97. D'Assoro, A. B., Lingle, W. L. & Salisbury, J. L. Centrosome amplification and the development of cancer. Oncogene 21, 6146–6153 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Pihan, G. A., Wallace, J., Zhou, Y. & Doxsey, S. J. Centrosome abnormalities and chromosome instability occur together in pre-invasive carcinomas. Cancer Res. 63, 1398–1404 (2003). Some of the most common human cancers have centrosome defects together with mitotic spindle defects and chromosome instability even before invasion. The development of centrosome defects does not require the abrogation of p53 function.

    CAS  PubMed  Google Scholar 

  99. Duensing, S. & Munger, K. Centrosomes, genomic instability, and cervical carcinogenesis. Crit. Rev. Eukaryot. Gene Expr. 13, 9–23 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Fukasawa, K., Choi, T., Kuriyama, R., Rulong, S. & Vande Woude, G. F. Abnormal centrosome amplification in the absence of p53. Science 271, 1744–1747 (1996).

    Article  CAS  PubMed  Google Scholar 

  101. Duensing, S. & Munger, K. Centrosome abnormalities, genomic instability and carcinogenic progression. Biochim. Biophys. Acta 1471, M81–M88 (2001).

    CAS  PubMed  Google Scholar 

  102. Zhou, H. et al. Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nature Genet. 20, 189–193 (1998).

    Article  CAS  PubMed  Google Scholar 

  103. Kaneko, Y. & Knudson, A. G. Mechanism and relevance of ploidy in neuroblastoma. Genes Chromosom. Cancer 29, 89–95 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Levine, D. S., Sanchez, C. A., Rabinovitch, P. S. & Reid, B. J. Formation of the tetraploid intermediate is associated with the development of cells with more than four centrioles in the elastase-simian virus 40 tumor antigen transgenic mouse model of pancreatic cancer. Proc. Natl Acad. Sci. USA 88, 6427–6431 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hartwell, L. H., Szankasi, P., Roberts, C. J., Murray, A. W. & Friend, S. H. Integrating genetic approaches into the discovery of anticancer drugs. Science 278, 1064–1068 (1997).

    Article  CAS  PubMed  Google Scholar 

  106. Kamb, A. Consequences of nonadaptive alterations in cancer. Mol. Biol. Cell 14, 2201–2205 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wendel, J. F. Genome evolution in polyploids. Plant Mol. Biol. 42, 225–249 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Soltis, D. E. & Soltis, P. S. Polyploidy: recurrent formation and genome evolution. Trends Ecol. Evol. 14, 348–352 (1999).

    Article  CAS  PubMed  Google Scholar 

  109. Wolfe, K. H. Yesterday's polyploids and the mystery of diploidization. Nature Rev. Genet. 2, 333–341 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Beaton, M. J. & Hebert, P. N. Geographical parthenogenesis and polyploidy in Daphnia pulex. Am. Nat. 132, 837–845 (1988).

    Article  Google Scholar 

  111. Becak, M. L. & Becak, W. Evolution by polyploidy in Amphibia: new insights. Cytogenet. Cell Genet. 80, 28–33 (1998).

    Article  CAS  PubMed  Google Scholar 

  112. Bogart, J. P. & Licht, L. E. Reproduction and the origin of polyploids in hybrid salamanders of the genus Ambystoma. Can. J. Genet. Cytol. 28, 605–617 (1986).

    Article  CAS  PubMed  Google Scholar 

  113. Ohno, S., Wolf, U. & Atkin, N. B. Evolution from fish to mammals by gene duplication. Hereditas 59, 169–187 (1968).

    Article  CAS  PubMed  Google Scholar 

  114. Makalowski, W. Are we polyploids? A brief history of one hypothesis. Genome Res. 11, 667–670 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Bailey, J. A. et al. Recent segmental duplications in the human genome. Science 297, 1003–1007 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Comai, L. Genetic and epigenetic interactions in allopolyploid plants. Plant Mol. Biol. 43, 387–399 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Polymenis, M. & Schmidt, E. V. Coupling of cell division to cell growth by translational control of the G1 cyclin CLN3 in yeast. Genes Dev. 11, 2522–2531 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Berset, C., Trachsel, H. & Altmann, M. The TOR (target of rapamycin) signal transduction pathway regulates the stability of translation initiation factor eIF4G in the yeast Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 95, 4264–4269 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Jorgensen, P., Nishikawa, J. L., Breitkreutz, B. J. & Tyers, M. Systematic identification of pathways that couple cell growth and division in yeast. Science 297, 395–400 (2002).

    Article  CAS  PubMed  Google Scholar 

  120. Zhang, J. et al. Genomic scale mutant hunt identifies cell size homeostasis genes in S. cerevisiae. Curr. Biol. 12, 1992–2001 (2002).

    Article  CAS  PubMed  Google Scholar 

  121. Coelho, C. M. & Leevers, S. J. Do growth and cell division rates determine cell size in multicellular organisms? J. Cell Sci. 113, 2927–2934 (2000).

    CAS  PubMed  Google Scholar 

  122. Montagne, J. et al. Drosophila S6 kinase: a regulator of cell size. Science 285, 2126–2129 (1999).

    Article  CAS  PubMed  Google Scholar 

  123. Chung, J., Kuo, C. J., Crabtree, G. R. & Blenis, J. Rapamycin-FKBP specifically blocks growth-dependent activation of and signaling by the 70 kd S6 protein kinases. Cell 69, 1227–1236 (1992).

    Article  CAS  PubMed  Google Scholar 

  124. Nelsen, C. J., Rickheim, D. G., Tucker, M. M., Hansen, L. K. & Albrecht, J. H. Evidence that cyclin D1 mediates both growth and proliferation downstream of TOR in hepatocytes. J. Biol. Chem. 278, 3656–3663 (2003).

    Article  CAS  PubMed  Google Scholar 

  125. Mitchison, J. M. Growth during the cell. Int. Rev. Cytol. 226, 165–258 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to J. Cande, M. Gupta, T. Fujiwara and other members of the Pellman lab for helpful discussions. We thank G. Fink, R. DePinho, A. DiAndrea, M. McLaughlin and M. Raschle for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Pellman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

OMIM

Barrett's oesophagus

Saccharomyces genome database

Bik1

CLN1

CLN2

Cln3

FLO11

Swiss-Prot

Akt1

CLIP-170

cyclin D1

p21

p53

Rb

S6 ribosomal protein

TOR

Glossary

POLYPLOIDY

An increase in DNA content by whole-number multiples of the entire set of chromosomes.

ANEUPLOIDY

Deviation from the normal 2N complement of chromosomes that is usually accompanied by structural rearrangements of chromosomes.

POLYTENE CHROMOSOME

A type of chromosome in some polyploid cells that is formed when several copies of a homologous chromosome are aligned side by side to give a giant chromosome, in which distinct chromosome bands are visible.

MEGAKARYOCYTE

The bone-marrow precursor cell that gives rise to blood platelets. During differentiation, megakaryocytes become polyploid by endoreplication.

ANAPHASE

The stage of mitosis that begins with the separation of sister chromatids towards the poles of the spindle (anaphase A), followed by spindle elongation (anaphase B).

SENESCENCE

Passage-dependent death of tissue-culture cells.

TOR-FAMILY KINASES

(TOR, target of rapamycin). A family of kinases conserved in all eukaryotes that are sensitive to rapamycin and function in nutrient-sensing signal transduction, regulate translation and promote cell-cycle progression.

CYCLINS

A family of proteins, the classic members of which fluctuate in concentration throughout the cell cycle, and which regulate processes such as cell-cycle progression by binding to cell-cycle-dependent kinases.

KINETOCHORE

A large multiprotein complex that assembles onto the centromere of the chromosome and links the chromosome to the microtubules of the mitotic spindle.

CENTROSOME

A structure that occurs close to the nucleus in eukaryotic cells during interphase; it comprises a pair of centrioles, satellite bodies and a cytoplasmic zone and, in animal cells, serves as the main microtubule-organizing centre.

MICROTUBULE-ORGANIZING CENTRE (MTOC)

The MTOC contains γ-tubulin and other proteins that are required to nucleate microtubules. In animals, the centrosome is usually the dominant MTOC. In addition to the microtubule-nucleating material, the centrosome also contains the centriole. The spindle pole body is the equivalent of the centrosome in yeast.

TELOMERE

A segment at the end of each chromosome arm that consists of a series of repeated DNA sequences.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Storchova, Z., Pellman, D. From polyploidy to aneuploidy, genome instability and cancer. Nat Rev Mol Cell Biol 5, 45–54 (2004). https://doi.org/10.1038/nrm1276

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1276

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing