Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The SANT domain: a unique histone-tail-binding module?

Abstract

Chromatin-remodelling complexes have an important role in all DNA-mediated processes and, although much is known about how these enzymes regulate chromosomal DNA accessibility, how they interact with their histone substrates has remained unclear. However, recent studies have indicated that the SANT domain has a central role in chromatin remodelling by functioning as a unique histone-interaction module that couples histone binding to enzyme catalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The SANT domain is a highly conserved motif that is similar to Myb DNA-binding domains.
Figure 2: Structural modelling: the electrostatic-surface potential of selected SANT domains.
Figure 3: Combinatorial roles for distinct histone-binding modules.

Similar content being viewed by others

References

  1. Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Luger, K. & Richmond, T. J. The histone tails of the nucleosome. Curr. Opin. Genet. Dev. 8, 140–146 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Hansen, J. C., Tse, C. & Wolffe, A. P. Structure and function of the core histone N-termini: more than meets the eye. Biochemistry 37, 17637–17641 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Marmorstein, R. Protein modules that manipulate histone tails for chromatin regulation. Nature Rev. Mol. Cell Biol. 2, 422–432 (2001).

    Article  CAS  Google Scholar 

  5. Turner, B. M. Cellular memory and the histone code. Cell 111, 285–291 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Fry, C. J. & Peterson, C. L. Chromatin remodeling enzymes: who's on first? Curr. Biol. 11, R185–R197 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Narlikar, G. J., Fan, H. Y. & Kingston, R. E. Cooperation between complexes that regulate chromatin structure and transcription. Cell 108, 475–487 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Dhalluin, C. et al. Structure and ligand of a histone acetyltransferase bromodomain. Nature 399, 491–496 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Jacobson, R. H., Ladurner, A. G., King, D. S. & Tjian, R. Structure and function of a human TAFII250 double bromodomain module. Science 288, 1422–1425 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Ornaghi, P., Ballario, P., Lena, A. M., Gonzalez, A. & Filetici, P. The bromodomain of Gcn5p interacts in vitro with specific residues in the N terminus of histone H4. J. Mol. Biol. 287, 1–7 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Fischle, W. et al. Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. Genes Dev. 17, 1870–1881 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Min, J., Zhang, Y. & Xu, R. M. Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated at Lys 27. Genes Dev. 17, 1823–1828 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Aasland, R., Stewart, A. F. & Gibson, T. The SANT domain: a putative DNA-binding domain in the SWI-SNF and ADA complexes, the transcriptional co-repressor N-CoR and TFIIIB. Trends Biochem. Sci. 21, 87–88 (1996).

    CAS  PubMed  Google Scholar 

  14. Ogata, K. et al. Solution structure of a specific DNA complex of the Myb DNA-binding domain with cooperative recognition helices. Cell 79, 639–648 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Tahirov, T. H. et al. Crystals of ternary protein–DNA complexes composed of DNA-binding domains of c-Myb or v-Myb, C/EBPα or C/EBPβ and tom-1A promoter fragment. Acta Crystallogr. D 57, 1655–1658 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Grüne, T. et al. Crystal structure and functional analysis of a nucleosome recognition module of the remodeling factor ISWI. Mol. Cell 12, 449–460 (2003).

    Article  PubMed  Google Scholar 

  17. Barbaric, S., Reinke, H. & Horz, W. Multiple mechanistically distinct functions of SAGA at the PHO5 promoter. Mol. Cell. Biol. 23, 3468–3476 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Boyer, L. A. et al. Essential role for the SANT domain in the functioning of multiple chromatin remodeling enzymes. Mol. Cell 10, 935–942 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Sterner, D. E., Wang, X., Bloom, M. H., Simon, G. M. & Berger, S. L. The SANT domain of Ada2 is required for normal acetylation of histones by the yeast SAGA complex. J. Biol. Chem. 277, 8178–8186 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Hassan, A. H. et al. Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell 111, 369–379 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Marcus, G. A., Silverman, N., Berger, S. L., Horiuchi, J. & Guarente, L. Functional similarity and physical association between GCN5 and ADA2: putative transcriptional adaptors. EMBO J. 13, 4807–4815 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sterner, D. E. et al. Functional organization of the yeast SAGA complex: distinct components involved in structural integrity, nucleosome acetylation, and TATA-binding protein interaction. Mol. Cell. Biol. 19, 86–98 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Elfring, L. K. et al. Genetic analysis of brahma: the Drosophila homolog of the yeast chromatin remodeling factor SWI2/SNF2. Genetics 148, 251–265 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Yu, J., Li, Y., Ishizuka, T., Guenther, M. G. & Lazar, M. A. A SANT motif in the SMRT corepressor interprets the histone code and promotes histone deacetylation. EMBO J. 22, 3403–3410 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Guenther, M. G., Barak, O. & Lazar, M. A. The SMRT and N-CoR corepressors are activating cofactors for histone deacetylase 3. Mol. Cell. Biol. 21, 6091–6101 ( 2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Humphrey, G. W. et al. Stable histone deacetylase complexes distinguished by the presence of SANT domain proteins CoREST/kiaa0071 and Mta-L1. J. Biol. Chem. 276, 6817–6824 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. You, A., Tong, J. K., Grozinger, C. M. & Schreiber, S. L. CoREST is an integral component of the CoREST- human histone deacetylase complex. Proc. Natl Acad. Sci. USA 98, 1454–1458 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Georgel, P. T., Tsukiyama, T. & Wu, C. Role of histone tails in nucleosome remodeling by Drosophila NURF. EMBO J. 16, 4717–4726 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Corona, D. F. et al. ISWI is an ATP-dependent nucleosome remodeling factor. Mol. Cell 3, 239–245 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Clapier, C. R., Nightingale, K. P. & Becker, P. B. A critical epitope for substrate recognition by the nucleosome remodeling ATPase ISWI. Nucl. Acids Res. 30, 649–655 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Boyer, L. A. et al. Functional delineation of three groups of the ATP-dependent family of chromatin remodeling enzymes. J. Biol. Chem. 275, 18864–18870 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Zargarian, L. et al. Myb-DNA recognition: role of tryptophan residues and structural changes of the minimal DNA binding domain of c-Myb. Biochemistry 38, 1921–1929 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Langer, M. R., Tanner, K. G. & Denu, J. M. Mutational analysis of conserved residues in the GCN5 family of histone acetyltransferases. J. Biol. Chem. 276, 31321–31331 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Narlikar, G. J., Phelan, M. L. & Kingston, R. E. Generation and interconversion of multiple distinct nucleosomal states as a mechanism for catalyzing chromatin fluidity. Mol. Cell 8, 1219–1230 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116–120 (2001).

    CAS  PubMed  Google Scholar 

  36. Bannister, A. J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120–124 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl. Acids Res. 25, 4876–4882 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sali, A., Potterton, L., Yuan, F., van Vlijmen, H. & Karplus, M. Evaluation of comparative protein modeling by MODELLER. Proteins 23, 318–326 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank M. Lazar, P. Becker and C. Müller for communicating results before publication. We are particularly grateful to C. Müller for the early release of the crystal coordinates of the Iswi SANT domain, which allowed us to carry out our electrostatic analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig L. Peterson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

FlyBase

ISWI

Interpro

H2A

H2B

H3

H4

Myb DBD

Swiss-Prot

BRG1

CoREST

HDAC3

HMG1

MTA2

N-CoR

SMRT

TFIIIB

Saccharomyces genome database

Ada2

Gcn5

Rsc8

Swi3

FURTHER INFORMATION

Compute pI/Mw tool

SANT supplementary information

SMART

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyer, L., Latek, R. & Peterson, C. The SANT domain: a unique histone-tail-binding module?. Nat Rev Mol Cell Biol 5, 158–163 (2004). https://doi.org/10.1038/nrm1314

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1314

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing