Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Local force and geometry sensing regulate cell functions

Key Points

  • The shapes of eukaryotic cells and, ultimately, the organisms that they form are defined by cycles of mechanosensing, mechanotransduction and mechanoresponse. Recent studies have shed light into the molecular mechanisms of local mechanosensing and how transduction into biochemical signals could result in whole-cell responses to substrate rigidity.

  • Cellular mechanical phenomena can be described by sequential events: first, mechanosensing that involves a local molecular change in response to changes in force or in geometry (architecture of recognition sites); second, mechanotransduction that involves the conversion of force- or geometry-induced changes into biochemical signals; and third, mechanoresponses, which are changes in cellular function that involve integrated signal responses by motile systems in the short term, and by changes in the molecular composition of the cell in the long term.

  • Force sensing involves the detection of local changes in protein conformation, including protein unfolding. Known mechanisms that are affected by force include opening ion channels, unfolding matrix proteins, cytoplasmic protein unfolding, alterations of enzyme kinetics and catch-bond formation.

  • Geometry sensing involves the detection of the proper spacing of protein sites in clusters, as well as sensing changes in membrane curvature, or in the overall size of protein complexes.

  • Mechanotransduction involves the activation of several signalling pathways, including, but not limited to, the small G proteins, trimeric G proteins, tyrosine phosphorylation, inositol lipid metabolism and calcium level.

  • In tissue engineering, artificial environments have to be designed such that cells will go through different phases with time; however, modifications of the environment by cells pose an important, and complex, problem. The dynamic interplay between cells and their biological matrices over many cycles of mechanosensing, transduction, integrated cell response and matrix remodelling make it difficult to understand how cells know whether to grow, differentiate or undergo apoptosis.

Abstract

The shapes of eukaryotic cells and ultimately the organisms that they form are defined by cycles of mechanosensing, mechanotransduction and mechanoresponse. Local sensing of force or geometry is transduced into biochemical signals that result in cell responses even for complex mechanical parameters such as substrate rigidity and cell-level form. These responses regulate cell growth, differentiation, shape changes and cell death. Recent tissue scaffolds that have been engineered at the micro- and nanoscale level now enable better dissection of the mechanosensing, transduction and response mechanisms.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cellular mechanics involves three steps: mechanosensing, mechanotransduction and mechanoresponse.
Figure 2: Mechanisms of force sensing.
Figure 3: Mechanisms of form sensing.
Figure 4: Mechanisms of rigidity sensing.
Figure 5: Cellular processes of mechanosensing and responses.

Similar content being viewed by others

References

  1. Thomson, D'A. W. On Growth and Form 1116 (Dover Publications, 1992).

    Book  Google Scholar 

  2. Silver, F. H. & Siperko, L. M. Mechanosensing and mechanochemical transduction: how is mechanical energy sensed and converted into chemical energy in an extracellular matrix? Crit. Rev. Biomed. Eng. 31, 255–331 (2003).

    Article  PubMed  Google Scholar 

  3. Bershadsky, A. D., Balaban, N. Q. & Geiger, B. Adhesion-dependent cell mechanosensitivity. Annu. Rev. Cell Dev. Biol. 19, 677–695 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Martinac, B. Mechanosensitive ion channels: molecules of mechanotransduction. J. Cell Sci. 117, 2449–2460 (2004). Discusses ion-channel involvement in mechanosensing from the viewpoint of known channels in bacterial systems.

    Article  CAS  PubMed  Google Scholar 

  5. Kung, C. A possible unifying principle for mechanosensation. Nature 436, 647–654 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Shemesh, T., Geiger, B., Bershadsky, A. D. & Kozlov, M. M. Focal adhesions as mechanosensors: a physical mechanism. Proc. Natl Acad. Sci. USA 102, 12383–12388 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bustamante, C., Chemla, Y. R., Forde, N. R. & Izhaky, D. Mechanical processes in biochemistry. Annu. Rev. Biochem. 73, 705–748 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Vogel, V. Mechanotransduction involving multimodular proteins: converting force into biochemical signals. Annu. Rev. Biophys. Biomol. Struct. 35, June 2006 (doi: 10.1146/annurev.biophys.35.102013). Discusses how mechanical unfolding of individual protein modules might be involved in mechanosensing in both matrix and cytoskeletal proteins.

  9. Ingber, D. E. Mechanical control of tissue growth: function follows form. Proc. Natl Acad. Sci. USA 102, 11571–11572 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang, N. & Suo, Z. Long-distance propagation of forces in a cell. Biochem. Biophys. Res. Commun. 328, 1133–1138 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Chen, C. S., Tan, J. & Tien, J. Mechanotransduction at cell–matrix and cell–cell contacts. Annu. Rev. Biomed. Eng. 6, 275–302 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Praetorius, H. A. & Spring, K. R. A physiological view of the primary cilium. Annu. Rev. Physiol. 67, 515–529 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Tschumperlin, D. J. et al. Mechanotransduction through growth-factor shedding into the extracellular space. Nature 429, 83–86 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zaidel-Bar, R., Cohen, M., Addadi, L. & Geiger, B. Hierarchical assembly of cell–matrix adhesion complexes. Biochem. Soc. Trans. 32, 416–420 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Cukierman, E., Pankov, R., Stevens, D. R. & Yamada, K. M. Taking cell–matrix adhesions to the third dimension. Science 294, 1708–1712 (2001). Showed that the same matrix molecules produced different cellular responses when they were presented on a 2D surface versus a 3D matrix.

    Article  CAS  PubMed  Google Scholar 

  16. Cukierman, E., Pankov, R. & Yamada, K. M. Cell interactions with three-dimensional matrices. Curr. Opin. Cell Biol. 14, 633–639 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Katz, B. Z. et al. Physical state of the extracellular matrix regulates the structure and molecular composition of cell–matrix adhesions. Mol. Biol. Cell 11, 1047–1060 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Grinnell, F., Ho, C. H., Tamariz, E., Lee, D. J. & Skuta, G. Dendritic fibroblasts in three-dimensional collagen matrices. Mol. Biol. Cell 14, 384–395 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dalby, M. J., Riehle, M. O., Sutherland, D. S., Agheli, H. & Curtis, A. S. Morphological and microarray analysis of human fibroblasts cultured on nanocolumns produced by colloidal lithography. Eur. Cell Mater. 9, 1–8 (2005). Showed how nanometre-level geometrical features affected cell morphology and protein-expression levels.

    Article  CAS  PubMed  Google Scholar 

  20. Choquet, D., Felsenfeld, D. P. & Sheetz, M. P. Extracellular matrix rigidity causes strengthening of integrin–cytoskeleton linkages. Cell 88, 39–48 (1997). Provided the first evidence that cell responses to force were local. Subsequent papers uncovered important biochemical steps in the process.

    Article  CAS  PubMed  Google Scholar 

  21. Galbraith, C. G., Yamada, K. M. & Sheetz, M. P. The relationship between force and focal complex development. J. Cell Biol. 159, 695–705 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Riveline, D. et al. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J. Cell Biol. 153, 1175–1186 (2001). Showed that focal adhesions grew in response to force whether or not the force was produced internally or externally.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. von Wichert, G. et al. RPTP-α acts as a transducer of mechanical force on αv/β3-integrin-cytoskeleton linkages. J. Cell Biol. 161, 143–153 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Discher, D. E., Janmey, P. & Wang, Y. L. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005). Discusses the effects of rigidity on different cell functions.

    Article  CAS  PubMed  Google Scholar 

  25. Giannone, G. & Sheetz, M. P. Substrate rigidity and force define form through tyrosine phosphatase/kinase pathways. Trends Cell Biol. (in the press). Discusses the evidence that tyrosine phosphatase/kinase signalling pathways have an important signalling role in the rigidity response.

  26. Katsumi, A. et al. Effects of cell tension on the small GTPase Rac. J. Cell Biol. 158, 153–164 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Katsumi, A., Naoe, T., Matsushita, T., Kaibuchi, K. & Schwartz, M. A. Integrin activation and matrix binding mediate cellular responses to mechanical stretch. J. Biol. Chem. 280, 16546–16549 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Munevar, S., Wang, Y. L. & Dembo, M. Regulation of mechanical interactions between fibroblasts and the substratum by stretch-activated Ca2+ entry. J. Cell Sci. 117, 85–92 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Paszek, M. J. et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 8, 241–254 (2005). Tumours are stiffer than normal tissue and this paper shows that matrix stiffness perturbs epithelial morphogenesis by clustering integrins.

    Article  CAS  PubMed  Google Scholar 

  30. Jiang, G., Huang, A. H., Cai, Y., Tanase, M. & Sheetz, M. P. Rigidity sensing at the leading edge through αvβ3 integrins and RPTPα. Biophys. J. 9 Dec 2005 (biophysj.105.072462v1).

  31. Yeung, T. et al. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskeleton 60, 24–34 (2005).

    Article  PubMed  Google Scholar 

  32. Storm, C., Pastore, J. J., MacKintosh, F. C., Lubensky, T. C. & Janmey, P. A. Nonlinear elasticity in biological gels. Nature 435, 191–194 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Kellermayer, M. S., Smith, S. B., Granzier, H. L. & Bustamante, C. Folding-unfolding transitions in single titin molecules characterized with laser tweezers. Science 276, 1112–1116 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. M. & Gaub, H. E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109–1112 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Tskhovrebova, L., Trinick, J., Sleep, J. A. & Simmons, R. M. Elasticity and unfolding of single molecules of the giant muscle protein titin. Nature 387, 308–312 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Craig, D., Gao, M., Schulten, K. & Vogel, V. Tuning the mechanical stability of fibronectin type III modules through sequence variations. Structure 12, 21–30 (2004). Showed that steered molecular dynamics predicts the same order of force-dependent unfolding of protein modules as observed in atomic-force-microscopy experiments.

    Article  CAS  PubMed  Google Scholar 

  37. Craig, D., Krammer, A., Schulten, K. & Vogel, V. Comparison of the early stages of forced unfolding for fibronectin type III modules. Proc. Natl Acad. Sci. USA 98, 5590–5595 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Oberhauser, A. F., Badilla-Fernandez, C., Carrion-Vazquez, M. & Fernandez, J. M. The mechanical hierarchies of fibronectin observed with single-molecule AFM. J. Mol. Biol. 319, 433–447 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Lu, H., Isralewitz, B., Krammer, A., Vogel, V. & Schulten, K. Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation. Biophys. J. 75, 662–671 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Marszalek, P. E. et al. Mechanical unfolding intermediates in titin modules. Nature 402, 100–103 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Craig, D., Gao, M., Schulten, K. & Vogel, V. Structural insights into how divalent ions stabilize integrin binding to an RGD peptide under force. Structure 12, 1–10 (2004).

    Article  CAS  Google Scholar 

  42. Rounsevell, R. W., Steward, A. & Clarke, J. Biophysical investigations of engineered polyproteins: implications for force data. Biophys. J. 88, 2022–2029 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Bhasin, N. et al. Chemistry on a single protein, vascular cell adhesion molecule-1, during forced unfolding. J. Biol. Chem. 279, 45865–45874 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Baneyx, G., Baugh, L. & Vogel, V. Fibronectin extension and unfolding within cell matrix fibrils controlled by cytoskeletal tension. Proc. Natl Acad. Sci. USA 99, 5139–5143 (2002). Provided the first direct evidence that fibronectin is actually unfolded by cell-generated forces.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Barker, T. H. et al. SPARC regulates extracellular matrix organization through its modulation of integrin-linked kinase activity. J. Biol. Chem. 280, 36483–36493 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Pankov, R. & Yamada, K. M. Fibronectin at a glance. J. Cell Sci. 115, 3861–3863 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Khan, S. & Sheetz, M. P. Force effects on biochemical kinetics. Annu. Rev. Biochem. 66, 785–805 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Bustamante, C. Of torques, forces, and protein machines. Protein Sci. 13, 3061–3065 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Min, W. et al. Fluctuating enzymes: lessons from single-molecule studies. Acc. Chem. Res. 38, 923–931 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Forde, N. R., Izhaky, D., Woodcock, G. R., Wuite, G. J. & Bustamante, C. Using mechanical force to probe the mechanism of pausing and arrest during continuous elongation by Escherichia coli RNA polymerase. Proc. Natl Acad. Sci. USA 99, 11682–11687 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Purcell, T. J., Sweeney, H. L. & Spudich, J. A. A force-dependent state controls the coordination of processive myosin V. Proc. Natl Acad. Sci. USA 102, 13873–13878 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Langenbach, K. J. & Sottile, J. Identification of protein-disulfide isomerase activity in fibronectin. J. Biol. Chem. 274, 7032–7038 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Schnepel, J. & Tschesche, H. The proteolytic activity of the recombinant cryptic human fibronectin type IV collagenase from E. coli expression. J. Protein Chem. 19, 685–692 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Grater, F., Shen, J., Jiang, H., Gautel, M. & Grubmuller, H. Mechanically induced titin kinase activation studied by force-probe molecular dynamics simulations. Biophys. J. 88, 790–804 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Bakolitsa, C. et al. Structural basis for vinculin activation at sites of cell adhesion. Nature 430, 583–586 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Johnson, R. P. & Craig, S. W. An intramolecular association between the head and tail domains of vinculin modulates talin binding. J. Biol. Chem. 269, 12611–12619 (1994).

    CAS  PubMed  Google Scholar 

  57. Harrison, S. C. Variation on an Src-like theme. Cell 112, 737–740 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Sukharev, S. & Anishkin, A. Mechanosensitive channels: what can we learn from 'simple' model systems? Trends Neurosci. 27, 345–351 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Sotomayor, M. & Schulten, K. Molecular dynamics study of gating in the mechanosensitive channel of small conductance MscS. Biophys. J. 87, 3050–3065 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sheetz, M. P. Cell control by membrane–cytoskeleton adhesion. Nature Rev. Mol. Cell Biol. 2, 392–396 (2001). Discusses the evidence that in-plane forces in eukaryotic cell membranes are much lower than needed to open bacterial stress channels, which supports the view that orthogonal stresses are most important.

    Article  CAS  Google Scholar 

  61. Maroto, R. et al. TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nature Cell Biol. 7, 179–185 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Hudspeth, A. J. How the ear's works work: mechanoelectrical transduction and amplification by hair cells. C. R. Biol. 328, 155–162 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Ernstrom, G. G. & Chalfie, M. Genetics of sensory mechanotransduction. Annu. Rev. Genet. 36, 411–453 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Bao, L., Locovei, S. & Dahl, G. Pannexin membrane channels are mechanosensitive conduits for ATP. FEBS Lett. 572, 65–68 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Haut Donahue, T. L., Genetos, D. C., Jacobs, C. R., Donahue, H. J. & Yellowley, C. E. Annexin V disruption impairs mechanically induced calcium signaling in osteoblastic cells. Bone 35, 656–663 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Evans, E. Probing the relation between force — lifetime — and chemistry in single molecular bonds. Annu. Rev. Biophys. Biomol. Struct. 30, 105–128 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Merkel, R., Nassoy, P., Leung, A., Ritchie, K. & Evans, E. Energy landscapes of receptor–ligand bonds explored with dynamic force spectroscopy. Nature 397, 50–53 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Vallotton, P., Gupton, S. L., Waterman-Storer, C. M. & Danuser, G. Simultaneous mapping of filamentous actin flow and turnover in migrating cells by quantitative fluorescent speckle microscopy. Proc. Natl Acad. Sci. USA 101, 9660–9665 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Von Wichert, G., Haimovich, B., Feng, G. S. & Sheetz, M. P. Force-dependent integrin-cytoskeleton linkage formation requires downregulation of focal complex dynamics by Shp2. EMBO J. 22, 5023–5035 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Woods, A. J. et al. Paxillin associates with poly(A)-binding protein 1 at the dense endoplasmic reticulum and the leading edge of migrating cells. J. Biol. Chem. 277, 6428–6437 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Bershadsky, A. D. et al. Assembly and mechanosensory function of focal adhesions: experiments and models. Eur. J. Cell Biol. 14 Dec 2005 (10.1016/j.ejcb.2005.11.001). Provides a model for how force can produce the observed changes in focal-contact morphology and composition.

  72. Wehrle-Haller, B. & Imhof, B. The inner lives of focal adhesions. Trends Cell Biol. 12, 382–389 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Tees, D. F., Waugh, R. E. & Hammer, D. A. A microcantilever device to assess the effect of force on the lifetime of selectin-carbohydrate bonds. Biophys. J. 80, 668–682 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dembo, M., Torney, D. C., Saxman, K. & Hammer, D. The reaction-limited kinetics of membrane-to-surface adhesion and detachment. Proc. R. Soc. Lond. B 234, 55–83 (1988).

    Article  CAS  PubMed  Google Scholar 

  75. Thomas, W. E., Nilsson, L. M., Forero, M., Sokurenko, E. V. & Vogel, V. Shear-dependent 'stick-and-roll' adhesion of type 1 fimbriated Escherichia coli. Mol. Microbiol. 53, 1545–1557 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Thomas, W. E., Trintchina, E., Forero, M., Vogel, V. & Sokurenko, E. Bacterial adhesion to target cells enhanced by shear-force. Cell 109, 913–923 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Evans, E., Leung, A., Heinrich, V. & Zhu, C. Mechanical switching and coupling between two dissociation pathways in a P-selectin adhesion bond. Proc. Natl Acad. Sci. USA 101, 11281–11286 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Marshall, B. T. et al. Direct observation of catch bonds involving cell-adhesion molecules. Nature 423, 190–193 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Yago, T. et al. Catch bonds govern adhesion through L-selectin at threshold shear. J. Cell Biol. 166, 913–923 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cukierman, E., Pankov, R., Stevens, D. R. & Yamada, K. M. Taking cell–matrix adhesions to the third dimension. Science 294, 1708–1712 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Curtis, A. & Wilkinson, C. New depths in cell behaviour: reactions of cells to nanotopography. Biochem. Soc. Symp. 65, 15–26 (1999).

    CAS  PubMed  Google Scholar 

  82. Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M. & Ingber, D. E. Geometric control of cell life and death. Science 276, 1425–1428 (1997).

    Article  CAS  PubMed  Google Scholar 

  83. Jiang, X., Bruzewicz, D. A., Wong, A. P., Piel, M. & Whitesides, G. M. Directing cell migration with asymmetric micropatterns. Proc. Natl Acad. Sci. USA 102, 975–978 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K. & Chen, C. S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6, 483–495 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. McKenzie, J. L., Waid, M. C., Shi, R. & Webster, T. J. Decreased functions of astrocytes on carbon nanofiber materials. Biomaterials 25, 1309–1317 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Meshel, A. S., Wei, Q., Adelstein, R. S. & Sheetz, M. P. Basic mechanism of three-dimensional collagen fibre transport by fibroblasts. Nature Cell Biol. 7, 157–164 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Schindler, M. et al. A synthetic nanofibrillar matrix promotes in vivo-like organization and morphogenesis for cells in culture. Biomaterials 26, 5624–5631 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Silva, G. A. et al. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303, 1352–1355 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Lee, C. H. et al. Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials 26, 1261–1270 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Dalby, M. J., Riehle, M. O., Sutherland, D. S., Agheli, H. & Curtis, A. S. Use of nanotopography to study mechanotransduction in fibroblasts — methods and perspectives. Eur. J. Cell Biol. 83, 159–169 (2004).

    Article  PubMed  Google Scholar 

  91. Martines, E., McGhee, K., Wilkinson, C. & Curtis, A. A parallel-plate flow chamber to study initial cell adhesion on a nanofeatured surface. IEEE Trans Nanobioscience 3, 90–95 (2004).

    Article  PubMed  Google Scholar 

  92. Dalby, M. J. et al. Attempted endocytosis of nano-environment produced by colloidal lithography by human fibroblasts. Exp. Cell Res. 295, 387–394 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Lu, L., Horstmann, H., Ng, C. & Hong, W. Regulation of Golgi structure and function by ARF-like protein 1 (Arl1). J. Cell Sci. 114, 4543–4555 (2001).

    CAS  PubMed  Google Scholar 

  94. Tarricone, C. et al. The structural basis of Arfaptin-mediated cross-talk between Rac and Arf signalling pathways. Nature 411, 215–219 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Van Aelst, L., Joneson, T. & Bar-Sagi, D. Identification of a novel Rac1-interacting protein involved in membrane ruffling. EMBO J. 15, 3778–3786 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Williger, B. T., Ostermann, J. & Exton, J. H. Arfaptin 1, an ARF-binding protein, inhibits phospholipase D and endoplasmic reticulum/Golgi protein transport. FEBS Lett. 443, 197–200 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Miki, H., Yamaguchi, H., Suetsugu, S. & Takenawa, T. IRSp53 is an essential intermediate between Rac and WAVE in the regulation of membrane ruffling. Nature 408, 732–735 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Habermann, B. The BAR-domain family of proteins: a case of bending and binding? EMBO Rep. 5, 250–255 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zimmerberg, J. & McLaughlin, S. Membrane curvature: how BAR domains bend bilayers. Curr. Biol. 14, R250–R252 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Carstanjen, D. et al. Rac2 regulates neutrophil chemotaxis, superoxide production, and myeloid colony formation through multiple distinct effector pathways. J. Immunol. 174, 4613–4620 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Krugmann, S. et al. Cdc42 induces filopodia by promoting the formation of an IRSp53:Mena complex. Curr. Biol. 11, 1645–1655 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Patel, A. J., Lazdunski, M. & Honore, E. Lipid and mechano-gated 2P domain K+ channels. Curr. Opin. Cell Biol. 13, 422–428 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Filipenko, N. R., Attwell, S., Roskelley, C. & Dedhar, S. Integrin-linked kinase activity regulates Rac- and Cdc42-mediated actin cytoskeleton reorganization via α-PIX. Oncogene 24, 5837–5849 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Burridge, K. & Wennerberg, K. Rho and Rac take center stage. Cell 116, 167–179 (2004). Discusses the evidence that small G proteins have a significant role in mechanotransduction.

    Article  CAS  PubMed  Google Scholar 

  105. Civelekoglu-Scholey, G. et al. Model of coupled transient changes of Rac, Rho, adhesions and stress fibers alignment in endothelial cells responding to shear stress. J. Theor. Biol. 232, 569–585 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Machacek, M. & Danuser, G. Morphodynamic profiling of protrusion phenotypes. Biophys. J. 90, 1439–1452 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Sheetz, M. P. Glycoprotein motility and dynamic domains in fluid plasma membranes. Annu. Rev. Biophys. Biomol. Struct. 22, 417–431 (1993).

    Article  CAS  PubMed  Google Scholar 

  108. Bromley, S. K. et al. The immunological synapse. Annu. Rev. Immunol. 19, 375–396 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Mossman, K. D., Campi, G., Groves, J. T. & Dustin, M. L. Altered TCR signaling from geometrically repatterned immunological synapses. Science 310, 1191–1193 (2005). Showed that the immune synapse involves ordered spatial separation of membrane components that can be altered by nanofabricated substrates.

    Article  CAS  PubMed  Google Scholar 

  110. Campi, G., Varma, R. & Dustin, M. L. Actin and agonist MHC-peptide complex-dependent T cell receptor microclusters as scaffolds for signaling. J. Exp. Med. 202, 1031–1036 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Koo, L. Y., Irvine, D. J., Mayes, A. M., Lauffenburger, D. A. & Griffith, L. G. Co-regulation of cell adhesion by nanoscale RGD organization and mechanical stimulus. J. Cell Sci. 115, 1423–1433 (2002).

    CAS  PubMed  Google Scholar 

  112. Arnold, M. et al. Activation of integrin function by nanopatterned adhesive interfaces. Chemphyschem 5, 383–388 (2004). Showed that the nanometre spacing of matrix ligands affects the cellular response.

    Article  CAS  PubMed  Google Scholar 

  113. Brock, A. et al. Geometric determinants of directional cell motility revealed using microcontact printing. Langmuir 19, 1611–1617 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Jiang, G., Giannone, G., Critchley, D. R., Fukumoto, E. & Sheetz, M. P. Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin. Nature 424, 334–337 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Calderwood, D. A. Talin controls integrin activation. Biochem. Soc. Trans. 32, 434–437 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Critchley, D. R. Cytoskeletal proteins talin and vinculin in integrin-mediated adhesion. Biochem. Soc. Trans 32, 831–836 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Ginsberg, M. H., Partridge, A. & Shattil, S. J. Integrin regulation. Curr. Opin. Cell Biol. 17, 509–516 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Coussen, F., Choquet, D., Sheetz, M. P. & Erickson, H. P. Trimers of the fibronectin cell adhesion domain localize to actin filament bundles and undergo rearward translocation. J. Cell Sci. 115, 2581–2590 (2002).

    CAS  PubMed  Google Scholar 

  119. Delanoe-Ayari, H., Al Kurdi, R., Vallade, M., Gulino-Debrac, D. & Riveline, D. Membrane and acto-myosin tension promote clustering of adhesion proteins. Proc. Natl Acad. Sci. USA 101, 2229–2234 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Cluzel, C. et al. The mechanisms and dynamics of αvβ3 integrin clustering in living cells. J. Cell Biol. 171, 383–392 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wang, N., Ostuni, E., Whitesides, G. M. & Ingber, D. E. Micropatterning tractional forces in living cells. Cell Motil. Cytoskeleton 52, 97–106 (2002).

    Article  PubMed  Google Scholar 

  122. Lehnert, D. et al. Cell behaviour on micropatterned substrata: limits of extracellular matrix geometry for spreading and adhesion. J. Cell Sci. 117, 41–52 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Gallant, N. D., Michael, K. E. & Garcia, A. J. Cell adhesion strengthening: contributions of adhesive area, integrin binding, and focal adhesion assembly. Mol. Biol. Cell 16, 4329–4340 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ilic, D. et al. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 377, 539–544 (1995).

    Article  CAS  PubMed  Google Scholar 

  125. Kirchner, J., Kam, Z., Tzur, G., Bershadsky, A. D. & Geiger, B. Live-cell monitoring of tyrosine phosphorylation in focal adhesions following microtubule disruption. J. Cell Sci. 116, 975–986 (2003).

    Article  CAS  PubMed  Google Scholar 

  126. Chen, B. H., Tzen, J. T., Bresnick, A. R. & Chen, H. C. Roles of Rho-associated kinase and myosin light chain kinase in morphological and migratory defects of focal adhesion kinase-null cells. J. Biol. Chem. 277, 33857–33863 (2002).

    Article  CAS  PubMed  Google Scholar 

  127. Dixon, R. D. et al. New insights into FAK signaling and localization based on detection of a FAT domain folding intermediate. Structure 12, 2161–2171 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Yamamoto, D. et al. FAK overexpression upregulates cyclin D3 and enhances cell proliferation via the PKC and PI3-kinase–Akt pathways. Cell Signal. 15, 575–583 (2003).

    Article  CAS  PubMed  Google Scholar 

  129. Chen, C. S., Alonso, J. L., Ostuni, E., Whitesides, G. M. & Ingber, D. E. Cell shape provides global control of focal adhesion assembly. Biochem. Biophys. Res. Commun. 307, 355–361 (2003).

    Article  CAS  PubMed  Google Scholar 

  130. Numaguchi, Y. et al. Caldesmon-dependent switching between capillary endothelial cell growth and apoptosis through modulation of cell shape and contractility. Angiogenesis 6, 55–64 (2003).

    Article  CAS  PubMed  Google Scholar 

  131. Engler, A. J. et al. Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J. Cell Biol. 166, 877–887 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Georges, P. C. & Janmey, P. A. Cell type-specific response to growth on soft materials. J. Appl. Physiol. 98, 1547–1553 (2005).

    Article  PubMed  Google Scholar 

  133. Badylak, S. F. The extracellular matrix as a scaffold for tissue reconstruction. Semin. Cell Dev. Biol. 13, 377–383 (2002).

    Article  CAS  PubMed  Google Scholar 

  134. Giannone, G. et al. Periodic lamellipodial contractions correlate with rearward actin waves. Cell 116, 431–443 (2004).

    Article  CAS  PubMed  Google Scholar 

  135. Mack, P. J., Kaazempur-Mofrad, M. R., Karcher, H., Lee, R. T. & Kamm, R. D. Force-induced focal adhesion translocation: effects of force amplitude and frequency. Am. J. Physiol. Cell Physiol. 287, C954–C962 (2004).

    Article  CAS  PubMed  Google Scholar 

  136. Wang, H. B., Dembo, M., Hanks, S. K. & Wang, Y. Focal adhesion kinase is involved in mechanosensing during fibroblast migration. Proc. Natl Acad. Sci. USA 98, 11295–11300 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Tamada, M., Sheetz, M. P. & Sawada, Y. Activation of a signaling cascade by cytoskeleton stretch. Dev. Cell 7, 709–718 (2004). Showed that the mechanical stretching of cytoskeleton after membrane extraction can activate the same signalling pathway that is activated in intact cells, presumably by the unfolding of cytoskeletal molecules.

    Article  CAS  PubMed  Google Scholar 

  138. Shiu, Y. T. et al. Rho mediates the shear-enhancement of endothelial cell migration and traction force generation. Biophys. J. 86, 2558–2565 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Webb, D. J. et al. FAK–Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nature Cell Biol. 6, 154–161 (2004).

    Article  CAS  PubMed  Google Scholar 

  140. Ratner, B. D. & Bryant, S. J. Biomaterials: where we have been and where we are going. Annu. Rev. Biomed. Eng. 6, 41–75 (2004).

    Article  CAS  PubMed  Google Scholar 

  141. Langer, R. & Tirrell, D. A. Designing materials for biology and medicine. Nature 428, 487–492 (2004).

    Article  CAS  PubMed  Google Scholar 

  142. Kwiatkowska, K. & Sobota, A. Signaling pathways in phagocytosis. Bioessays 21, 422–431 (1999).

    Article  CAS  PubMed  Google Scholar 

  143. Helmke, B. P. & Davies, P. F. The cytoskeleton under external fluid mechanical forces: hemodynamic forces acting on the endothelium. Ann. Biomed. Eng. 30, 284–296 (2002).

    Article  PubMed  Google Scholar 

  144. Lo, C. M., Wang, H. B., Dembo, M. & Wang, Y. L. Cell movement is guided by the rigidity of the substrate. Biophys. J. 79, 144–152 (2000). Provided the first evidence for rigidity sensing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Thery, M. et al. The extracellular matrix guides the orientation of the cell division axis. Nature Cell Biol. 7, 947–953 (2005).

    Article  CAS  PubMed  Google Scholar 

  146. Gao, M. et al. Structure and functional significance of mechanically unfolded fibronectin type III1 intermediates. Proc. Natl Acad. Sci. USA 100, 14784–14789 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Zhong, C. et al. Rho-mediated contractility exposes a cryptic site in fibronectin and induces fibronectin matrix assembly. J. Cell Biol. 141, 539–551 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Vogel, V. & Baneyx, G. The tissue engineering puzzle: a molecular perspective. Annu. Rev. Biomed. Eng. 5, 441–463 (2003).

    Article  CAS  PubMed  Google Scholar 

  149. Chiquet, M., Renedo, A. S., Huber, F. & Fluck, M. How do fibroblasts translate mechanical signals into changes in extracellular matrix production? Matrix Biol. 22, 73–80 (2003).

    Article  CAS  PubMed  Google Scholar 

  150. Ingber, D. E. Tensegrity II. How structural networks influence cellular information processing networks. J. Cell Sci. 116, 1397–1408 (2003).

    Article  CAS  PubMed  Google Scholar 

  151. Keselowsky, B. G., Collard, D. M. & Garcia, A. J. Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proc. Natl Acad. Sci. USA 102, 5953–5957 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Munevar, S., Wang, Y. & Dembo, M. Traction force microscopy of migrating normal and H-ras transformed 3T3 fibroblasts. Biophys. J. 80, 1744–1757 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Balaban, N. Q. et al. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nature Cell Biol. 3, 466–472 (2001).

    Article  CAS  PubMed  Google Scholar 

  154. Galbraith, C. G. & Sheetz, M. P. A micromachined device provides a new bend on fibroblast traction forces. Proc. Natl Acad. Sci. USA 94, 9114–9118 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Saif, M. T., Sager, C. R. & Coyer, S. Functionalized biomicroelectromechanical systems sensors for force response study at local adhesion sites of single living cells on substrates. Ann. Biomed. Eng. 31, 950–961 (2003).

    Article  PubMed  Google Scholar 

  156. Tan, J. L. et al. Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc. Natl Acad. Sci. USA 100, 1484–1489 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Usami, S., Wung, S. L., Skierczynski, B. A., Skalak, R. & Chien, S. Locomotion forces generated by a polymorphonuclear leukocyte. Biophys. J. 63, 1663–1666 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Zhang, X. et al. Atomic force microscopy measurement of leukocyte–endothelial interaction. Am. J. Physiol. Heart Circ. Physiol. 286, H359–H367 (2004).

    Article  CAS  PubMed  Google Scholar 

  159. Andersson, A. S. et al. Nanoscale features influence epithelial cell morphology and cytokine production. Biomaterials 24, 3427–3436 (2003).

    Article  CAS  PubMed  Google Scholar 

  160. Wojciak-Stothard, B. et al. Role of the cytoskeleton in the reaction of fibroblasts to multiple grooved substrata. Cell Motil. Cytoskeleton 31, 147–158 (1995).

    Article  CAS  PubMed  Google Scholar 

  161. Gao, M., Craig, D., Vogel, V. & Schulten, K. Identifying unfolding intermediates of FN-III(10) by steered molecular dynamics. J. Mol. Biol. 323, 939–950 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The members of our laboratories and the members of the Nanomedicine Center for Mechanical Biology (an NIH funded centre) helped to shape many of the ideas in this review. Also, we would like to apologize to all the researchers whose pioneering research we could not cite owing to space limitations.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Interpro

BAR

FURTHER INFORMATION

Viola Vogel's homepage

Michael Sheetz's homepage

Glossary

Mechanotransduction

Conformation-dependent biochemical reactions (read-out) that activate intracellular signals (amplification); for example, G-protein activation, Tyr-kinase activation, lipase activation, kinase cascades or Ca2+ release.

Rigidity

The compliance (amount of displacement per unit of applied force) of the matrix substrate.

Mechanoresponse

Spatio-temporal signal integration will modify cell motility and contractility. Long-term cellular responses to signals will modify protein expression and the motility systems, and regulate overall cellular behaviour.

Mechanosensing

Force-induced conformational changes or geometry-dependent molecular clustering that can cause changes in biochemical reactions.

Membrane curvature

The radius of curvature along the two principal axes in the membrane (mathematically explained as the sum of 1/r for the two axes).

Mechanosensitive channels

Ion channels that open on the application of matrix forces to cells.

Slip bond

Protein–ligand bonds that decrease in lifetime with increasing force for all rates of force application.

Catch bond

Protein–ligand bonds that increase in lifetime with increasing force at high rates of force application.

BAR domain

(Bin, amphiphysin, Rvs domain). A domain that is found in a large family of proteins. It forms a banana-like dimer, and binds to and tabulates lipid membranes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vogel, V., Sheetz, M. Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol 7, 265–275 (2006). https://doi.org/10.1038/nrm1890

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1890

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing