Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Innovation
  • Published:

Innovations

Functional and quantitative proteomics using SILAC

Abstract

Researchers in many biological areas now routinely characterize proteins by mass spectrometry. Among the many formats for quantitative proteomics, stable-isotope labelling by amino acids in cell culture (SILAC) has emerged as a simple and powerful one. SILAC removes false positives in protein-interaction studies, reveals large-scale kinetics of proteomes and — as a quantitative phosphoproteomics technology — directly uncovers important points in the signalling pathways that control cellular decisions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interaction of a bacterial phosphoprotein with a human host protein.
Figure 2: Systems biology of stem-cell differentiation.
Figure 3: Nucleolar proteome dynamics.

Similar content being viewed by others

References

  1. Aebersold, R. & Mann, M. Mass spectrometry-based proteomics. Nature 422, 198–207 (2003).

    Article  CAS  Google Scholar 

  2. Washburn, M. P., Wolters, D. & Yates, J. R. 3rd. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nature Biotechnol. 19, 242–247 (2001).

    Article  CAS  Google Scholar 

  3. Gygi, S. P. et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotechnol. 17, 994–999 (1999).

    Article  CAS  Google Scholar 

  4. Ong, S. E. et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics 1, 376–386 (2002).

    Article  CAS  Google Scholar 

  5. Blagoev, B. et al. A proteomics strategy to elucidate functional protein–protein interactions applied to EGF signaling. Nature Biotechnol. 21, 315–318 (2003).

    Article  CAS  Google Scholar 

  6. Ong, S. E. & Mann, M. Mass spectrometry-based proteomics turns quantitative. Nature Chem. Biol. 1, 252–262 (2005).

    Article  CAS  Google Scholar 

  7. Julka, S. & Regnier, F. Quantification in proteomics through stable isotope coding: a review. J. Proteome Res. 3, 350–363 (2004).

    Article  CAS  Google Scholar 

  8. MacCoss, M. J. & Matthews, D. E. Quantitative MS for proteomics: teaching a new dog old tricks. Anal. Chem. 77, 294A–302A (2005).

    CAS  PubMed  Google Scholar 

  9. Yan, W. & Chen, S. S. Mass spectrometry-based quantitative proteomic profiling. Brief Funct. Genomic. Proteomic. 4, 27–38 (2005).

    Article  CAS  Google Scholar 

  10. Wright, M. E., Han, D. K. & Aebersold, R. Mass spectrometry-based expression profiling of clinical prostate cancer. Mol. Cell. Proteomics 4, 545–554 (2005).

    Article  CAS  Google Scholar 

  11. Kuster, B., Schirle, M., Mallick, P. & Aebersold, R. Scoring proteomes with proteotypic peptide probes. Nature Rev. Mol. Cell Biol. 6, 577–583 (2005).

    Article  CAS  Google Scholar 

  12. Gehrmann, M. L., Hathout, Y. & Fenselau, C. Evaluation of metabolic labeling for comparative proteomics in breast cancer cells. J. Proteome Res. 3, 1063–1068 (2004).

    Article  CAS  Google Scholar 

  13. Ong, S. E., Foster, L. J. & Mann, M. Mass spectrometric-based approaches in quantitative proteomics. Methods 29, 124–130 (2003).

    Article  CAS  Google Scholar 

  14. Ong, S. E., Kratchmarova, I. & Mann, M. Properties of 13C-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC). J. Proteome Res. 2, 173–181 (2003).

    Article  CAS  Google Scholar 

  15. Everley, P. A., Krijgsveld, J., Zetter, B. R. & Gygi, S. P. Quantitative cancer proteomics: stable isotope labeling with amino acids in cell culture (SILAC) as a tool for prostate cancer research. Mol. Cell. Proteomics 3, 729–735 (2004).

    Article  CAS  Google Scholar 

  16. Everley, P. A. et al. Enhanced analysis of metastatic prostate cancer using stable isotopes and high mass accuracy instrumentation. J. Proteome Res. 5, 1224–1231 (2006).

    Article  CAS  Google Scholar 

  17. Gronborg, M. et al. Biomarker discovery from pancreatic cancer secretome using a differential proteomic approach. Mol. Cell. Proteomics 5, 157–171 (2006).

    Article  CAS  Google Scholar 

  18. Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183 (2002).

    Article  CAS  Google Scholar 

  19. Gavin, A. C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002).

    Article  CAS  Google Scholar 

  20. von Mering, C. et al. Comparative assessment of large-scale data sets of protein–protein interactions. Nature 417, 399–403 (2002).

    Article  CAS  Google Scholar 

  21. de Hoog, C. L. & Mann, M. Proteomics. Annu. Rev. Genomics Hum. Genet. 5, 267–293 (2004).

    Article  CAS  Google Scholar 

  22. Rigaut, G. et al. A generic protein purification method for protein complex characterization and proteome exploration. Nature Biotechnol. 17, 1030–1032 (1999).

    Article  CAS  Google Scholar 

  23. Ranish, J. A. et al. The study of macromolecular complexes by quantitative proteomics. Nature Genet. 33, 349–355 (2003).

    Article  CAS  Google Scholar 

  24. Schulze, W. X. & Mann, M. A novel proteomic screen for peptide–protein interactions. J. Biol. Chem. 279, 10756–10764 (2004).

    Article  CAS  Google Scholar 

  25. Schulze, W. X., Deng, L. & Mann, M. Phosphotyrosine interactome of the ErbB-receptor kinase family. Mol. Syst. Biol. 1, E1–E13 (2005).

    Article  Google Scholar 

  26. Trinkle-Mulcahy, L. et al. Repo-Man recruits PP1γ to chromatin and is essential for cell viability. J. Cell Biol. 172, 679–692 (2006).

    Article  CAS  Google Scholar 

  27. Vagnarelli, P. et al. Condensin and Repo-Man–PP1 co-operate in the regulation of chromosome architecture during mitosis. Nature Cell. Biol. 8, 1133–1142 (2006).

    Article  CAS  Google Scholar 

  28. Selbach, M. & Mann, M. Protein interaction screening by quantitative immunoprecipitation combined with knock-down (QUICK). Nature Methods 3, 29 Oct 2006 (doi:10.1038/nmeth972).

  29. Mann, M. et al. Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends Biotechnol. 20, 261–268 (2002).

    Article  CAS  Google Scholar 

  30. Carr, S. A., Annan, R. S. & Huddleston, M. J. Mapping posttranslational modifications of proteins by MS-based selective detection: application to phosphoproteomics. Methods Enzymol. 405, 82–115 (2005).

    Article  CAS  Google Scholar 

  31. Loyet, K. M., Stults, J. T. & Arnott, D. Mass spectrometric contributions to the practice of phosphorylation site mapping through 2003: a literature review. Mol. Cell. Proteomics 4, 235–245 (2005).

    Article  CAS  Google Scholar 

  32. Beausoleil, S. A. et al. Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc. Natl Acad. Sci. USA 101, 12130–12135 (2004).

    Article  CAS  Google Scholar 

  33. Ibarrola, N., Kalume, D. E., Gronborg, M., Iwahori, A. & Pandey, A. A proteomic approach for quantitation of phosphorylation using stable isotope labeling in cell culture. Anal. Chem. 75, 6043–6049 (2003).

    Article  CAS  Google Scholar 

  34. Gruhler, A. et al. Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol. Cell. Proteomics 4, 310–327 (2005).

    Article  CAS  Google Scholar 

  35. Kratchmarova, I., Blagoev, B., Haack-Sorensen, M., Kassem, M. & Mann, M. Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation. Science 308, 1472–1477 (2005).

    Article  CAS  Google Scholar 

  36. Zhang, G., Spellman, D. S., Skolnik, E. Y. & Neubert, T. A. Quantitative phosphotyrosine proteomics of EphB2 signaling by stable isotope labeling with amino acids in cell culture (SILAC). J. Proteome Res. 5, 581–588 (2006).

    Article  CAS  Google Scholar 

  37. Bose, R. et al. Phosphoproteomic analysis of Her2/neu signaling and inhibition. Proc. Natl Acad. Sci. USA 103, 9773–9778 (2006).

    Article  CAS  Google Scholar 

  38. Andersen, J. S. et al. Nucleolar proteome dynamics. Nature 433, 77–83 (2005).

    Article  CAS  Google Scholar 

  39. Hinsby, A. M. et al. A wiring of the human nucleolus. Mol. Cell 22, 285–295 (2006).

    Article  CAS  Google Scholar 

  40. Blagoev, B., Ong, S. E., Kratchmarova, I. & Mann, M. Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nature Biotechnol. 22, 1139–1145 (2004).

    Article  CAS  Google Scholar 

  41. Olsen, J. V. et al. Global, in vivo and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635–648 (2006).

    Article  CAS  Google Scholar 

  42. Pratt, J. M. et al. Dynamics of protein turnover, a missing dimension in proteomics. Mol. Cell. Proteomics 1, 579–591 (2002).

    Article  CAS  Google Scholar 

  43. Doherty, M. K., Whitehead, C., McCormack, H., Gaskell, S. J. & Beynon, R. J. Proteome dynamics in complex organisms: using stable isotopes to monitor individual protein turnover rates. Proteomics 5, 522–533 (2005).

    Article  CAS  Google Scholar 

  44. Milner, E., Barnea, E., Beer, I. & Admon, A. The turnover kinetics of major histocompatibility complex peptides of human cancer cells. Mol. Cell. Proteomics 5, 357–365 (2006).

    Article  CAS  Google Scholar 

  45. Yewdell, J. W., Reits, E. & Neefjes, J. Making sense of mass destruction: quantitating MHC class I antigen presentation. Nature Rev. Immunol. 3, 952–961 (2003).

    Article  CAS  Google Scholar 

  46. Meiring, H. D. et al. Stable isotope tagging of epitopes: a highly selective strategy for the identification of major histocompatibility complex class I-associated peptides induced upon viral infection. Mol. Cell. Proteomics 5, 902–913 (2006).

    Article  Google Scholar 

  47. Makarov, A. Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis. Anal. Chem. 72, 1156–1162 (2000).

    Article  CAS  Google Scholar 

  48. Olsen, J. V. et al. Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Mol. Cell. Proteomics 4, 2010–2021 (2005).

    Article  CAS  Google Scholar 

  49. Leptos, K. C., Sarracino, D. A., Jaffe, J. D., Krastins, B. & Church, G. M. MapQuant: open-source software for large-scale protein quantification. Proteomics 6, 1770–1782 (2006).

    Article  CAS  Google Scholar 

  50. Ong, S. E., Mittler, G. & Mann, M. Identifying and quantifying in vivo methylation sites by heavy methyl SILAC. Nature Methods 1, 119–126 (2004).

    Article  CAS  Google Scholar 

  51. Park, K. S., Mohapatra, D. P., Misonou, H. & Trimmer, J. S. Graded regulation of the Kv2.1 potassium channel by variable phosphorylation. Science 313, 976–979 (2006).

    Article  CAS  Google Scholar 

  52. Nirmalan, N., Sims, P. F. & Hyde, J. E. Quantitative proteomics of the human malaria parasite Plasmodium falciparum and its application to studies of development and inhibition. Mol. Microbiol. 52, 1187–1199 (2004).

    Article  CAS  Google Scholar 

  53. Ishihama, Y. et al. Quantitative mouse brain proteomics using culture-derived isotope tags as internal standards. Nature Biotechnol. 23, 617–621 (2005).

    Article  CAS  Google Scholar 

  54. Wu, C. C., MacCoss, M. J., Howell, K. E., Matthews, D. E. & Yates, J. R. 3rd. Metabolic labeling of mammalian organisms with stable isotopes for quantitative proteomic analysis. Anal. Chem. 76, 4951–4959 (2004).

    Article  CAS  Google Scholar 

  55. Lahm, H. W. & Langen, H. Mass spectrometry: a tool for the identification of proteins separated by gels. Electrophoresis 21, 2105–2114 (2000).

    Article  CAS  Google Scholar 

  56. Oda, Y., Huang, K., Cross, F. R., Cowburn, D. & Chait, B. T. Accurate quantitation of protein expression and site-specific phosphorylation. Proc. Natl Acad. Sci. USA 96, 6591–6596 (1999).

    Article  CAS  Google Scholar 

  57. Simons, K. & Toomre, D. Lipid rafts and signal transduction. Nature Rev. Mol. Cell Biol. 1, 31–39 (2000).

    Article  CAS  Google Scholar 

  58. Munro, S. Lipid rafts: elusive or illusive? Cell 115, 377–388 (2003).

    Article  CAS  Google Scholar 

  59. Foster, L. J., De Hoog, C. L. & Mann, M. Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors. Proc. Natl Acad. Sci. USA 100, 5813–5818 (2003).

    Article  CAS  Google Scholar 

  60. Steen, H. & Mann, M. The abc's (and xyz's) of peptide sequencing. Nature Rev. Mol. Cell Biol. 5, 699–711 (2004).

    Article  CAS  Google Scholar 

  61. Higashi, H. et al. SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science 295, 683–686 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank S.-E. Ong, L. Foster, B. Blagoev, J. Andersen and members of the Department for Proteomics and Signal Transduction for critical discussion of this manuscript. This work was supported by the Danish National Research Foundation and the Max-Planck Society.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Matthias Mann 's homepage

Pandey laboratory SILAC pages at John Hopkins University

Open source program MSQuant, which allows quantitation of SILAC data

Phosphorylation sites database (Phosida) at the Max-Planck-Institut for Biochemistry

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mann, M. Functional and quantitative proteomics using SILAC. Nat Rev Mol Cell Biol 7, 952–958 (2006). https://doi.org/10.1038/nrm2067

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2067

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing