Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The WASP–WAVE protein network: connecting the membrane to the cytoskeleton

Key Points

  • Wiskott–Aldrich syndrome protein (WASP) and WASP-family verprolin-homologous protein (WAVE) family proteins activate the ARP2/3 complex to promote reorganization of the actin cytoskeleton.

  • The N-terminal domain of the WASP and WAVE proteins contributes to stable protein–protein interactions, thereby contributing to the formation of the protein complex.

  • Intramolecular interaction suppresses the ARP2/3-complex-activating capability of WASP and neural (N-)WASP. The role of intramolecular or intermolecular interactions in the regulation of WAVE proteins is still unclear.

  • Phosphatidylinositol phosphates bind to WASP and WAVE proteins and contribute to the localization of these proteins, and they also regulate their capability to activate the ARP2/3 complex.

  • Many proteins with Src-homology-3 (SH3) domains bind to the proline-rich region of WASP and WAVE proteins, and enhance the ARP2/3 activation of WASP and WAVE.

  • Most of the proteins with SH3 domains are adaptors that link WASP and WAVE proteins to other proteins or the cell membrane.

  • The Bin, amphiphysin, Rvs167 (BAR) and extended Fer-CIP4 homology (EFC) domains are membrane-binding and membrane-deforming domains. Most BAR- or EFC-domain-containing proteins have SH3 domains that bind to N-WASP, and are involved in endocytosis.

  • The Rac binding (RCB, also known as the IRSp53-Mim-homology domain (IMD)) domain of IRSp53 shares structural similarity to the BAR domain and binds to the membrane. IRSp53 binds to WAVE2 for lamellipodium formation.

  • WASP and N-WASP are involved in cell-shape changes that occur inwardly (endocytosis) and outwardly (filopodia and podosomes). WAVE proteins are involved in outward (lamellipodia) cell-shape changes only.

  • Membrane deformation might be coupled to WASP- and WAVE-mediated cytoskeletal changes.

Abstract

Wiskott–Aldrich syndrome protein (WASP) and WASP-family verprolin-homologous protein (WAVE) family proteins are scaffolds that link upstream signals to the activation of the ARP2/3 complex, leading to a burst of actin polymerization. ARP2/3-complex-mediated actin polymerization is crucial for the reorganization of the actin cytoskeleton at the cell cortex for processes such as cell movement, vesicular trafficking and pathogen infection. Large families of membrane-binding proteins were recently found to interact with WASP and WAVE family proteins, therefore providing a new layer of membrane-dependent regulation of actin polymerization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Domains and basic binding partners of N-WASP and WAVE2.
Figure 2: WASP and WAVE interactors.
Figure 3: Phylogenetic analysis of WASP- and WAVE-binding proteins that have BAR, EFC or RCB/IMD domains.
Figure 4: Functional models of WASP and WAVE proteins in inward or outward deformation of the membrane.
Figure 5: Regulation of inward or outward protrusions of the cell membrane.

Similar content being viewed by others

References

  1. Wiskott, A. Familiarer, angeborener Morbus Welhofii? Monatsschr. Kinderheilkd. 68, 212–216 (1937).

    Google Scholar 

  2. Aldrich, R. A., Steinberg, A. G. & Campbell, D. C. Pedigree demonstrating a sex-linked recessive condition characterized by draining ears, eczematoid dermatitis and bloody diarrhea. Pediatrics 13, 133–139 (1954).

    CAS  PubMed  Google Scholar 

  3. Thrasher, A. J. WASp in immune-system organization and function. Nature Rev. Immunol. 2, 635–646 (2002).

    CAS  Google Scholar 

  4. Ochs, H. D. & Notarangelo, L. D. Structure and function of the Wiskott–Aldrich syndrome protein. Curr. Opin. Hematol. 12, 284–291 (2005).

    CAS  PubMed  Google Scholar 

  5. Derry, J. M., Ochs, H. D. & Francke, U. Isolation of a novel gene mutated in Wiskott–Aldrich syndrome. Cell 78, 635–644 (1994). Discovery of WASP.

    CAS  PubMed  Google Scholar 

  6. Miki, H., Miura, K. & Takenawa, T. N-WASP, a novel actin-depolymerizing protein, regulates the cortical cytoskeletal rearrangement in a PIP2-dependent manner downstream of tyrosine kinases. EMBO J. 15, 5326–5335 (1996). Discovery of N-WASP.

    PubMed  PubMed Central  Google Scholar 

  7. Pollard, T. D. & Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003).

    CAS  PubMed  Google Scholar 

  8. Takenawa, T. & Miki, H. WASP and WAVE family proteins: key molecules for rapid rearrangement of cortical actin filaments and cell movement. J. Cell Sci. 114, 1801–1809 (2001).

    CAS  PubMed  Google Scholar 

  9. Miki, H., Suetsugu, S. & Takenawa, T. WAVE, a novel WASP-family protein involved in actin reorganization induced by Rac. EMBO J. 17, 6932–6941 (1998). Discovery of WAVE1.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Bear, J. E., Rawls, J. F. & Saxe III, C. L. SCAR, a WASP-related protein, isolated as a suppressor of receptor defects in late Dictyostelium development. J. Cell Biol. 142, 1325–1335 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Suetsugu, S., Miki, H. & Takenawa, T. Identification of two human WAVE/SCAR homologues as general actin regulatory molecules which associate with Arp2/3 complex. Biochem. Biophys. Res. Commun. 260, 296–302 (1999). Discovery of WAVE2 and WAVE3.

    CAS  PubMed  Google Scholar 

  12. Li, R. Bee1, a yeast protein with homology to Wiscott–Aldrich syndrome protein, is critical for the assembly of cortical actin cytoskeleton. J. Cell Biol. 136, 649–658 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Panchal, S. C., Kaiser, D. A., Torres, E., Pollard, T. D. & Rosen, M. K. A conserved amphipathic helix in WASP/Scar proteins is essential for activation of Arp2/3 complex. Nature Struct. Biol. 10, 591–598 (2003).

    CAS  PubMed  Google Scholar 

  14. Miki, H. & Takenawa, T. Direct binding of the verprolin-homology domain in N-WASP to actin is essential for cytoskeletal reorganization. Biochem. Biophys. Res. Commun. 243, 73–78 (1998).

    CAS  PubMed  Google Scholar 

  15. Symons, M. et al. Wiskott–Aldrich syndrome protein, a novel effector for the GTPase CDC42Hs, is implicated in actin polymerization. Cell 84, 723–734 (1996).

    CAS  PubMed  Google Scholar 

  16. Rohatgi, R. et al. The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97, 221–231 (1999). Demonstration of N-WASP autoinhibition.

    CAS  PubMed  Google Scholar 

  17. Machesky, L. M. & Insall, R. H. Scar1 and the related Wiskott–Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Curr. Biol. 8, 1347–1356 (1998).

    CAS  PubMed  Google Scholar 

  18. Machesky, L. M. et al. Scar, a WASp-related protein, activates nucleation of actin filaments by the Arp2/3 complex. Proc. Natl Acad. Sci. USA 96, 3739–3744 (1999). References 17 and 18 reported the identification of the ARP2/3 complex as a WASP/WAVE binding partner and showed that ARP2/3 is activated by WAVE.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Pantaloni, D., Boujemaa, R., Didry, D., Gounon, P. & Carlier, M.-F. The Arp2/3 complex branches filament barbed ends: functional antagonism with capping proteins. Nature Cell. Biol. 2, 385–391 (2000).

    CAS  PubMed  Google Scholar 

  20. Blanchoin, L. et al. Direct observation of dendritic actin filament networks nucleated by Arp2/3 complex and WASP/Scar proteins. Nature 404, 1007–1011 (2000).

    CAS  PubMed  Google Scholar 

  21. Fujiwara, I., Suetsugu, S., Uemura, S., Takenawa, T. & Ishiwata, S. Visualization and force measurement of branching by Arp2/3 complex and N-WASP in actin filament. Biochem. Biophys. Res. Commun. 293, 1550–1555 (2002).

    CAS  PubMed  Google Scholar 

  22. Yarar, D., D'Alessio, J. A., Jeng, R. L. & Welch, M. D. Motility determinants in WASP family proteins. Mol. Biol. Cell 13, 4045–4059 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Suetsugu, S., Miki, H. & Takenawa, T. Identification of another Actin-related protein (Arp) 2/3 complex binding site in neural Wiskott–Aldrich syndrome protein (N-WASP), that complements actin polymerization induced by the Arp2/3 complex activating (VCA) domain of N-WASP. J. Biol. Chem. 276, 33175–33180 (2001).

    CAS  PubMed  Google Scholar 

  24. Suetsugu, S., Miki, H., Yamaguchi, H. & Takenawa, T. Requirement of the basic region of N-WASP/WAVE2 for actin-based motility. Biochem. Biophys. Res. Commun. 282, 739–744 (2001).

    CAS  PubMed  Google Scholar 

  25. Rodal, A. A., Manning, A. L., Goode, B. L. & Drubin, D. G. Negative regulation of yeast WASp by two SH3 domain-containing proteins. Curr. Biol. 13, 1000–1008 (2003).

    CAS  PubMed  Google Scholar 

  26. Aspenstrom, P., Lindberg, U. & Hall, A. Two GTPases, Cdc42 and Rac, bind directly to a protein implicated in the immunodeficiency disorder Wiskott–Aldrich syndrome. Curr. Biol. 6, 70–75 (1996).

    CAS  PubMed  Google Scholar 

  27. Volkman, B. F., Prehoda, K. E., Scott, J. A., Peterson, F. C. & Lim, W. A. Structure of the N-WASP EVH1 domain-WIP complex: insight into the molecular basis of Wiskott–Aldrich syndrome. Cell 111, 565–576 (2002).

    CAS  PubMed  Google Scholar 

  28. Ramesh, N., Anton, I. M., Hartwig, J. H. & Geha, R. S. WIP, a protein associated with Wiskott–Aldrich syndrome protein, induces actin polymerization and redistribution in lymphoid cells. Proc. Natl Acad. Sci. USA 94, 14671–14676 (1997). Identification of WIP.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Aspenstrom, P. The WASP-binding protein WIRE has a role in the regulation of the actin filament system downstream of the platelet-derived growth factor receptor. Exp. Cell Res. 279, 21–33 (2002).

    PubMed  Google Scholar 

  30. Kato, M. et al. WICH, a novel verprolin homology domain-containing protein that functions cooperatively with N-WASP in actin-microspike formation. Biochem. Biophys. Res. Commun. 291, 41–47 (2002).

    CAS  PubMed  Google Scholar 

  31. Ho, H. Y., Rohatgi, R., Ma, L. & Kirschner, M. W. CR16 forms a complex with N-WASP in brain and is a novel member of a conserved proline-rich actin-binding protein family. Proc. Natl Acad. Sci. USA 98, 11306–11311 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Aspenstrom, P. The mammalian verprolin homologue WIRE participates in receptor-mediated endocytosis and regulation of the actin filament system by distinct mechanisms. Exp. Cell Res. 298, 485–498 (2004).

    PubMed  Google Scholar 

  33. Krzewski, K., Chen, X., Orange, J. S. & Strominger, J. L. Formation of a WIP-, WASp-, actin-, and myosin IIA-containing multiprotein complex in activated NK cells and its alteration by KIR inhibitory signaling. J. Cell Biol. 173, 121–132 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Sawa, M. & Takenawa, T. Caenorhabditis elegans WASP-interacting protein homologue WIP-1 is involved in morphogenesis through maintenance of WSP-1 protein levels. Biochem. Biophys. Res. Commun. 340, 709–717 (2006).

    CAS  PubMed  Google Scholar 

  35. Martinez-Quiles, N. et al. WIP regulates N-WASP-mediated actin polymerization and filopodium formation. Nature Cell Biol. 3, 484–491 (2001).

    CAS  PubMed  Google Scholar 

  36. Ho, H. Y. et al. Toca-1 mediates Cdc42-dependent actin nucleation by activating the N-WASP–WIP complex. Cell 118, 203–216 (2004).

    CAS  PubMed  Google Scholar 

  37. Hertzog, M. et al. The β-thymosin/WH2 domain; structural basis for the switch from inhibition to promotion of actin assembly. Cell 117, 611–623 (2004).

    CAS  PubMed  Google Scholar 

  38. Sasahara, Y. et al. Mechanism of recruitment of WASP to the immunological synapse and of its activation following TCR ligation. Mol. Cell 10, 1269–1281 (2002).

    CAS  PubMed  Google Scholar 

  39. Moreau, V. et al. A complex of N-WASP and WIP integrates signalling cascades that lead to actin polymerization. Nature Cell Biol. 2, 441–448 (2000).

    CAS  PubMed  Google Scholar 

  40. Frischknecht, F. et al. Actin-based motility of vaccinia virus mimics receptor tyrosine kinase signalling. Nature 401, 926–929 (1999).

    CAS  PubMed  Google Scholar 

  41. Anton, I. M. et al. WIP deficiency reveals a differential role for WIP and the actin cytoskeleton in T and B cell activation. Immunity 16, 193–204 (2002).

    CAS  PubMed  Google Scholar 

  42. Snapper, S. B. et al. Wiskott–Aldrich syndrome protein-deficient mice reveal a role for WASP in T but not B cell activation. Immunity 9, 81–91 (1998).

    CAS  PubMed  Google Scholar 

  43. Rohatgi, R., Ho, H. Y. & Kirschner, M. W. Mechanism of N-WASP activation by CDC42 and phosphatidylinositol 4,5-bisphosphate. J. Cell Biol. 150, 1299–1310 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Higgs, H. N. & Pollard, T. D. Activation by Cdc42 and PIP(2) of Wiskott–Aldrich syndrome protein (WASp) stimulates actin nucleation by Arp2/3 complex. J. Cell Biol. 150, 1311–1320 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Miki, H., Sasaki, T., Takai, Y. & Takenawa, T. Induction of filopodium formation by WASP-related actin-depolymerizing protein N-WASP. Nature 391, 93–96 (1998).

    CAS  PubMed  Google Scholar 

  46. Hall, A. Rho GTPase and the actin cytoskeleton. Science 279, 509–514 (1998).

    CAS  PubMed  Google Scholar 

  47. Abe, T., Kato, M., Miki, H., Takenawa, T. & Endo, T. Small GTPase Tc10 and its homologue RhoT induce N-WASP-mediated long process formation and neurite outgrowth. J. Cell Sci. 116, 155–168 (2003).

    CAS  PubMed  Google Scholar 

  48. Hemsath, L., Dvorsky, R., Fiegen, D., Carlier, M. F. & Ahmadian, M. R. An electrostatic steering mechanism of Cdc42 recognition by Wiskott–Aldrich syndrome proteins. Mol. Cell 20, 313–324 (2005).

    CAS  PubMed  Google Scholar 

  49. Aronheim, A. et al. Chp, a homologue of the GTPase Cdc42Hs, activates the JNK pathway and is implicated in reorganizing the actin cytoskeleton. Curr. Biol. 8, 1125–1128 (1998).

    CAS  PubMed  Google Scholar 

  50. Kim, A. S., Kakalis, L. T., Abdul-Manan, N., Liu, G. A. & Rosen, M. K. Autoinhibition and activation mechanisms of the Wiskott–Aldrich syndrome protein. Nature 404, 151–158 (2000).

    CAS  PubMed  Google Scholar 

  51. Prehoda, K. E., Scott, J. A., Mullins, D. R. & Lim, W. A. Integration of multiple signals through cooperative regulation of the N-WASP–Arp2/3 complex. Science 290, 801–806 (2000).

    CAS  PubMed  Google Scholar 

  52. Suetsugu, S. et al. Regulation of actin cytoskeleton by mDab1 through N-WASP and ubiquitination of mDab1. Biochem. J. 384, 1–8 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Fukuoka, M. et al. A novel neural Wiskott–Aldrich syndrome protein (N-WASP) binding protein, WISH, induces Arp2/3 complex activation independent of Cdc42. J. Cell Biol. 152, 471–482 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Carlier, M.-F. et al. Grb2 links signaling to actin assembly by enhancing interaction of neural Wiskott–Aldrich syndrome protein (N-WASP) with actin-related protein (Arp2/3) complex. J. Biol. Chem. 275, 21946–21952 (2000).

    CAS  PubMed  Google Scholar 

  55. Rohatgi, R., Nollau, P., Ho, H. Y., Kirschner, M. W. & Mayer, B. J. Nck and phosphatidylinositol 4,5-bisphosphate synergistically activate actin polymerization through the N-WASP–Arp2/3 pathway. J. Biol. Chem. 276, 26448–26452 (2001).

    CAS  PubMed  Google Scholar 

  56. Tsujita, K. et al. Coordination between the actin cytoskeleton and membrane deformation by a novel membrane tubulation domain of PCH proteins is involved in endocytosis. J. Cell Biol. 172, 269–279 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Cory, G. O., Garg, R., Cramer, R. & Ridley, A. J. Phosphorylation of tyrosine 291 enhances the ability of WASp to stimulate actin polymerization and filopodium formation. Wiskott–Aldrich syndrome protein. J. Biol. Chem. 277, 45115–45121 (2002).

    CAS  PubMed  Google Scholar 

  58. Suetsugu, S. et al. Sustained activation of N-WASP through phosphorylation is essential for neurite extension. Dev. Cell 3, 645–658 (2002). The first report that WASP and WAVE proteins are degraded by proteasomes.

    CAS  PubMed  Google Scholar 

  59. Torres, E. & Rosen, M. K. Contingent phosphorylation/dephosphorylation provides a mechanism of molecular memory in WASP. Mol. Cell 11, 1215–1227 (2003).

    CAS  PubMed  Google Scholar 

  60. Park, S. J., Suetsugu, S. & Takenawa, T. Interaction of HSP90 to N-WASP leads to activation and protection from proteasome-dependent degradation. EMBO J. 24, 1557–1570 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Schulte, R. J. & Sefton, B. M. Inhibition of the activity of SRC and Abl tyrosine protein kinases by the binding of the Wiskott–Aldrich syndrome protein. Biochemistry 42, 9424–9430 (2003).

    CAS  PubMed  Google Scholar 

  62. Habermann, B. The BAR-domain family of proteins: a case of bending and binding? EMBO Rep. 5, 250–255 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Itoh, T. et al. Dynamin and the actin cytoskeleton cooperatively regulate plasma membrane invagination by BAR and F-BAR proteins. Dev. Cell 9, 791–804 (2005). References 56 and 63 report the identification of the EFC domain as a membrane-deforming domain. The role of PCH family proteins in linking membrane deformation with the cytoskeleton was proposed in this paper.

    CAS  PubMed  Google Scholar 

  64. Gundelfinger, E. D., Kessels, M. M. & Qualmann, B. Temporal and spatial coordination of exocytosis and endocytosis. Nature Rev. Mol. Cell Biol. 4, 127–139 (2003).

    CAS  Google Scholar 

  65. Peter, B. J. et al. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303, 495–499 (2004). The structure of BAR domain indicates that the shape of the protein dictates the shape of the membrane.

    CAS  PubMed  Google Scholar 

  66. Naqvi, S. N., Zahn, R., Mitchell, D. A., Stevenson, B. J. & Munn, A. L. The WASp homologue Las17p functions with the WIP homologue End5p/verprolin and is essential for endocytosis in yeast. Curr. Biol. 8, 959–962 (1998). Proposes a role for WASP family proteins in association with WIP in endocytosis.

    CAS  PubMed  Google Scholar 

  67. Qualmann, B. & Kelly, R. B. Syndapin isoforms participate in receptor-mediated endocytosis and actin organization. J. Cell Biol. 148, 1047–1062 (2000). N-WASP is shown to be involved in endocytosis through binding to an EFC-domain-containing protein.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kaksonen, M., Toret, C. P. & Drubin, D. G. A modular design for the clathrin- and actin-mediated endocytosis machinery. Cell 123, 305–320 (2005).

    CAS  PubMed  Google Scholar 

  69. Otsuki, M., Itoh, T. & Takenawa, T. T. N-WASP is recruited to rafts and associates with endophilin A in response to EGF. J. Biol. Chem. 278, 6461–6469 (2002).

    PubMed  Google Scholar 

  70. Madania, A. et al. The Saccharomyces cerevisiae homologue of human Wiskott–Aldrich syndrome protein Las17p interacts with the Arp2/3 complex. Mol. Biol. Cell 10, 3521–3538 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Kamioka, Y. et al. A novel dynamin-associating molecule, formin-binding protein 17, induces tubular membrane invaginations and participates in endocytosis. J. Biol. Chem. 279, 40091–40099 (2004).

    CAS  PubMed  Google Scholar 

  72. Soulard, A. et al. Saccharomyces cerevisiae Bzz1p is implicated with type I myosins in actin patch polarization and is able to recruit actin-polymerizing machinery in vitro. Mol. Cell. Biol. 22, 7889–7906 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Merrifield, C. J., Perrais, D. & Zenisek, D. Coupling between clathrin-coated-pit invagination, cortactin recruitment, and membrane scission observed in live cells. Cell 121, 593–606 (2005).

    CAS  PubMed  Google Scholar 

  74. Svitkina, T. M. & Borisy, G. G. Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J. Cell Biol. 145, 1009–1026 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Kaksonen, M., Toret, C. P. & Drubin, D. G. Harnessing actin dynamics for clathrin-mediated endocytosis. Nature Rev. Mol. Cell Biol. 7, 404–414 (2006).

    CAS  Google Scholar 

  76. Rozelle, A. L. et al. Phosphatidylinositol 4,5-bisphosphate induces actin-based movement of raft-enriched vesicles through WASP–Arp2/3. Curr. Biol. 10, 311–320 (2000).

    CAS  PubMed  Google Scholar 

  77. Taunton, J. et al. Actin-dependent propulsion of endosomes and lysosomes by recruitment of N-WASP. J. Cell Biol. 148, 519–530 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Nakagawa, H. et al. N-WASP, WAVE and Mena play different roles in the organization of actin cytoskeleton in lamellipodia. J. Cell Sci. 114, 1555–1565 (2001).

    CAS  PubMed  Google Scholar 

  79. Lommel, S. et al. Actin pedestal formation by enteropathogenic Escherichia coli and intracellular motility of Shigella flexneri are abolished in N-WASP- defective cells. EMBO Rep. 2, 850–857 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Snapper, S. B. et al. N-WASP deficiency reveals distinct pathways for cell surface projections and microbial actin-based motility. Nature Cell Biol. 3, 897–904 (2001).

    CAS  PubMed  Google Scholar 

  81. Suetsugu, S., Miki, H., Yamaguchi, H., Obinata, T. & Takenawa, T. Enhancement of branching efficiency by the actin filament-binding activity of N-WASP/WAVE2. J. Cell Sci. 114, 4533–4542 (2001).

    CAS  PubMed  Google Scholar 

  82. Steffen, A. et al. Filopodia formation in the absence of functional WAVE and Arp2/3 complexes. Mol. Biol. Cell 17, 2581–2591 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Schirenbeck, A., Bretschneider, T., Arasada, R., Schleicher, M. & Faix, J. The Diaphanous-related formin dDia2 is required for the formation and maintenance of filopodia. Nature Cell Biol. 7, 619–625 (2005).

    CAS  PubMed  Google Scholar 

  84. Buccione, R., Orth, J. D. & McNiven, M. A. Foot and mouth: podosomes, invadopodia and circular dorsal ruffles. Nature Rev. Mol. Cell Biol. 5, 647–657 (2004).

    CAS  Google Scholar 

  85. Linder, S. & Aepfelbacher, M. Podosomes: adhesion hot-spots of invasive cells. Trends Cell Biol. 13, 376–385 (2003).

    CAS  PubMed  Google Scholar 

  86. Mizutani, K., Miki, H., He, H., Maruta, H. & Takenawa, T. Essential role of neural Wiskott–Aldrich syndrome protein in podosome formation and degradation of extracellular matrix in src-transformed fibroblasts. Cancer Res. 62, 669–674 (2002).

    CAS  PubMed  Google Scholar 

  87. Weaver, A. et al. Interaction of cortactin and N-WASP with Arp2/3 complex. Curr. Biol. 12, 1270 (2002).

    CAS  PubMed  Google Scholar 

  88. Yamaguchi, H. et al. Molecular mechanisms of invadopodium formation: the role of the N-WASP–Arp2/3 complex pathway and cofilin. J. Cell Biol. 168, 441–452 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Weaver, A. M. et al. Cortactin promotes and stabilizes Arp2/3-induced actin filament network formation. Curr. Biol. 11, 370–374 (2001).

    CAS  PubMed  Google Scholar 

  90. Uruno, T. et al. Activation of Arp2/3 complex-mediated actin polymerization by cortactin. Nature Cell Biol. 3, 259–266 (2001).

    CAS  PubMed  Google Scholar 

  91. Krueger, E. W., Orth, J. D., Cao, H. & McNiven, M. A. A dynamin–cortactin–Arp2/3 complex mediates Actin reorganization in growth factor-stimulated cells. Mol. Biol. Cell 14, 1085–1096 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Schafer, D. A. et al. Dynamin2 and cortactin regulate actin assembly and filament organization. Curr. Biol. 12, 1852–1857 (2002).

    CAS  PubMed  Google Scholar 

  93. Wu, X., Suetsugu, S., Cooper, L. A., Takenawa, T. & Guan, J. L. Focal adhesion kinase regulation of N-WASP subcellular localization and function. J. Biol. Chem. 279, 9565–9576 (2004).

    CAS  PubMed  Google Scholar 

  94. Jones, N. et al. Nck adaptor proteins link nephrin to the actin cytoskeleton of kidney podocytes. Nature 440, 818–823 (2006).

    CAS  PubMed  Google Scholar 

  95. Gruenheid, S. et al. Enteropathogenic E. coli Tir binds Nck to initiate actin pedestal formation in host cells. Nature Cell Biol. 3, 856–859 (2001).

    CAS  PubMed  Google Scholar 

  96. Rivera, G. M., Briceno, C. A., Takeshima, F., Snapper, S. B. & Mayer, B. J. Inducible clustering of membrane-targeted SH3 domains of the adaptor protein Nck triggers localized actin polymerization. Curr. Biol. 14, 11–22 (2004).

    CAS  PubMed  Google Scholar 

  97. Oikawa, T. et al. PtdIns(3,4,5)P3 binding is necessary for WAVE2-induced formation of lamellipodia. Nature Cell Biol. 6, 420–426 (2004).

    CAS  PubMed  Google Scholar 

  98. Eden, S., Rohatgi, R., Podtelejnikov, A. V., Mann, M. & Kirschner, M. W. Mechanism of regulation of WAVE1-induced actin nucleation by Rac1 and Nck. Nature 418, 790–793 (2002). Identification of the WAVE complex that consists of WAVE1, ABI1/2, NAP1/p125NAP1, SRA1/PIR121 and HSPC300. Proposes trans-inhibition of WAVE. The presence of the Rac-binding molecule, SRA1/PIR121, in the WAVE complex was also described.

    CAS  PubMed  Google Scholar 

  99. Innocenti, M. et al. Abi1 is essential for the formation and activation of a WAVE2 signalling complex. Nature Cell Biol. 6, 319–327 (2004). Demonstration of constitutive formation of the WAVE2 complex.

    CAS  PubMed  Google Scholar 

  100. Gautreau, A. et al. Purification and architecture of the ubiquitous Wave complex. Proc. Natl Acad. Sci. USA 101, 4379–4383 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Suetsugu, S. et al. Optimization of WAVE2-complex-induced actin polymerization by membrane-bound IRSp53, PIP3, and Rac. J. Cell Biol. 173, 571–585 (2006). The WAVE2 complex was purified from cells and its activity in the ARP2/3 activation was examined. Reconcilement of two proposals, through SRA1/PIR121 and IRSp53, for Rac association with WAVE2.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Stovold, C. F., Millard, T. H. & Machesky, L. M. Inclusion of Scar/WAVE3 in a similar complex to Scar/WAVE1 and 2. BMC Cell Biol. 6, 11 (2005).

    PubMed  PubMed Central  Google Scholar 

  103. Leng, Y. et al. Abelson-interactor-1 promotes WAVE2 membrane translocation and Abelson-mediated tyrosine phosphorylation required for WAVE2 activation. Proc. Natl Acad. Sci. USA 102, 1098–1103 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Soto, M. C. et al. The GEX-2 and GEX-3 proteins are required for tissue morphogenesis and cell migrations in C. elegans. Genes Dev. 16, 620–632 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Sawa, M. et al. Essential role of the C. elegans Arp2/3 complex in cell migration during ventral enclosure. J. Cell Sci. 116, 1505–1518 (2003).

    CAS  PubMed  Google Scholar 

  106. Kitamura, T. et al. Molecular cloning of p125Nap1, a protein that associates with an SH3 domain of Nck. Biochem. Biophys. Res. Commun. 219, 509–514 (1996).

    CAS  PubMed  Google Scholar 

  107. Kobayashi, K. et al. p140Sra-1 (specifically Rac1-associated protein) is a novel specific target for Rac1 small GTPase. J. Biol. Chem. 273, 291–295 (1998).

    CAS  PubMed  Google Scholar 

  108. Steffen, A. et al. Sra-1 and Nap1 link Rac to actin assembly driving lamellipodia formation. EMBO J. 23, 749–759 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Kunda, P., Craig, G., Dominguez, V. & Baum, B. Abi, Sra1, and Kette control the stability and localization of SCAR/WAVE to regulate the formation of actin-based protrusions. Curr. Biol. 13, 1867–1875 (2003).

    CAS  PubMed  Google Scholar 

  110. Rogers, S. L., Wiedemann, U., Stuurman, N. & Vale, R. D. Molecular requirements for actin-based lamella formation in Drosophila S2 cells. J. Cell Biol. 162, 1079–1088 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Nozumi, M., Nakagawa, H., Miki, H., Takenawa, T. & Miyamoto, S. Differential localization of WAVE isoforms in filopodia and lamellipodia of the neuronal growth cone. J. Cell Sci. 116, 239–246 (2003).

    CAS  PubMed  Google Scholar 

  112. Suetsugu, S., Yamazaki, D., Kurisu, S. & Takenawa, T. Differential roles of WAVE1 and WAVE2 in dorsal and peripheral ruffle formation for fibroblast cell migration. Dev. Cell 5, 595–609 (2003). Description of differential roles for WAVE1 and WAVE2. The requirement of WAVE2 in lamellipodia formation is established in this paper and in reference 113.

    CAS  PubMed  Google Scholar 

  113. Yamazaki, D., Fujiwara, T., Suetsugu, S. & Takenawa, T. A novel function of WAVE in lamellipodia: WAVE1 is required for stabilization of lamellipodial protrusions during cell spreading. Genes Cells 10, 381–392 (2005).

    CAS  PubMed  Google Scholar 

  114. Kim, Y. et al. Phosphorylation of WAVE1 regulates actin polymerization and dendritic spine morphology. Nature 442, 814–817 (2006). Involvement of WAVE1 in spine formation. CDK5-mediated phosphorylation of WAVE1 is reported to inhibit WAVE1-induced ARP2/3 activation in spine formation.

    CAS  PubMed  Google Scholar 

  115. Yan, C. et al. WAVE2 deficiency reveals distinct roles in embryogenesis and Rac-mediated actin-based motility. EMBO J. 22, 3602–3612 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Yamazaki, D. et al. WAVE2 is required for directed cell migration and cardiovascular development. Nature 424, 452–456 (2003).

    CAS  PubMed  Google Scholar 

  117. Yeh, T. C., Ogawa, W., Danielsen, A. G. & Roth, R. A. Characterization and cloning of a 58/53-kDa substrate of the insulin receptor tyrosine kinase. J. Biol. Chem. 271, 2921–2928 (1996).

    CAS  PubMed  Google Scholar 

  118. Miki, H., Yamaguchi, H., Suetsugu, S. & Takenawa, T. IRSp53 is an essential intermediate between Rac and WAVE in the regulation of membrane ruffling. Nature 408, 732–735 (2000). Identification of IRSp53 as a linker molecule between Rac and WAVE2.

    CAS  PubMed  Google Scholar 

  119. Oda, A. et al. WAVE/Scars in platelets. Blood 105, 3141–3148 (2005).

    CAS  PubMed  Google Scholar 

  120. Choi, J. et al. Regulation of dendritic spine morphogenesis by insulin receptor substrate 53, a downstream effector of Rac1 and Cdc42 small GTPases. J. Neurosci. 25, 869–879 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Nakagawa, H. et al. IRSp53 is colocalised with WAVE2 at the tips of protruding lamellipodia and filopodia independently of Mena. J. Cell Sci. 116, 2577–2583 (2003).

    CAS  PubMed  Google Scholar 

  122. Krugmann, S. et al. Cdc42 induces filopodia by promoting the formation of an IRSp53:Mena complex. Curr. Biol. 11, 1645–1655 (2001).

    CAS  PubMed  Google Scholar 

  123. Yamagishi, A., Masuda, M., Ohki, T., Onishi, H. & Mochizuki, N. A novel actin bundling/filopodium-forming domain conserved in insulin receptor tyrosine kinase substrate p53 and missing in metastasis protein. J. Biol. Chem. 279, 14929–14936 (2004).

    CAS  PubMed  Google Scholar 

  124. Millard, T. H. et al. Structural basis of filopodia formation induced by the IRSp53/MIM homology domain of human IRSp53. EMBO J. 24, 240–250 (2005). First report of the structure of the RCB/IMD domain of IRSp53.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Suetsugu, S. et al. The RAC-binding domain/IRSP53-MIM homology domain of IRSP53 induces RAC-dependent membrane deformation. J. Biol. Chem. 281, 35347–35358 (2006). Reports Rac-dependent membrane deformation by the RCB/IMD domain.

    CAS  PubMed  Google Scholar 

  126. Govind, S., Kozma, R., Monfries, C., Lim, L. & Ahmed, S. Cdc42Hs facilitates cytoskeletal reorganization and neurite outgrowth by localizing the 58-kD insulin receptor substrate to filamentous actin. J. Cell Biol. 152, 579–594 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Soderling, S. H. et al. The WRP component of the WAVE-1 complex attenuates Rac-mediated signalling. Nature Cell Biol. 4, 970–975 (2002).

    CAS  PubMed  Google Scholar 

  128. Wu, R. F., Gu, Y., Xu, Y. C., Nwariaku, F. E. & Terada, L. S. Vascular endothelial growth factor causes translocation of p47phox to membrane ruffles through WAVE1. J. Biol. Chem. 278, 36830–36840 (2003).

    CAS  PubMed  Google Scholar 

  129. Westphal, R. S., Soderling, S. H., Alto, N. M., Langeberg, L. K. & Scott, J. D. Scar/WAVE-1, a Wiskott–Aldrich syndrome protein, assembles an actin-associated multi-kinase scaffold. EMBO J. 19, 4589–4600 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Miki, H., Fukuda, M., Nishida, E. & Takenawa, T. Phosphorylation of WAVE downstream of mitogen-activated protein kinase signaling. J. Biol. Chem. 274, 27605–27609 (1999).

    CAS  PubMed  Google Scholar 

  131. Theriot, J. A. & Mitchison, T. J. Actin microfilament dynamics in locomoting cells. Nature 352, 126–131 (1991).

    CAS  PubMed  Google Scholar 

  132. Pantoloni, D. & Carlier, M.-F. How profilin promotes actin filament assembly in the presence of thymosin β4. Cell 75, 1007–1014 (1993).

    Google Scholar 

  133. Yang, C. et al. Profilin enhances Cdc42-induced nucleation of actin polymerization. J. Cell Biol. 150, 1001–1012 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Suetsugu, S., Miki, H. & Takenawa, T. The essential role of profilin in the assembly of actin for microspike formation. EMBO J. 17, 6516–6526 (1998). Demonstrates that profilin is important for actin reorganization induced by WASP and WAVE family proteins.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Mimuro, H. et al. Profilin is required for sustaining efficient intra- and intercellular spreading of Shigella flexneri. J. Biol. Chem. 275, 28893–28901 (2000).

    CAS  PubMed  Google Scholar 

  136. Loisel, T. P., Boujemaa, R., Pantaloni, D. & Carlier, M. F. Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature 401, 613–616 (1999). Reconstitution of actin-based motility from purified proteins without any live organisms.

    CAS  PubMed  Google Scholar 

  137. Welch, M. D., Iwamatsu, A. & Mitchison, T. J. Actin polymerization is induced by Arp2/3 protein complex at the surface of Listeria monocytogenes. Nature 385, 265–269 (1997).

    CAS  PubMed  Google Scholar 

  138. Suzuki, T., Miki, H., Takenawa, T. & Sasakawa, C. Neural Wiskott–Aldrich syndrome protein is implicated in the actin-based motility of Shigella flexneri. EMBO J. 17, 2767–2776 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Egile, C. et al. Activation of the CDC42 effector N-WASP by the Shigella flexneri IcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility. J. Cell Biol. 146, 1319–1332 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Cameron, L. A., Svitkina, T. M., Vignjevic, D., Theriot, J. A. & Borisy, G. G. Dendritic organization of actin comet tails. Curr. Biol. 11, 130–135 (2001).

    CAS  PubMed  Google Scholar 

  141. Kalman, D. et al. Enteropathogenic E. coli acts through WASP and Arp2/3 complex to form actin pedestals. Nature Cell Biol. 1, 389–391 (1999).

    CAS  PubMed  Google Scholar 

  142. Shi, J., Scita, G. & Casanova, J. E. WAVE2 signaling mediates invasion of polarized epithelial cells by Salmonella typhimurium. J. Biol. Chem. 280, 29849–29855 (2005).

    CAS  PubMed  Google Scholar 

  143. Banzai, Y., Miki, H., Yamaguchi, H. & Takenawa, T. Essential role of neural Wiskott–Aldrich syndrome protein in neurite extension in PC12 cells and rat hippocampal primary culture cells. J. Biol. Chem. 275, 11987–11992 (2000).

    CAS  PubMed  Google Scholar 

  144. Strasser, G. A., Rahim, N. A., VanderWaal, K. E., Gertler, F. B. & Lanier, L. M. Arp2/3 is a negative regulator of growth cone translocation. Neuron 43, 81–94 (2004).

    CAS  PubMed  Google Scholar 

  145. Kakimoto, T., Katoh, H. & Negishi, M. Regulation of neuronal morphology by Toca-1, an F-BAR/EFC protein that induces plasma membrane invagination. J. Biol. Chem. 281, 29042–29053 (2006).

    CAS  PubMed  Google Scholar 

  146. Wong, K. et al. Signal transduction in neuronal migration: roles of GTPase activating proteins and the small GTPase Cdc42 in the Slit-Robo pathway. Cell 107, 209–221 (2001).

    CAS  PubMed  Google Scholar 

  147. Fujita, H., Katoh, H., Ishikawa, Y., Mori, K. & Negishi, M. Rapostlin is a novel effector of Rnd2 GTPase inducing neurite branching. J. Biol. Chem. 277, 45428–45434 (2002).

    CAS  PubMed  Google Scholar 

  148. Kawano, Y. et al. CRMP-2 is involved in kinesin-1-dependent transport of the Sra-1/WAVE1 complex and axon formation. Mol. Cell. Biol. 25, 9920–9935 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Irie, F. & Yamaguchi, Y. EphB receptors regulate dendritic spine development via intersectin, Cdc42 and N-WASP. Nature Neurosci. 5, 1117–1118 (2002).

    CAS  PubMed  Google Scholar 

  150. Udo, H. et al. Serotonin-induced regulation of the actin network for learning-related synaptic growth requires Cdc42, N-WASP, and PAK in Aplysia sensory neurons. Neuron 45, 887–901 (2005).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadaomi Takenawa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

Binding partners of WASP/WAVE family proteins and their proposed functions (PDF 322 kb)

Related links

Related links

DATABASES

OMIM

CYFIP1

WAS

FURTHER INFORMATION

Tadaomi Takenawa's homepage

Shiro Suetsugu's homepage

Glossary

Thrombocytopenia

The presence of fewer than usual platelets.

Eczema

A state of inflammation of the skin that is characterized by redness, skin oedema, itching and dryness.

ARP2/3 complex

(Actin-related protein-2/3 complex). A complex that consists of seven subunits. ARP2 and ARP3 are thought to function as two of the three actin monomers that are required for the nucleation of actin polymerization.

BAR domain

A dimeric coiled-coil domain found in Bin1, amphiphysin, Rvs167, endophilin and related molecules. The BAR domain is curved with positive charges on its concave surface. The curved surface of the BAR domain is thought to correspond to the curvature of the cell membrane or the membrane tubules.

EFC domain

(Extended Fer-CIP4 homology domain; also known as the FCH-BAR (F-BAR) domain). A dimeric coiled-coil domain that has weak similarity to the BAR domain. This domain is found in the pombe-Cdc15-homology (PCH) family of proteins.

IRSp53

An adaptor protein that contains an N-terminal Rac-binding (RCB) domain, which binds to Rac, actin filaments and the cell membrane. Its C-terminal Src-homology-3 (SH3) domain binds to WAVE2, Ena (also known as VASP) and other proteins, and its CDC42/Rac-interactive binding (CRIB) region is responsible for binding to CDC42.

Filopodium

A spiky structure that protrudes from the cell. Bundled actin filaments fill the inside of a filopodium.

Lamellipodium

A flat cellular structure that protrudes in the direction of cell movement. Branched actin filaments fill the inside of a lamellipodium.

Podosome

A structure that protrudes into the extracellular matrix and that is enriched in actin filaments, matrix-degrading enzymes, focal adhesion molecules and molecules involved in vesicle trafficking.

Invadopodium

A structure that is similar to a podosome, but larger. Sometimes, podosomes in transformed cells are called invadopodia.

Phosphoinositides

A phospholipid species, members of which function as signalling molecules and contain an inositol ring. There are seven poly-phosphoinositides, PtdIns(3)P, PtdIns(4)P, PtdIns(5)P, PtdIns(3,4)P2, PtdIns(3,5)P2, PtdIns(4,5)P2 and PtdIns(3,4,5)P3, corresponding to phosphorylation at the hydroxyl moiety in the inositol ring.

Latrunculin

A natural toxin produced by sponges of the Latrunculia genus. It binds to actin monomers and prevents them from polymerizing.

Nephrin

Nephrin is a cell–cell adhesion molecule that belongs to the immunoglobulin superfamily and is localized at the slit diaphragm of kidney glomerulus. Mutations in the gene that encodes nephrin have been associated with the congenital nephrotic syndrome.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takenawa, T., Suetsugu, S. The WASP–WAVE protein network: connecting the membrane to the cytoskeleton. Nat Rev Mol Cell Biol 8, 37–48 (2007). https://doi.org/10.1038/nrm2069

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2069

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing