Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Functions and dysfunctions of mitochondrial dynamics

Key Points

  • Mitochondria are dynamic organelles. They continually fuse and divide, are actively recruited to specific cellular locations and have dynamic structures.

  • Mitochondrial fusion requires three large GTPases: the outer membrane proteins MFN1 and MFN2, and the inner membrane protein OPA1.

  • Mitochondrial fission requires the dynamin GTPase DRP1 and the outer membrane protein FIS1.

  • The fusion and fission of mitochondria have several important functions. These processes control the morphology of mitochondria, allow content exchange between mitochondria, control mitochondrial distribution and facilitate the release of intermembrane space proteins during apoptosis.

  • Several structural changes in mitochondria are important for rapid and efficient apoptosis: the mitochondria must be fragmented, their outer membranes must become permeable and the cristae junctions must be widened.

  • Mitochondrial dynamics is particularly important to neurons, and defects result in neurodegenerative disease.

Abstract

Recent findings have sparked renewed appreciation for the remarkably dynamic nature of mitochondria. These organelles constantly fuse and divide, and are actively transported to specific subcellular locations. These dynamic processes are essential for mammalian development, and defects lead to neurodegenerative disease. But what are the molecular mechanisms that control mitochondrial dynamics, and why are they important for mitochondrial function? We review these issues and explore how defects in mitochondrial dynamics might cause neuronal disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mitochondria as dynamic organelles.
Figure 2: Mitochondrial fusion and fission regulate morphology.
Figure 3: Mitochondrial fusion.
Figure 4: Mitochondrial fission.
Figure 5: Mitochondrial dynamics protects mitochondrial function.
Figure 6: Mitochondrial dynamics during apoptosis.

Similar content being viewed by others

References

  1. Chan, D. C. Mitochondrial fusion and fission in mammals. Annu. Rev. Cell Dev. Biol. 22, 79–99 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Okamoto, K. & Shaw, J. M. Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annu. Rev. Genet. 39, 503–36 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Hollenbeck, P. J. & Saxton, W. M. The axonal transport of mitochondria. J. Cell Sci. 118, 5411–5419 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Nunnari, J. et al. Mitochondrial transmission during mating in Saccharomyces cerevisiae is determined by mitochondrial fusion and fission and the intramitochondrial segregation of mitochondrial DNA. Mol. Biol. Cell 8, 1233–1242 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bleazard, W. et al. The dynamin-related GTPase Dnm1 regulates mitochondrial fission in yeast. Nature Cell Biol. 1, 298–304 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Chen, H. et al. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J. Cell Biol. 160, 189–200 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sesaki, H. & Jensen, R. E. Division versus fusion: Dnm1p and Fzo1p antagonistically regulate mitochondrial shape. J. Cell Biol. 147, 699–706 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Smirnova, E., Griparic, L., Shurland, D. L. & van der Bliek, A. M. Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol. Biol. Cell 12, 2245–2256 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hales, K. G. & Fuller, M. T. Developmentally regulated mitochondrial fusion mediated by a conserved, novel, predicted GTPase. Cell 90, 121–129 (1997). This study identified the first component of the mitochondrial fusion machinery, thereby providing an avenue to identify new components in further yeast genetic screens.

    Article  CAS  PubMed  Google Scholar 

  10. Fehrenbacher, K. L., Yang, H. C., Gay, A. C., Huckaba, T. M. & Pon, L. A. Live cell imaging of mitochondrial movement along actin cables in budding yeast. Curr. Biol. 14, 1996–2004 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Morris, R. L. & Hollenbeck, P. J. Axonal transport of mitochondria along microtubules and F-actin in living vertebrate neurons. J. Cell Biol. 131, 1315–1326 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Ligon, L. A. & Steward, O. Role of microtubules and actin filaments in the movement of mitochondria in the axons and dendrites of cultured hippocampal neurons. J. Comp. Neurol. 427, 351–361 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Li, Z., Okamoto, K., Hayashi, Y. & Sheng, M. The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 119, 873–887 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Miller, K. E. & Sheetz, M. P. Axonal mitochondrial transport and potential are correlated. J. Cell Sci. 117, 2791–2804 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Pilling, A. D., Horiuchi, D., Lively, C. M. & Saxton, W. M. Kinesin-1 and dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons. Mol. Biol. Cell 17, 2057–2068 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Morris, R. L. & Hollenbeck, P. J. The regulation of bidirectional mitochondrial transport is coordinated with axonal outgrowth. J. Cell Sci. 104, 917–927 (1993).

    Article  PubMed  Google Scholar 

  17. Chang, D. T., Honick, A. S. & Reynolds, I. J. Mitochondrial trafficking to synapses in cultured primary cortical neurons. J. Neurosci. 26, 7035–7045 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chada, S. R. & Hollenbeck, P. J. Nerve growth factor signaling regulates motility and docking of axonal mitochondria. Curr. Biol. 14, 1272–1276 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Mannella, C. A. Structure and dynamics of the mitochondrial inner membrane cristae. Biochim. Biophys. Acta 1763, 542–548 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Scorrano, L. et al. A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev. Cell 2, 55–67 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Gilkerson, R. W., Selker, J. M. & Capaldi, R. A. The cristal membrane of mitochondria is the principal site of oxidative phosphorylation. FEBS Lett. 546, 355–358 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Vogel, F., Bornhovd, C., Neupert, W. & Reichert, A. S. Dynamic subcompartmentalization of the mitochondrial inner membrane. J. Cell Biol. 175, 237–247 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wurm, C. A. & Jakobs, S. Differential protein distributions define two sub-compartments of the mitochondrial inner membrane in yeast. FEBS Lett. 580, 5628–5634 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Hermann, G. J. et al. Mitochondrial fusion in yeast requires the transmembrane GTPase Fzo1p. J. Cell Biol. 143, 359–373 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shaw, J. M. & Nunnari, J. Mitochondrial dynamics and division in budding yeast. Trends Cell Biol. 12, 178–184 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Meeusen, S., McCaffery, J. M. & Nunnari, J. Mitochondrial fusion intermediates revealed in vitro. Science 305, 1747–1752 (2004). This study described an in vitro fusion assay that identifies mitochondrial fusion intermediates.

    Article  CAS  PubMed  Google Scholar 

  27. Detmer, S. A. & Chan, D. C. Complementation between mouse Mfn1 and Mfn2 protects mitochondrial fusion defects caused by CMT2A disease mutations. J. Cell Biol. 176, 405–414 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen, H., Chomyn, A. & Chan, D. C. Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J. Biol. Chem. 280, 26185–26192 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Koshiba, T. et al. Structural basis of mitochondrial tethering by mitofusin complexes. Science 305, 858–862 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Meeusen, S. et al. Mitochondrial inner-membrane fusion and crista maintenance requires the dynamin-related GTPase Mgm1. Cell 127, 383–395 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Cipolat, S., Martins de Brito, O., Dal Zilio, B. & Scorrano, L. OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc. Natl Acad. Sci. USA 101, 15927–15932 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Legros, F., Lombes, A., Frachon, P. & Rojo, M. Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins. Mol. Biol. Cell 13, 4343–4354 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Malka, F. et al. Separate fusion of outer and inner mitochondrial membranes. EMBO Rep. 6, 853–859 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ishihara, N., Fujita, Y., Oka, T. & Mihara, K. Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. EMBO J. 25, 2966–2977 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Altmann, K. & Westermann, B. Role of essential genes in mitochondrial morphogenesis in Saccharomyces cerevisiae. Mol. Biol. Cell 16, 5410–5417 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dimmer, K. S. et al. Genetic basis of mitochondrial function and morphology in Saccharomyces cerevisiae. Mol. Biol. Cell 13, 847–853 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Choi, S. Y. et al. A common lipid links Mfn-mediated mitochondrial fusion and SNARE-regulated exocytosis. Nature Cell Biol. 8, 1255–1262 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Fratti, R. A., Jun, Y., Merz, A. J., Margolis, N. & Wickner, W. Interdependent assembly of specific regulatory lipids and membrane fusion proteins into the vertex ring domain of docked vacuoles. J. Cell Biol. 167, 1087–1098 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vitale, N. et al. Phospholipase D1: a key factor for the exocytotic machinery in neuroendocrine cells. EMBO J. 20, 2424–2434 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ingerman, E. et al. Dnm1 forms spirals that are structurally tailored to fit mitochondria. J. Cell Biol. 170, 1021–1027 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bhar, D., Karren, M. A., Babst, M. & Shaw, J. M. Dimeric Dnm1-G385D interacts with Mdv1 on mitochondria and can be stimulated to assemble into fission complexes containing Mdv1 and Fis1. J. Biol. Chem. 281, 17312–17320 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Fekkes, P., Shepard, K. A. & Yaffe, M. P. Gag3p, an outer membrane protein required for fission of mitochondrial tubules. J. Cell Biol. 151, 333–340 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mozdy, A. D., McCaffery, J. M. & Shaw, J. M. Dnm1p GTPase-mediated mitochondrial fission is a multi-step process requiring the novel integral membrane component Fis1p. J. Cell Biol. 151, 367–380 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tieu, Q. & Nunnari, J. Mdv1p is a WD repeat protein that interacts with the dynamin-related GTPase, Dnm1p, to trigger mitochondrial division. J. Cell Biol. 151, 353–366 (2000). References 42–44 showed the power of yeast genetic screens for identifying essential components of the mitochondrial fission machinery.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Griffin, E. E., Graumann, J. & Chan, D. C. The WD40 protein Caf4p is a component of the mitochondrial fission machinery and recruits Dnm1p to mitochondria. J. Cell Biol. 170, 237–248 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee, Y. J., Jeong, S. Y., Karbowski, M., Smith, C. L. & Youle, R. J. Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol. Biol. Cell 15, 5001–5011 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Koch, A. et al. Dynamin-like protein 1 is involved in peroxisomal fission. J. Biol. Chem. 278, 8597–8605 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Koch, A., Yoon, Y., Bonekamp, N. A., McNiven, M. A. & Schrader, M. A role for Fis1 in both mitochondrial and peroxisomal fission in mammalian cells. Mol. Biol. Cell 16, 5077–5086 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Escobar-Henriques, M., Westermann, B. & Langer, T. Regulation of mitochondrial fusion by the F-box protein Mdm30 involves proteasome-independent turnover of Fzo1. J. Cell Biol. 173, 645–650 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Neutzner, A. & Youle, R. J. Instability of the mitofusin Fzo1 regulates mitochondrial morphology during the mating response of the yeast Saccharomyces cerevisiae. J. Biol. Chem. 280, 18598–18603 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Karbowski, M., Neutzner, A. & Youle, R. J. The mitochondrial E3 ubiquitin ligase MARCH5 is required for Drp1 dependent mitochondrial division. J. Cell Biol. 178, 71–84 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nakamura, N., Kimura, Y., Tokuda, M., Honda, S. & Hirose, S. MARCH-V is a novel mitofusin 2- and Drp1-binding protein able to change mitochondrial morphology. EMBO Rep. 7, 1019–1022 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Eura, Y., Ishihara, N., Oka, T. & Mihara, K. Identification of a novel protein that regulates mitochondrial fusion by modulating mitofusin (Mfn) protein function. J. Cell Sci. 119, 4913–4925 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Wasiak, S., Zunino, R. & McBride, H. M. Bax/Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death. J. Cell Biol. 177, 439–450 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Taguchi, N., Ishihara, N., Jofuku, A., Oka, T. & Mihara, K. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J. Biol. Chem. 282, 11521–11529 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Meisinger, C. et al. The morphology proteins Mdm12/Mmm1 function in the major β-barrel assembly pathway of mitochondria. EMBO J. 26, 2229–2239 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Guo, X. et al. The GTPase dMiro is required for axonal transport of mitochondria to Drosophila synapses. Neuron 47, 379–393 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Stowers, R. S., Megeath, L. J., Gorska-Andrzejak, J., Meinertzhagen, I. A. & Schwarz, T. L. Axonal transport of mitochondria to synapses depends on milton, a novel Drosophila protein. Neuron 36, 1063–1077 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Glater, E. E., Megeath, L. J., Stowers, R. S. & Schwarz, T. L. Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent. J. Cell Biol. 173, 545–557 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Frederick, R. L., McCaffery, J. M., Cunningham, K. W., Okamoto, K. & Shaw, J. M. Yeast Miro GTPase, Gem1p, regulates mitochondrial morphology via a novel pathway. J. Cell Biol. 167, 87–98 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sesaki, H., Southard, S. M., Yaffe, M. P. & Jensen, R. E. Mgm1p, a dynamin-related GTPase, is essential for fusion of the mitochondrial outer membrane. Mol. Biol. Cell 14, 2342–2356 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Olichon, A. et al. Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J. Biol. Chem. 278, 7743–7746 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Amutha, B., Gordon, D. M., Gu, Y. & Pain, D. A novel role of Mgm1p, a dynamin-related GTPase, in ATP synthase assembly and cristae formation/maintenance. Biochem. J. 381, 19–23 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Frezza, C. et al. OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126, 177–189 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Paumard, P. et al. The ATP synthase is involved in generating mitochondrial cristae morphology. EMBO J. 21, 221–230 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Minauro-Sanmiguel, F., Wilkens, S. & Garcia, J. J. Structure of dimeric mitochondrial ATP synthase: novel F0 bridging features and the structural basis of mitochondrial cristae biogenesis. Proc. Natl Acad. Sci. USA 102, 12356–12358 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dudkina, N. V., Heinemeyer, J., Keegstra, W., Boekema, E. J. & Braun, H. P. Structure of dimeric ATP synthase from mitochondria: an angular association of monomers induces the strong curvature of the inner membrane. FEBS Lett. 579, 5769–5772 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Messerschmitt, M. et al. The inner membrane protein Mdm33 controls mitochondrial morphology in yeast. J. Cell Biol. 160, 553–564 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. John, G. B. et al. The mitochondrial inner membrane protein mitofilin controls cristae morphology. Mol. Biol. Cell 16, 1543–1554 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hobbs, A. E., Srinivasan, M., McCaffery, J. M. & Jensen, R. E. Mmm1p, a mitochondrial outer membrane protein, is connected to mitochondrial DNA (mtDNA) nucleoids and required for mtDNA stability. J. Cell Biol. 152, 401–410 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dimmer, K. S., Jakobs, S., Vogel, F., Altmann, K. & Westermann, B. Mdm31 and Mdm32 are inner membrane proteins required for maintenance of mitochondrial shape and stability of mitochondrial DNA nucleoids in yeast. J. Cell Biol. 168, 103–115 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chen, H., McCaffery, J. M. & Chan, D. C. Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell 130, 548–562 (2007). This study showed that mitochondrial fusion is essential for respiratory function and that it protects neurons in the cerebellum from degeneration — findings that will probably be relevant for understanding CMT2A pathogenesis.

    Article  CAS  PubMed  Google Scholar 

  73. Legros, F., Malka, F., Frachon, P., Lombes, A. & Rojo, M. Organization and dynamics of human mitochondrial DNA. J. Cell Sci. 117, 2653–2662 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Alavi, M. V. et al. A splice site mutation in the murine Opa1 gene features pathology of autosomal dominant optic atrophy. Brain 130, 1029–1042 (2007).

    Article  PubMed  Google Scholar 

  75. Davies, V. J. et al. Opa1 deficiency in a mouse model of autosomal dominant optic atrophy impairs mitochondrial morphology, optic nerve structure and visual function. Hum. Mol. Genet. 16, 1307–1318 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Labrousse, A. M., Zappaterra, M. D., Rube, D. A. & van der Bliek, A. M. C. elegans dynamin-related protein DRP-1 controls severing of the mitochondrial outer membrane. Mol. Cell 4, 815–826 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Waterham, H. R. et al. A lethal defect of mitochondrial and peroxisomal fission. N. Engl. J. Med. 356, 1736–1741 (2007). This study provided clinical evidence for the essentiality of mitochondrial fission.

    Article  CAS  PubMed  Google Scholar 

  78. Verstreken, P. et al. Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions. Neuron 47, 365–378 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Campello, S. et al. Orchestration of lymphocyte chemotaxis by mitochondrial dynamics. J. Exp. Med. 203, 2879–2886 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Arnoult, D. Mitochondrial fragmentation in apoptosis. Trends Cell Biol. 17, 6–12 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Youle, R. J. & Karbowski, M. Mitochondrial fission in apoptosis. Nature Rev. Mol. Cell Biol. 6, 657–663 (2005).

    Article  CAS  Google Scholar 

  82. Frank, S. et al. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev. Cell 1, 515–525 (2001). This study provided the first evidence that mitochondrial fission has a significant role in apoptosis.

    Article  CAS  PubMed  Google Scholar 

  83. Parone, P. A. et al. Inhibiting the mitochondrial fission machinery does not prevent Bax/Bak-dependent apoptosis. Mol. Cell. Biol. 26, 7397–7408 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Abdelwahid, E. et al. Mitochondrial disruption in Drosophila apoptosis. Dev. Cell 12, 793–806 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Goyal, G., Fell, B., Sarin, A., Youle, R. J. & Sriram, V. Role of mitochondrial remodeling in programmed cell death in Drosophila melanogaster. Dev. Cell 12, 807–816 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jagasia, R., Grote, P., Westermann, B. & Conradt, B. DRP-1-mediated mitochondrial fragmentation during EGL-1-induced cell death in C. elegans. Nature 433, 754–760 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Karbowski, M., Norris, K. L., Cleland, M. M., Jeong, S. Y. & Youle, R. J. Role of Bax and Bak in mitochondrial morphogenesis. Nature 443, 658–662 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Brooks, C. et al. Bak regulates mitochondrial morphology and pathology during apoptosis by interacting with mitofusins. Proc. Natl Acad. Sci. USA 104, 11649–11654 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Goldstein, J. C., Waterhouse, N. J., Juin, P., Evan, G. I. & Green, D. R. The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nature Cell Biol. 2, 156–162 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Cipolat, S. et al. Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell 126, 163–175 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Germain, M., Mathai, J. P., McBride, H. M. & Shore, G. C. Endoplasmic reticulum BIK initiates DRP1-regulated remodelling of mitochondrial cristae during apoptosis. EMBO J. 24, 1546–1556 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Alexander, C. et al. OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nature Genet. 26, 211–215 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Delettre, C. et al. Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nature Genet. 26, 207–210 (2000). References 92 and 93 showed that dominant optic atrophy is caused by mutations in OPA1.

    Article  CAS  PubMed  Google Scholar 

  94. Ferre, M., Amati-Bonneau, P., Tourmen, Y., Malthiery, Y. & Reynier, P. eOPA1: an online database for OPA1 mutations. Hum. Mutat. 25, 423–428 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Olichon, A. et al. Effects of OPA1 mutations on mitochondrial morphology and apoptosis: relevance to ADOA pathogenesis. J. Cell Physiol. 211, 423–430 (2006).

    Article  CAS  Google Scholar 

  96. Kim, J. Y. et al. Mitochondrial DNA content is decreased in autosomal dominant optic atrophy. Neurology 64, 966–972 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Lodi, R. et al. Deficit of in vivo mitochondrial ATP production in OPA1-related dominant optic atrophy. Ann. Neurol. 56, 719–723 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Griparic, L., van der Wel, N. N., Orozco, I. J., Peters, P. J. & van der Bliek, A. M. Loss of the intermembrane space protein Mgm1/OPA1 induces swelling and localized constrictions along the lengths of mitochondria. J. Biol. Chem. 279, 18792–18798 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Zuchner, S. & Vance, J. M. Mechanisms of disease: a molecular genetic update on hereditary axonal neuropathies. Nature Clin. Pract. Neurol. 2, 45–53 (2006).

    Article  CAS  Google Scholar 

  100. Zuchner, S. et al. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nature Genet. 36, 449–451 (2004). This study showed that mutations in MFN2 cause the peripheral neuropathy CMT2A.

    Article  PubMed  CAS  Google Scholar 

  101. Zuchner, S. et al. Axonal neuropathy with optic atrophy is caused by mutations in mitofusin 2. Ann. Neurol. 59, 276–281 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Chung, K. W. et al. Early onset severe and late-onset mild Charcot-Marie-Tooth disease with mitofusin 2 (MFN2) mutations. Brain 129, 2103–2118 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Verhoeven, K. et al. MFN2 mutation distribution and genotype/phenotype correlation in Charcot-Marie-Tooth type 2. Brain 129, 2093–2102 (2006).

    Article  PubMed  Google Scholar 

  104. Baloh, R. H., Schmidt, R. E., Pestronk, A. & Milbrandt, J. Altered axonal mitochondrial transport in the pathogenesis of Charcot-Marie-Tooth disease from mitofusin 2 mutations. J. Neurosci. 27, 422–430 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Niemann, A., Ruegg, M., La Padula, V., Schenone, A. & Suter, U. Ganglioside-induced differentiation associated protein 1 is a regulator of the mitochondrial network: new implications for Charcot-Marie-Tooth disease. J. Cell Biol. 170, 1067–1078 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health. D.C.C. is an Ellison Medical Foundation Senior Scholar in Aging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Chan.

Related links

Related links

DATABASES

OMIM

CMT2A

CMT4A

FURTHER INFORMATION

David C. Chan's homepage

Glossary

Cristae

Invaginations of the mitochondrial inner membrane.

Nebenkern structure

A cytosolic structure, found in some insect spermatids, that is formed by the fusion of mitochondria.

Anterograde

The direction from the cell body towards the periphery.

Retrograde

The direction from peripheral regions towards the cell body.

Oxidative phosphorylation

A biochemical pathway for ATP production that results in oxygen consumption and is localized to the mitochondrial cristae.

Coiled coil

A structural motif that is formed by polypeptide sequences that contain hydrophobic heptad repeats.

Dynamin

A large GTPase that is thought to mediate vesicle scission during endocytosis.

Mitochondrial membrane potential

The electrochemical gradient that exists across the mitochondrial inner membrane.

Ergosterol

A steroid compound that is a component of yeast cell membranes and which might have a role similar to that of cholesterol in mammalian cell membranes.

SNARE

(soluble N-ethylmaleimide-sensitive fusion protein (NSF) attachment protein (SNAP) receptor). A highly α-helical protein that mediates the specific fusion of vesicles with target membranes.

F-box protein

A protein containing an F-box motif, a small domain that is used for protein interactions. The best-characterized F-box proteins are components of an E3 ubiquitin ligase, and help in ubiquitin-dependent protein degradation by recognizing specific substrates.

β-barrel protein

A protein composed of a β-sheet that is rolled up into a cylinder. One such mitochondrial β-barrel protein is VDAC (voltage-dependent anion channel), which forms a pore in the outer membrane.

Kinesin

A microtubule-based molecular motor protein that is most often directed towards the plus end of microtubules.

Dynein

A microtubule-based molecular motor that is directed towards the minus end of microtubules.

EF-hand domain

A helix-loop-helix protein motif that can bind a Ca2+ ion.

Mitochondrial F1F0 ATP synthase

A large, multisubunit enzyme embedded in the mitochondrial cristae that uses the proton gradient across the inner membrane to synthesize ATP.

Mitochondrial DNA

(mtDNA). A circular genome (16 kb in mammals) located in the mitochondrial matrix that encodes 13 polypeptides of the electron transport chain, 22 tRNAs and 2 rRNAs.

Nucleoid

A compacted mass of DNA. Mitochondrial DNA is organized into nucleoids, each consisting of several mitochondrial genomes.

Chemotaxis

The directed movement of cells in response to a chemical stimulus.

Mitochondrial outer membrane permeabilization

(MOMP). The opening of pores in the mitochondrial outer membrane — an early event during apoptosis that releases apoptotic factors from the mitochondrial intermembrane space.

Haploinsufficiency

A genetic state in diploids in which a single functional copy of a gene is insufficient to maintain a normal phenotype.

Sural nerve

A sensory nerve innervating the calf and foot that is commonly investigated by biopsy for the evaluation of peripheral neuropathies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Detmer, S., Chan, D. Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol 8, 870–879 (2007). https://doi.org/10.1038/nrm2275

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2275

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing