Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of oxygen availability in embryonic development and stem cell function

Key Points

  • Changes in oxygen (O2) tensions clearly have a role in patterning invertebrate and vertebrate embryos.

  • One of the first examples of the impact of O2 availability on developmental processes was demonstrated for the Drosophila melanogaster tracheal system. Here, O2-starved cells provide signals that promote increased branching morphogenesis of the O2-delivering tracheal network.

  • Genetic evidence now indicates that the differentiation of mammalian cardiovascular, placental, pulmonary, bone and haematopoietic cells and adipocytes is regulated by O2 availability.

  • Various pathways that mediate responses to O2 deprivation (hypoxia) have a role in embryonic development. The best genetic evidence is provided by animals that lack various subunits of the hypoxia inducible factor (HIF) heterodimeric transcription factors.

  • Recently, stem and progenitor cell phenotypes have been shown to be regulated by changes in O2 levels. Once again, HIFs have a crucial role in this process by interfacing with other stem cell signalling pathways such as those involving OCT4, Notch and Wnt.

Abstract

Low levels of oxygen (O2) occur naturally in developing embryos. Cells respond to their hypoxic microenvironment by stimulating several hypoxia-inducible factors (and other molecules that mediate O2 homeostasis), which then coordinate the development of the blood, vasculature, placenta, nervous system and other organs. Furthermore, embryonic stem and progenitor cells frequently occupy hypoxic 'niches' and low O2 regulates their differentiation. Recent work has revealed an important link between factors that are involved in regulating stem and progenitor cell behaviour and hypoxia-inducible factors, which provides a molecular framework for the hypoxic control of differentiation and cell fate. These findings have important implications for the development of therapies for tissue regeneration and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Branch morphogenesis during D. melanogaster tracheal development and mammalian blood vessel formation is regulated by O2 levels.
Figure 2: Oxygen gradients are generated in developing human and mouse placentas.
Figure 3: Distinct populations of stem cells occupy microenvironments that contain different O2 levels.
Figure 4: Models depicting O2 availability and transcriptional activity.
Figure 5: Multiple pathways responding to changes in O2 availability affect developmental processes as well as social behaviour.

Similar content being viewed by others

References

  1. Semenza, G. L. Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu. Rev. Cell Dev. Biol. 15, 551–578 (1999).

    CAS  PubMed  Google Scholar 

  2. Liu, L. & Simon, M. C. Regulation of transcription and translation by hypoxia. Cancer Biol. Ther. 3, 492–497 (2004).

    CAS  PubMed  Google Scholar 

  3. Wouters, B. G. et al. Control of the hypoxic response through regulation of mRNA translation. Semin. Cell Dev. Biol. 16, 487–501 (2005).

    CAS  PubMed  Google Scholar 

  4. Semenza, G. L. Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol. Med. 7, 345–350 (2001).

    CAS  PubMed  Google Scholar 

  5. Maltepe, E. & Simon, M. C. Oxygen, genes, and development: an analysis of the role of hypoxic gene regulation during murine vascular development. J. Mol. Med. 76, 391–401 (1998).

    CAS  PubMed  Google Scholar 

  6. Simon, M. C. et al. Hypoxia, HIFs, and cardiovascular development. Cold Spring Harb. Symp. Quant. Biol. 67, 127–132 (2003).

    Google Scholar 

  7. Morriss, G. M. & New, D. A. Effect of oxygen concentration on morphogenesis of cranial neural folds and neural crest in cultured rat embryos. J. Embryol. Exp. Morphol. 54, 17–35 (1979).

    CAS  PubMed  Google Scholar 

  8. Bruick, R. K. Oxygen sensing in the hypoxic response pathway: regulation of the hypoxia-inducible transcription factor. Genes Dev. 17, 2614–2623 (2003).

    CAS  PubMed  Google Scholar 

  9. Guillemin, K. & Krasnow, M. A. The hypoxic response: huffing and HIFing. Cell 89, 9–12 (1997).

    CAS  PubMed  Google Scholar 

  10. Manning, G. & Krasnow, M. A. Development of the Drosophila tracheal system. In The Development of Drosophila melanogaster (eds Bate, M. & Martinez-Arias, A.), 609–686 (Cold Spring Harbor Laboratory Press, New York,1993).

    Google Scholar 

  11. Samakovlis, C. et al. Development of the Drosophila tracheal system occurs by a series of morphologically distinct but genetically coupled branching events. Development 122, 1395–1407 (1996).

    CAS  PubMed  Google Scholar 

  12. Jarecki, J., Johnson, E. & Krasnow, M. A. Oxygen regulation of airway branching in Drosophila is mediated by branchless FGF. Cell 99, 211–220 (1999). Elegantly describes a role for O 2 -starved cells in branching morphogenesis of the tracheal system so that deprived cells become fully oxygenated.

    CAS  PubMed  Google Scholar 

  13. Shweiki, D., Itin, A., Soffer, D. & Keshet, E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359, 843–845 (1992). This is the first paper indicating that VEGF probably responds to O 2 deprivation to increase vascular density as a hypoxic adaptation.

    CAS  PubMed  Google Scholar 

  14. Forsythe, J. A. et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol. Cell. Biol. 16, 4604–4613 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ferrara, N., Gerber, H. P. & LeCouter, J. The biology of VEGF and its receptors. Nature Med. 9, 669–676 (2003).

    CAS  PubMed  Google Scholar 

  16. Risau, W. Mechanisms of angiogenesis. Nature 386, 671–674 (1997).

    CAS  PubMed  Google Scholar 

  17. Wood, S. M., Gleadle, J. M., Pugh, C. W., Hankinson, O. & Ratcliffe, P. J. The role of aryl hydrocarbon receptor nuclear translocator (ARNT) in hypoxia induction of gene expression. J. Biol. Chem. 271, 15117–15123 (1996).

    CAS  PubMed  Google Scholar 

  18. Hirota, K. & Semenza, G. L. Regulation of angiogenesis by hypoxia-inducible factor 1. Crit. Rev. Oncol. Hematol. 59, 15–26 (2006).

    PubMed  Google Scholar 

  19. Manalo, D. J. et al. Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood 105, 659–669 (2005).

    CAS  PubMed  Google Scholar 

  20. Mitchell, J. A. & Yochim, J. M. Intrauterine oxygen tension during the estrous cycle in the rat: its relation to uterine respiration and vascular activity. Endocrinology 83, 701–705 (1968).

    CAS  PubMed  Google Scholar 

  21. Rodesch, F., Simon, P., Donner, C. & Jauniaux, E. Oxygen measurements in endometrial and trophoblastic tissues during early pregnancy. Obstet. Gynecol. 80, 283–285 (1992).

    CAS  PubMed  Google Scholar 

  22. Maltepe, E., Schmidt, J. V., Baunoch, D., Bradfield, C. A. & Simon, M. C. Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Nature 386, 403–407 (1997). Shows that an environmental sensing bHLH–PAS protein regulates blood vessel morphogenesis in the developing conceptus.

    CAS  PubMed  Google Scholar 

  23. Ramirez-Bergeron, D. L., Runge, A., Adelman, D. M., Gohil, M. & Simon, M. C. HIF-dependent hematopoietic factors regulate the development of the embryonic vasculature. Dev. Cell 11, 81–92 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kozak, K. R., Abbott, B. & Hankinson, O. ARNT-deficient mice and placental differentiation. Dev. Biol. 191, 297–305 (1997).

    CAS  PubMed  Google Scholar 

  25. Iyer, N. V. et al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1α. Genes Dev. 12, 149–162 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ryan, H. E., Lo, J. & Johnson, R. S. HIF-1α is required for solid tumor formation and embryonic vascularization. EMBO J. 17, 3005–3015 (1998). This article, along with reference 25, shows that the HIF pathway senses the low O 2 environment of the developing embryo to promote embryogenesis and angiogenesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Adelman, D. M., Maltepe, E. & Simon, M. C. Multilineage embryonic hematopoiesis requires hypoxic ARNT activity. Genes Dev. 13, 2478–2483 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Adelman, D. M., Gertsenstein, M., Nagy, A., Simon, M. C. & Maltepe, E. Placental cell fates are regulated in vivo by HIF-mediated hypoxia responses. Genes Dev. 14, 3191–3203 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Cowden Dahl, K. D. et al. Hypoxia-inducible factors 1α and 2α regulate trophoblast differentiation. Mol. Cell. Biol. 25, 10479–10491 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Gnarra, J. R. et al. Defective placental vasculogenesis causes embryonic lethality in VHL-deficient mice. Proc. Natl Acad. Sci. USA 94, 9102–9107 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Takeda, K. et al. Placental but not heart defects are associated with elevated hypoxia-inducible factor α levels in mice lacking prolyl hydroxylase domain protein 2. Mol. Cell. Biol. 26, 8336–8346 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Genbacev, O., Zhou, Y., Ludlow, J. W. & Fisher, S. J. Regulation of human placental development by oxygen tension. Science 277, 1669–1672 (1997). This article was the first to demonstrate that progenitor cell proliferation and differentiation is regulated in response to changes in O 2 availability.

    CAS  PubMed  Google Scholar 

  33. Caniggia, I. et al. Hypoxia-inducible factor-1 mediates the biological effects of oxygen on human trophoblast differentiation through TGFβ3 . J. Clin. Invest. 105, 577–587 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Tian, H., Hammer, R. E., Matsumoto, A. M., Russell, D. W. & McKnight, S. L. The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. Genes Dev. 12, 3320–3324 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Compernolle, V. et al. Loss of HIF-2α and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice. Nature Med. 8, 702–710 (2002).

    CAS  PubMed  Google Scholar 

  36. Peng, J., Zhang, L., Drysdale, L. & Fong, G. H. The transcription factor EPAS-1/hypoxia-inducible factor 2α plays an important role in vascular remodeling. Proc. Natl. Acad. Sci. USA 97, 8386–8391 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Scortegagna, M. et al. Multiple organ pathology, metabolic abnormalities and impaired homeostasis of reactive oxygen species in Epas1−/− mice. Nature Genet. 35, 331–340 (2003).

    CAS  PubMed  Google Scholar 

  38. Gruber, M. et al. Acute postnatal ablation of Hif-2α results in anemia. Proc. Natl Acad. Sci. USA 104, 2301–2306 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Rankin, E. B. et al. Hypoxia-inducible factor-2 (HIF-2) regulates hepatic erythropoietin in vivo. J. Clin. Invest. 117, 1068–1077 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Isaac, D. D. & Andrew, D. J. Tubulogenesis in Drosophila: a requirement for the trachealess gene product. Genes Dev. 10, 103–117 (1996).

    CAS  PubMed  Google Scholar 

  41. Wilk, R., Weizman, I. & Shilo, B.-Z. trachealess encodes a bHLH-PAS protein that is an inducer of tracheal cell fates in Drosophila. Genes Dev. 10, 93–102 (1996).

    CAS  PubMed  Google Scholar 

  42. Rajpurohit, R., Koch, C. J., Tao, Z., Teixeira, C. M. & Shapiro, I. M. Adaptation of chondrocytes to low oxygen tension: relationship between hypoxia and cellular metabolism. J. Cell Physiol. 168, 424–432 (1996).

    CAS  PubMed  Google Scholar 

  43. Erlebacher, A., Filvaroff, E. H., Gitelman, S. E. & Derynck, R. Toward a molecular understanding of skeletal development. Cell 80, 371–378 (1995).

    CAS  PubMed  Google Scholar 

  44. Schipani, E. et al. Hypoxia in cartilage: HIF-1α is essential for chondrocyte growth arrest and survival. Genes Dev. 15, 2865–2876 (2001). This is among the first of many articles using a conditional allele of HIF1α to show that hypoxic microenvironments specifically regulate developing progenitor cells during organ formation.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Provot, S. et al. Hif-1α regulates differentiation of limb bud mesenchyme and joint development. J. Cell Biol. 177, 451–464 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Tontonoz, P., Hu, E., Devine, J., Beale, E. G. & Spiegelman, B. M. PPARγ2 regulates adipose expression of the phosphoenolpyruvate carboxykinase gene. Mol. Cell. Biol. 15, 351–357 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Yun, Z., Maecker, H. L., Johnson, R. S. & Giaccia, A. J. Inhibition of PPARγ2 gene expression by the HIF-1-regulated gene DEC1/Stra13: a mechanism for regulation of adipogenesis by hypoxia. Dev. Cell 2, 331–341 (2002).

    CAS  PubMed  Google Scholar 

  48. Shimba, S., Wada, T., Hara, S. & Tezuka, M. EPAS1 promotes adipose differentiation in 3T3-L1 cells. J. Biol. Chem. 279, 40946–40953 (2004).

    CAS  PubMed  Google Scholar 

  49. Mostafa, S. M., Papoutsakis, E. T. & Miller, W. M. Oxygen tension has significant effects on human megakaryocyte maturation. Exp. Hematology 28, 1498 (2000).

    Google Scholar 

  50. Morrison, S. J. et al. Culture in reduced levels of oxygen promotes clonogenic sympathoadrenal differentiation by isolated neural crest stem cells. J. Neurosci. 20, 7370–7376 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Studer, L. et al. Enhanced proliferation, survival, and dopaminergic differentiation of CNS precursors in lowered oxygen. J. Neurosci. 20, 7377–7383 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Spradling, A., Drummond-Barbosa, D. & Kai, T. Stem cells find their niche. Nature 414, 98–104 (2001).

    CAS  PubMed  Google Scholar 

  53. Lennon, D. P., Edmison, J. M. & Caplan, A. I. Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: effects on in vitro and in vivo osteochondrogenesis. J. Cell Physiol. 187, 345–355 (2001).

    CAS  PubMed  Google Scholar 

  54. Cipolleschi, M. G., Dello Sbarba, P. & Olivotto, M. The role of hypoxia in the maintenance of hematopoietic stem cells. Blood 82, 2031–2037 (1993).

    CAS  PubMed  Google Scholar 

  55. Parmar, K., Mauch, P., Vergilio, J. A., Sackstein, R. & Down, J. D. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc. Natl Acad. Sci. USA 104, 5431–5436 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Danet, G. H., Pan, Y., Luongo, J. L., Bonnet, D. A. & Simon, M. C. Expansion of human SCID-repopulating cells under hypoxic conditions. J. Clin. Invest. 112, 126–135 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kiel, M. J., Yilmaz, O. H., Iwashita, T., Terhorst, C. & Morrison, S. J. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005). This was the first paper to suggest that stem and progenitor cells are associated with endothelial microenvironments.

    CAS  PubMed  Google Scholar 

  58. Yoshida, S., Sukeno, M. & Nabeshima, Y. A vasculature-associated niche for undifferentiated spermatogonia in the mouse testis. Science 317, 1722–1726 (2007).

    CAS  PubMed  Google Scholar 

  59. Calabrese, C. et al. A perivascular niche for brain tumor stem cells. Cancer Cell 11, 69–82 (2007).

    CAS  PubMed  Google Scholar 

  60. Harvey, A. J., Kind, K. L., Pantaleon, M., Armstrong, D. T. & Thompson, J. G. Oxygen-regulated gene expression in bovine blastocysts. Biol. Reprod. 71, 1108–1119 (2004).

    CAS  PubMed  Google Scholar 

  61. Ezashi, T., Das, P. & Roberts, R. M. Low O2 tensions and the prevention of differentiation of hES cells. Proc. Natl Acad. Sci. USA 102, 4783–4788 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Jogi, A. et al. Hypoxia alters gene expression in human neuroblastoma cells toward an immature and neural crest-like phenotype. Proc. Natl Acad. Sci. USA 99, 7021–7026 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Ramirez-Bergeron, D. L. et al. Hypoxia affects mesoderm and enhances hemangioblast specification during early development. Development 131, 4623–4634 (2004).

    CAS  PubMed  Google Scholar 

  64. Artavanis-Tsakonas, S., Rand, M. D. & Lake, R. J. Notch signaling: cell fate control and signal integration in development. Science 284, 770–776 (1999).

    CAS  PubMed  Google Scholar 

  65. Hansson, E. M., Lendahl, U. & Chapman, G. Notch signaling in development and disease. Semin. Cancer Biol. 14, 320–328 (2004).

    CAS  PubMed  Google Scholar 

  66. Nofziger, D., Miyamoto, A., Lyons, K. M. & Weinmaster, G. Notch signaling imposes two distinct blocks in the differentiation of C2C12 myoblasts. Development 126, 1689–1702 (1999).

    CAS  PubMed  Google Scholar 

  67. Dahlqvist, C. et al. Functional Notch signaling is required for BMP4-induced inhibition of myogenic differentiation. Development 130, 6089–6099 (2003).

    CAS  PubMed  Google Scholar 

  68. Varnum-Finney, B. et al. Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nature Med. 6, 1278–1281 (2000).

    CAS  PubMed  Google Scholar 

  69. de la Pompa, J. L. et al. Conservation of the Notch signalling pathway in mammalian neurogenesis. Development 124, 1139–1148 (1997).

    CAS  PubMed  Google Scholar 

  70. Cornell, R. A. & Eisen, J. S. Delta/Notch signaling promotes formation of zebrafish neural crest by repressing neurogenin 1 function. Development 129, 2639–2648 (2002).

    CAS  PubMed  Google Scholar 

  71. Kopan, R., Nye, J. S. & Weintraub, H. The intracellular domain of mouse Notch: a constitutively activated repressor of myogenesis directed at the basic helix-loop-helix region of MyoD. Development 120, 2385–2396 (1994).

    CAS  PubMed  Google Scholar 

  72. Gustafsson, M. V. et al. Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev. Cell 9, 617–628 (2005). Among the first to link the HIF and a stem cell pathway involving Notch.

    CAS  PubMed  Google Scholar 

  73. Wang, R. et al. Transcriptional regulation of APH-1A and increased γ-secretase cleavage of APP and Notch by HIF-1 and hypoxia. FASEB J. 20, 1275–1277 (2006).

    PubMed  Google Scholar 

  74. Kaidi, A., Williams, A. C. & Paraskeva, C. Interaction between β-catenin and HIF-1 promotes cellular adaptation to hypoxia. Nature Cell Biol. 9, 210–217 (2007).

    CAS  PubMed  Google Scholar 

  75. Covello, K. L. et al. HIF-2α regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev. 20, 557–570 (2006). This article first connected the pluripotent OCT4 transcription factor to changes in O 2 availability.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Nichols, J. et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, 379–391 (1998).

    CAS  PubMed  Google Scholar 

  77. Scholer, H. R., Ruppert, S., Suzuki, N., Chowdhury, K. & Gruss, P. New type of POU domain in germ line-specific protein Oct-4. Nature 344, 435–439 (1990).

    CAS  PubMed  Google Scholar 

  78. Jiang, Y. et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418, 41–49 (2002).

    CAS  PubMed  Google Scholar 

  79. Tai, M. H. et al. Oct4 expression in adult human stem cells: evidence in support of the stem cell theory of carcinogenesis. Carcinogenesis 26, 495–502 (2005).

    CAS  PubMed  Google Scholar 

  80. Kehler, J. et al. Oct4 is required for primordial germ cell survival. EMBO Rep. 5, 1078–1083 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Lengner, C. J. et al. Oct4 expression is not required for mouse somatic stem cell self-renewal. Cell Stem Cell 1, 403–415 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Niwa, H., Miyazaki, J. & Smith, A. G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nature Genet. 24, 372–376 (2000).

    CAS  PubMed  Google Scholar 

  83. Hochedlinger, K., Yamada, Y., Beard, C. & Jaenisch, R. Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 121, 465–477 (2005).

    CAS  PubMed  Google Scholar 

  84. Hu, C.-J., Wang, L.-Y., Chodosh, L. A., Keith, B. & Simon, M. C. Differential roles of hypoxia-inducible factor 1α (HIF-1α) and HIF-2α in hypoxic gene regulation. Mol. Biol. Cell 23, 9361–9374 (2003).

    CAS  Google Scholar 

  85. Nordhoff, V. et al. Comparative analysis of human, bovine, and murine Oct-4 upstream promoter sequences. Mamm. Genome 12, 309–317 (2001).

    CAS  PubMed  Google Scholar 

  86. Koshiji, M. et al. HIF-1α induces cell cycle arrest by functionally counteracting Myc. EMBO J. 23, 1949–1956 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhang, H. et al. HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell 11, 407–420 (2007).

    CAS  PubMed  Google Scholar 

  88. Gordan, J. D., Bertout, J. A., Hu, C. J., Diehl, J. A. & Simon, M. C. HIF-2α promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. Cancer Cell 11, 335–347 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006). The first in a series of papers showing that a relatively small number of factors can reprogramme fibroblasts into pluripotent cells.

    CAS  PubMed  Google Scholar 

  90. Okita, K., Ichisaka, T. & Yamanaka, S. Generation of germline-competent induced pluripotent stem cells. Nature 448, 313–317 (2007).

    CAS  PubMed  Google Scholar 

  91. Maherali, N. et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1, 55–70 (2007).

    CAS  PubMed  Google Scholar 

  92. Wernig, M. et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448, 318–324 (2007).

    CAS  PubMed  Google Scholar 

  93. Hochachka, P. W., Buck, L. T., Doll, C. J. & Land, S. C. Unifying theory of hypoxia tolerance: molecular/metabolic defense and rescue mechanisms for surviving oxygen lack. Proc. Natl Acad. Sci. USA 93, 9493–9498 (1996). Among the first articles to show that O 2 deprivation is tolerated by altered intracellular metabolic pathways to conserve ATP.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Wullschleger, S., Loewith, R. & Hall, M. N. TOR signaling in growth and metabolism. Cell 124, 471–484 (2006).

    CAS  PubMed  Google Scholar 

  95. Koumenis, C. & Wouters, B. G. “Translating” tumor hypoxia: unfolded protein response (UPR)-dependent and UPR-independent pathways. Mol. Cancer Res. 4, 423–436 (2006).

    CAS  PubMed  Google Scholar 

  96. Gray, J. M. et al. Oxygen sensation and social feeding mediated by a C. elegans guanylate cyclase homologue. Nature 430, 317–322 (2004).

    CAS  PubMed  Google Scholar 

  97. Guertin, D. A. & Sabatini, D. M. An expanding role for mTOR in cancer. Trends Mol. Med. 11, 353–361 (2005).

    CAS  PubMed  Google Scholar 

  98. Sarbassov, D. D., Guertin, D. A., Ali, S. M. & Sabatini, D. M. Phosphorylation and regulation of Akt/PKB by the rictor–mTOR complex. Science 307, 1098–1101 (2005).

    CAS  PubMed  Google Scholar 

  99. Gangloff, Y. G. et al. Disruption of the mouse mTOR gene leads to early postimplantation lethality and prohibits embryonic stem cell development. Mol. Cell. Biol. 24, 9508–9516 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Murakami, M. et al. mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells. Mol. Cell. Biol. 24, 6710–6718 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Guertin, D. A. et al. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCα, but not S6K1. Dev. Cell 11, 859–871 (2006).

    CAS  PubMed  Google Scholar 

  102. Bi, L., Okabe, I., Bernard, D. J., Wynshaw-Boris, A. & Nussbaum, R. L. Proliferative defect and embryonic lethality in mice homozygous for a deletion in the p110α subunit of phosphoinositide 3-kinase. J. Biol. Chem. 274, 10963–10968 (1999).

    CAS  PubMed  Google Scholar 

  103. Lelievre, E., Bourbon, P. M., Duan, L. J., Nussbaum, R. L. & Fong, G. H. Deficiency in the p110α subunit of PI3K results in diminished Tie2 expression and Tie2−/−-like vascular defects in mice. Blood 105, 3935–3938 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Arsham, A. M., Howell, J. J. & Simon, M. C. A novel hypoxia-inducible factor-independent hypoxic response regulating mammalian target of rapamycin and its targets. J. Biol. Chem. 278, 29655–29660 (2003).

    CAS  PubMed  Google Scholar 

  105. Hudson, C. C. et al. Regulation of hypoxia-inducible factor 1α expression and function by the mammalian target of rapamycin. Mol. Cell. Biol. 22, 7004–7014 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhong, H. et al. Modulation of hypoxia-inducible factor 1α expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res. 60, 1541–1545 (2000).

    CAS  PubMed  Google Scholar 

  107. Schroder, M. & Kaufman, R. J. The mammalian unfolded protein response. Annu. Rev. Biochem. 74, 739–789 (2005).

    PubMed  Google Scholar 

  108. Koumenis, C. et al. Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2α. Mol. Cell. Biol. 22, 7405–7416 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Harding, H. P. et al. Diabetes mellitus and exocrine pancreatic dysfunction in perk−/− mice reveals a role for translational control in secretory cell survival. Mol. Cell. 7, 1153–1163 (2001).

    CAS  PubMed  Google Scholar 

  110. Scheuner, D. et al. Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol. Cell 7, 1165–1176 (2001).

    CAS  PubMed  Google Scholar 

  111. Zhang, W. et al. PERK EIF2AK3 control of pancreatic β cell differentiation and proliferation is required for postnatal glucose homeostasis. Cell Metab. 4, 491–497 (2006).

    CAS  PubMed  Google Scholar 

  112. Keith, B. & Simon, M. C. Hypoxia-inducible factors, stem cells, and cancer. Cell 129, 465–472 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Gu, Y. Z., Hogenesch, J. B. & Bradfield, C. A. The PAS superfamily: sensors of environmental and developmental signals. Annu. Rev. Pharmacol. Toxicol. 40, 519–561 (2000).

    CAS  PubMed  Google Scholar 

  114. Wang, G. L. & Semenza, G. L. Purification and characterization of hypoxia-inducible factor 1. J. Biol. Chem. 270, 1230–1237 (1995).

    CAS  PubMed  Google Scholar 

  115. Wang, G. L., Jiang, B.-H., Rue, E. A. & Semenza, G. L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl Acad. Sci. USA 92, 5510–5514 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Jain, S., Maltepe, E., Lu, M. M., Simon, C. & Bradfield, C. A. Expression of ARNT, ARNT2, HIF1α, HIF2α and Ah receptor mRNAs in the developing mouse. Mech. Dev. 73, 117–123 (1998).

    CAS  PubMed  Google Scholar 

  117. Tian, H., McKnight, S. L. & Russell, D. W. Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev. 11, 72–82 (1997).

    CAS  PubMed  Google Scholar 

  118. Wiesener, M. S. et al. Widespread hypoxia-inducible expression of HIF-2α in distinct cell populations of different organs. FASEB J. 17, 271–273 (2003).

    CAS  PubMed  Google Scholar 

  119. Gu, Y. Z., Moran, S. M., Hogenesch, J. B., Wartman, L. & Bradfield, C. A. Molecular characterization and chromosomal localization of a third α-class hypoxia inducible factor subunit, HIF3α. Gene Expr. 7, 205–213 (1998).

    CAS  PubMed  Google Scholar 

  120. Makino, Y. et al. Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature 414, 550–554 (2001).

    CAS  PubMed  Google Scholar 

  121. Keith, B., Adelman, D. M. & Simon, M. C. Targeted mutation of the murine arylhydrocarbon receptor nuclear translocator 2 (Arnt2) gene reveals partial redundancy with Arnt. Proc. Natl Acad. Sci. USA 98, 6692–6697 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Bunger, M. K. et al. Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103, 1009–1017 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Ivan, M. et al. HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292, 464–468 (2001).

    CAS  PubMed  Google Scholar 

  124. Jaakkola, P. et al. Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 468–472 (2001).

    CAS  PubMed  Google Scholar 

  125. Yu, F., White, S. B., Zhao, Q. & Lee, F. S. HIF-1α binding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proc. Natl Acad. Sci. USA 98, 9630–9635 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Masson, N., William, C., Maxwell, P. H., Pugh, C. W. & Ratcliffe, P. J. Independent function of two destruction domains in hypoxia-inducible factor-α chains activated by prolyl hydroxylation. EMBO J. 20, 5197–5206 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Epstein, A. C. et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107, 43–54 (2001).

    CAS  PubMed  Google Scholar 

  128. Bruick, R. K. & McKnight, S. L. A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294, 1337–1340 (2001).

    CAS  PubMed  Google Scholar 

  129. Ivan, M. et al. Biochemical purification and pharmacological inhibition of a mammalian prolyl hydroxylase acting on hypoxia-inducible factor. Proc. Natl Acad. Sci. USA 99, 13459–13464 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Schofield, C. J. & Ratcliffe, P. J. Oxygen sensing by HIF hydroxylases. Nature Rev. Mol. Cell Biol. 5, 343–354 (2004).

    CAS  Google Scholar 

  131. Ema, M. et al. Molecular mechanisms of transcription activation by HLF and HIF1α in response to hypoxia: their stabilization and redox signal-induced interaction with CBP/p300. EMBO J. 18, 1905–1914 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Lando, D. et al. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev. 16, 1466–1471 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Lando, D., Peet, D. J., Whelan, D. A., Gorman, J. J. & Whitelaw, M. L. Asparagine hydroxylation of the HIF transactivation domain: a hypoxic switch. Science 295, 858–861 (2002).

    CAS  PubMed  Google Scholar 

  134. Mahon, P. C., Hirota, K. & Semenza, G. L. FIH-1: a novel protein that interacts with HIF-1α and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev. 15, 2675–2686 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Hewitson, K. S. et al. Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family. J. Biol. Chem. 277, 26351–26355 (2002).

    CAS  PubMed  Google Scholar 

  136. Semenza, G. L. HIF-1 and human disease: one highly involved factor. Genes Dev. 14, 1983–1991 (2000).

    CAS  PubMed  Google Scholar 

  137. Kaelin, W. G. Proline hydroxylation and gene expression. Annu. Rev. Biochem. 74, 115–128 (2005).

    CAS  PubMed  Google Scholar 

  138. Bruick, R. K. Oxygen sensing in the hypoxic response pathway: regulation of the hypoxia-inducible transcription factor. Genes Dev. 17, 2614–2623 (2003).

    CAS  PubMed  Google Scholar 

  139. Pear, W. S. & Simon, M. C. Lasting longer without oxygen: the influence of hypoxia on Notch signaling. Cancer Cell 8, 435–437 (2005).

    CAS  PubMed  Google Scholar 

  140. Yoshida, H. ER stress and diseases. FEBS J. 274, 630–658 (2007).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Celeste Simon.

Related links

Related links

FURTHER INFORMATION

M. Celeste Simon's homepage

Brian Keith's homepage

Glossary

Hypoxia

A state in which the level of O2 is decreased relative to the normal level (which is 2–9% in most mammalian cell types).

Normoxic

Although frequently defined in the literature as 21% O2, physiological normoxia is actually in the range of 2–9% O2 for most adult cells in vivo.

Ischaemia

A pathological condition resulting from blood vessel occlusion, involving deprivation of oxygen, nutrients and growth factors. This condition also usually leads to decreased tissue pH levels.

Niche

The natural anatomic environment that supports stem cell behaviour.

Ontogeny

The development of the fetus during embryogenesis.

ETS

The founding member of a family of oncogenes and proto-oncogenes. ETS refers to 'E26-specific'.

Ramification

The process of dividing or spreading into branches.

Vasculogenesis

The formation of nascent blood vessels from newly generated endothelial cells.

Angiogenesis

The remodelling of blood vessels into the large and small vessels that are typical of mature networks containing arteries, capillaries and veins.

Somite

The primordial tissue that generates the vertebrae, dermis and muscles.

Conceptus

An embryo or fetus.

Cytotrophoblast

An outer cell of the developing embryo that adheres to the endometrium.

Bradycardia

A slowing of heart rate, usually measured as fewer than 60 beats per minute in humans.

Catecholamine dysregulation

Mice lacking HIF-2α die in utero owing to decreased production of catecholamine (for example, L-3,4-dihydroxyphenylalanine) by chromaffin cells in the organ of Zuckerkandl. Catecholamines are required for normal cardiovascular function.

Arborize

To develop many branching parts or formations.

Retinopathy

An abnormal increase in retinal vascular networks.

Hepatic steatosis

The accumulation of lipid in the liver.

Cardiac hypertrophy

Overgrowth of the heart through increased cell size rather than increased cell number.

Skeletal myopathy

Any disease of the muscle tissues, such as muscular dystrophy.

Physiological hypoxia

The natural low O2 level that is encountered by cells within the developing embryo, in particular before establishment of the utero–placental network.

Adipogenesis

The differentiation of lipid-producing and storage cells known as adipocytes.

Inner cell mass

Early cells in the embryo that generate all lineages of the mature organism but do not give rise to the placenta.

Pluripotent

A cell that has the potential to differentiate into any of the cell lineages of the developing organism.

Embryoid body

A three-dimensional structure consisting of differentiated derivatives of embryonic stem cells.

Cancer stem cell

A cancer-initiating cell that can self-renew and generate distinct cell types.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simon, M., Keith, B. The role of oxygen availability in embryonic development and stem cell function. Nat Rev Mol Cell Biol 9, 285–296 (2008). https://doi.org/10.1038/nrm2354

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2354

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing