Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cytochrome c: functions beyond respiration

Key Points

  • Cytochrome c is one of the mitochondrial proteins that is released into the cytosol when the cell is activated by an apoptotic stimulus.

  • In the cytosol, cytochrome c engages the apoptotic protease activating factor-1 (APAF1), and forms the apoptosome, which activates caspase-9.

  • The release of cytochrome c has been suggested to occur in two phases: mobilization from the mitochondrial intermembrane space and translocation through the outer mitochondrial membrane.

  • The mechanisms of cytochrome c release are controversial. Whether the permeabilization of the outer or the inner membrane is responsible for the downstream events is one of the debated topics. Most evidence supports a model in which the outer membrane is permeabilized without inner membrane events.

  • The release of cytochrome c and cytochrome-c-mediated apoptosis are controlled by multiple layers of regulation, with the most prominent players being members of the B-cell lymphoma protein-2 (BCL2) family.

Abstract

Cytochrome c is primarily known for its function in the mitochondria as a key participant in the life-supporting function of ATP synthesis. However, when a cell receives an apoptotic stimulus, cytochrome c is released into the cytosol and triggers programmed cell death through apoptosis. The release of cytochrome c and cytochrome-c-mediated apoptosis are controlled by multiple layers of regulation, the most prominent players being members of the B-cell lymphoma protein-2 (BCL2) family. As well as its role in canonical intrinsic apoptosis, cytochrome c amplifies signals that are generated by other apoptotic pathways and participates in certain non-apoptotic functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Intrinsic versus extrinsic apoptotic pathways.
Figure 2: Release of cytochrome c and its downstream effects.
Figure 3: Structure of cytochrome c.
Figure 4: Mobilization of cytochrome c.

Similar content being viewed by others

References

  1. Riedl, S. J. & Salvesen, G. S. The apoptosome: signalling platform of cell death. Nature Rev. Mol. Cell Biol. 8, 405–413 (2007).

    Article  CAS  Google Scholar 

  2. Yuan, J. Divergence from a dedicated cellular suicide mechanism: exploring the evolution of cell death. Mol. Cell 23, 1–12 (2006).

    Article  PubMed  CAS  Google Scholar 

  3. Pellegrini, L. & Scorrano, L. A cut short to death: Parl and Opa1 in the regulation of mitochondrial morphology and apoptosis. Cell Death Differ. 14, 1275–1284 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Liu, X., Kim, C. N., Yang, J., Jemmerson, R. & Wang, X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147–157 (1996). This study stunningly identified cytochrome c as a trigger for caspase activation, thereby hinting at the existence of the mitochondrial pathway of apoptosis.

    Article  CAS  PubMed  Google Scholar 

  5. Kluck, R. M. et al. Cytochrome c activation of CPP32-like proteolysis plays a critical role in a Xenopus cell-free apoptosis system. EMBO J. 16, 4639–4649 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kluck, R. M., Bossy-Wetzel, E., Green, D. R. & Newmeyer, D. D. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275, 1132–1136 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Yang, J. et al. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275, 1129–1132 (1997). This paper and reference 6 describe the ability of BCL2 to block OMM permeabilization as its mechanism of inhibiting apoptosis. These papers form the foundation of the studies of the mitochondrial pathway.

    Article  CAS  PubMed  Google Scholar 

  8. Newmeyer, D. D., Farschon, D. M. & Reed, J. C. Cell-free apoptosis in Xenopus egg extracts: inhibition by Bcl-2 and requirement for an organelle fraction enriched in mitochondria. Cell 79, 353–364 (1994). Provided the first evidence in a cell-free system that mitochondria have a biochemical role in apoptosis.

    Article  CAS  PubMed  Google Scholar 

  9. Li, F. et al. Cell-specific induction of apoptosis by microinjection of cytochrome c. Bcl-X L has activity independent of cytochrome c release. J. Biol. Chem. 272, 30299–30305 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Zhivotovsky, B., Orrenius, S., Brustugun, O. T. & Doskeland, S. O. Injected cytochrome c induces apoptosis. Nature 391, 449–450 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Li, K. et al. Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis. Cell 101, 389–399 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Vempati, U. D. et al. Role of cytochrome c in apoptosis: increased sensitivity to tumor necrosis factor α is associated with respiratory defects but not with lack of cytochrome c release. Mol. Cell. Biol. 27, 1771–1783 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hao, Z. et al. Specific ablation of the apoptotic functions of cytochrome c reveals a differential requirement for cytochrome c and Apaf-1 in apoptosis. Cell 121, 579–591 (2005). Showed the in vivo significance of cytochrome c in apoptosis by using a knock-in approach in gene-targeted mice in which cytochrome c lacked its apoptotic activity but maintained its normal respiratory function.

    Article  CAS  PubMed  Google Scholar 

  14. Yu, T., Wang, X., Purring-Koch, C., Wei, Y. & McLendon, G. L. A mutational epitope for cytochrome c binding to the apoptosis protease activation factor-1. J. Biol. Chem. 276, 13034–13038 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Kluck, R. M. et al. Determinants of cytochrome c pro-apoptotic activity. The role of lysine 72 trimethylation. J. Biol. Chem. 275, 16127–16133 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Sharonov, G. V. et al. Comparative analysis of proapoptotic activity of cytochrome c mutants in living cells. Apoptosis 10, 797–808 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Abdullaev, Z. et al. A cytochrome c mutant with high electron transfer and antioxidant activities but devoid of apoptogenic effect. Biochem. J. 362, 749–754 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ott, M., Zhivotovsky, B. & Orrenius, S. Role of cardiolipin in cytochrome c release from mitochondria. Cell Death Differ. 14, 1243–1247 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Gogvadze, V., Orrenius, S. & Zhivotovsky, B. Multiple pathways of cytochrome c release from mitochondria in apoptosis. Biochim. Biophys. Acta 1757, 639–647 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Gonzalvez, F. & Gottlieb, E. Cardiolipin: setting the beat of apoptosis. Apoptosis 12, 877–885 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Dickerson, R. E. et al. Ferricytochrome c. I. General features of the horse and bonito proteins at 2.8 Å resolution. J. Biol. Chem. 246, 1511–1535 (1971).

    Article  CAS  PubMed  Google Scholar 

  22. Kalanxhi, E. & Wallace, C. J. Cytochrome c impaled: investigation of the extended lipid anchorage of a soluble protein to mitochondrial membrane models. Biochem. J. 407, 179–187 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kagan, V. E. et al. Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nature Chem. Biol. 1, 223–232 (2005).

    Article  CAS  Google Scholar 

  24. Balakrishnan, G. et al. A conformational switch to β-sheet structure in cytochrome c leads to heme exposure. Implications for cardiolipin peroxidation and apoptosis. J. Am. Chem. Soc. 129, 504–505 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Garrido, C. et al. Mechanisms of cytochrome c release from mitochondria. Cell Death Differ. 13, 1423–1433 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Kroemer, G., Galluzzi, L. & Brenner, C. Mitochondrial membrane permeabilization in cell death. Physiol. Rev. 87, 99–163 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Mootha, V. K. et al. A reversible component of mitochondrial respiratory dysfunction in apoptosis can be rescued by exogenous cytochrome c. EMBO J. 20, 661–671 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhao, Y., Wang, Z. B. & Xu, J. X. Effect of cytochrome c on the generation and elimination of O2- and H2O2 in mitochondria. J. Biol. Chem. 278, 2356–2360 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Min, L. & Jian-xing, X. Detoxifying function of cytochrome c against oxygen toxicity. Mitochondrion 7, 13–16 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Orrenius, S., Gogvadze, V. & Zhivotovsky, B. Mitochondrial oxidative stress: implications for cell death. Annu. Rev. Pharmacol. Toxicol. 47, 143–183 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Uren, R. T. et al. Mitochondrial release of pro-apoptotic proteins: electrostatic interactions can hold cytochrome c but not Smac/DIABLO to mitochondrial membranes. J. Biol. Chem. 280, 2266–2274 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Munoz-Pinedo, C. et al. Different mitochondrial intermembrane space proteins are released during apoptosis in a manner that is coordinately initiated but can vary in duration. Proc. Natl Acad. Sci. USA 103, 11573–11578 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Goldstein, J. C., Waterhouse, N. J., Juin, P., Evan, G. I. & Green, D. R. The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nature Cell Biol. 2, 156–162 (2000). This was the first paper to track OMM permeabilization during apoptosis in single cells, a feat that permitted an analysis of the sequence of events in this pathway.

    Article  CAS  PubMed  Google Scholar 

  34. Scorrano, L. et al. A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev. Cell 2, 55–67 (2002). Describes a morphological change that occurs in mitochondria during apoptosis and suggests that this change is critical for the release of cytochrome c.

    Article  CAS  PubMed  Google Scholar 

  35. Sun, M. G. et al. Correlated three-dimensional light and electron microscopy reveals transformation of mitochondria during apoptosis. Nature Cell Biol. 9, 1057–1072 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Chipuk, J. E., Bouchier-Hayes, L. & Green, D. R. Mitochondrial outer membrane permeabilization during apoptosis: the innocent bystander scenario. Cell Death Differ. 13, 1396–1402 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Kuwana, T. et al. Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111, 331–342 (2002). Showed that BAX permeabilizes lipid membranes sufficiently to allow large molecules to pass through, and that this effect requires an activation signal that is provided by BID. It also showed that specific lipids, such as cardiolipin, are implicated in the function of BAX.

    Article  CAS  PubMed  Google Scholar 

  38. Youle, R. J. & Strasser, A. The BCL-2 protein family: opposing activities that mediate cell death. Nature Rev. Mol. Cell Biol. 9, 47–59 (2008).

    Article  CAS  Google Scholar 

  39. Wei, M. C. et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292, 727–730 (2001). Describes the effects on mitochondria of BAX–BAK-double-knockout in mice and shows that BAX and BAK are the effectors of OMM permeabilization.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chandra, D., Choy, G., Daniel, P. T. & Tang, D. G. Bax-dependent regulation of Bak by voltage-dependent anion channel 2. J. Biol. Chem. 280, 19051–19061 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Kinnally, K. W. & Antonsson, B. A tale of two mitochondrial channels, MAC and PTP, in apoptosis. Apoptosis 12, 857–868 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Mikhailov, V. et al. Association of Bax and Bak homo-oligomers in mitochondria. Bax requirement for Bak reorganization and cytochrome c release. J. Biol. Chem. 278, 5367–5376 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Basanez, G. et al. Bax-type apoptotic proteins porate pure lipid bilayers through a mechanism sensitive to intrinsic monolayer curvature. J. Biol. Chem. 277, 49360–49365 (2002). Provided a model of how BAX and BAK permeabilize membranes: in a manner that relies on protein–lipid interactions and makes use of a pore composed predominantly of lipid rather than protein. Although these features have not been proved, the model is nevertheless useful for thinking about the nature of the BAX–BAK pore.

    Article  CAS  PubMed  Google Scholar 

  44. Terrones, O. et al. Lipidic pore formation by the concerted action of proapoptotic BAX and tBID. J. Biol. Chem. 279, 30081–30091 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Shimizu, S., Narita, M. & Tsujimoto, Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399, 483–487 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Lawen, A. Another piece of the puzzle of apoptotic cytochrome c release. Mol. Microbiol. 66, 553–556 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Cheng, E. H., Sheiko, T. V., Fisher, J. K., Craigen, W. J. & Korsmeyer, S. J. VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science 301, 513–517 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. He, L. & Lemasters, J. J. Regulated and unregulated mitochondrial permeability transition pores: a new paradigm of pore structure and function? FEBS Lett. 512, 1–7 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Alcala, S., Klee, M., Fernandez, J., Fleischer, A. & Pimentel-Muinos, F. X. A high-throughput screening for mammalian cell death effectors identifies the mitochondrial phosphate carrier as a regulator of cytochrome c release. Oncogene 27, 44–54 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Grimm, S. & Brdiczka, D. The permeability transition pore in cell death. Apoptosis 12, 841–855 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Siskind, L. J. Mitochondrial ceramide and the induction of apoptosis. J. Bioenerg. Biomembr. 37, 143–153 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Belizario, J. E., Alves, J., Occhiucci, J. M., Garay-Malpartida, M. & Sesso, A. A mechanistic view of mitochondrial death decision pores. Braz. J. Med. Biol. Res. 40, 1011–1024 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Morales, A., Colell, A., Mari, M., Garcia-Ruiz, C. & Fernandez-Checa, J. C. Glycosphingolipids and mitochondria: role in apoptosis and disease. Glycoconj. J. 20, 579–588 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Garcia-Ruiz, C., Colell, A., Paris, R. & Fernandez-Checa, J. C. Direct interaction of GD3 ganglioside with mitochondria generates reactive oxygen species followed by mitochondrial permeability transition, cytochrome c release, and caspase activation. FASEB J. 14, 847–858 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Kristal, B. S. & Brown, A. M. Apoptogenic ganglioside GD3 directly induces the mitochondrial permeability transition. J. Biol. Chem. 274, 23169–23175 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Crompton, M. Bax, Bid and the permeabilization of the mitochondrial outer membrane in apoptosis. Curr. Opin. Cell Biol. 12, 414–419 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Green, D. R. & Kroemer, G. The pathophysiology of mitochondrial cell death. Science 305, 626–629 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Waterhouse, N. J. et al. Cytochrome c maintains mitochondrial transmembrane potential and ATP generation after outer mitochondrial membrane permeabilization during the apoptotic process. J. Cell Biol. 153, 319–328 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Green, D. R. At the gates of death. Cancer Cell 9, 328–330 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Eskes, R., Desagher, S., Antonsson, B. & Martinou, J. C. Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol. Cell. Biol. 20, 929–935 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Desagher, S. et al. Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J. Cell Biol. 144, 891–901 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kluck, R. M. et al. The pro-apoptotic proteins, Bid and Bax, cause a limited permeabilization of the mitochondrial outer membrane that is enhanced by cytosol. J. Cell Biol. 147, 809–822 (1999). References 61 and 62 show that the activation of BAX by active BID leads to its insertion and oligomerization, forming a basis for the mechanism of action of BAX and, by extension, BAK.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kim, T. H. et al. Bid–cardiolipin interaction at mitochondrial contact site contributes to mitochondrial cristae reorganization and cytochrome c release. Mol. Biol. Cell 15, 3061–3072 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Giordano, A. et al. tBid induces alterations of mitochondrial fatty acid oxidation flux by malonyl-CoA-independent inhibition of carnitine palmitoyltransferase-1. Cell Death Differ. 12, 603–613 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Tyurin, V. A. et al. Interactions of cardiolipin and lyso-cardiolipins with cytochrome c and tBid: conflict or assistance in apoptosis. Cell Death Differ. 14, 872–875 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Park, M. S., Kim, B. S. & Devarajan, P. Hypoxia/re-oxygenation injury induces apoptosis of LLC-PK1 cells by activation of caspase-2. Pediatr. Nephrol. 22, 202–208 (2007).

    Article  PubMed  Google Scholar 

  67. Robertson, J. D. et al. Processed caspase-2 can induce mitochondria-mediated apoptosis independently of its enzymatic activity. EMBO Rep. 5, 643–648 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Basanez, G. et al. Pro-apoptotic cleavage products of Bcl-X L form cytochrome c-conducting pores in pure lipid membranes. J. Biol. Chem. 276, 31083–31091 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Chen, Q., Gong, B. & Almasan, A. Distinct stages of cytochrome c release from mitochondria: evidence for a feedback amplification loop linking caspase activation to mitochondrial dysfunction in genotoxic stress induced apoptosis. Cell Death Differ. 7, 227–233 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Lei, X. et al. Gossypol induces Bax/Bak-independent activation of apoptosis and cytochrome c release via a conformational change in Bcl-2. FASEB J. 20, 2147–2149 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Lakhani, S. A. et al. Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Science 311, 847–851 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Paul, C. et al. Hsp27 as a negative regulator of cytochrome c release. Mol. Cell. Biol. 22, 816–834 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Puthalakath, H. et al. Bmf: a proapoptotic BH3-only protein regulated by interaction with the myosin V actin motor complex, activated by anoikis. Science 293, 1829–1832 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Bruey, J. M. et al. Hsp27 negatively regulates cell death by interacting with cytochrome c. Nature Cell Biol. 2, 645–652 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Steel, R. et al. Hsp72 inhibits apoptosis upstream of the mitochondria and not through interactions with Apaf-1. J. Biol. Chem. 279, 51490–51499 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Karbowski, M. et al. Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J. Cell Biol. 159, 931–938 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Cassidy-Stone, A. et al. Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev. Cell 14, 193–204 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Parone, P. A. et al. Inhibiting the mitochondrial fission machinery does not prevent Bax/Bak-dependent apoptosis. Mol. Cell. Biol. 26, 7397–7408 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bouillet, P. et al. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 286, 1735–1738 (1999). Described BIM-knockout mice and indicated that BIM is an important protein in the control of apoptosis in several settings.

    Article  CAS  PubMed  Google Scholar 

  80. Puthalakath, H. et al. ER stress triggers apoptosis by activating BH3-only protein Bim. Cell 129, 1337–1349 (2007). Described the regulation of BIM stability (the importance of which is indicated in reference 79) and the role of Ca2+ in its effects. It is essential reading for an accurate understanding of ER stress and Ca2+ signalling.

    Article  CAS  PubMed  Google Scholar 

  81. Jemmerson, R. et al. A conformational change in cytochrome c of apoptotic and necrotic cells is detected by monoclonal antibody binding and mimicked by association of the native antigen with synthetic phospholipid vesicles. Biochemistry 38, 3599–3609 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Martin, A. G. & Fearnhead, H. O. Apocytochrome c blocks caspase-9 activation and Bax-induced apoptosis. J. Biol. Chem. 277, 50834–50841 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Borutaite, V. & Brown, G. C. Mitochondrial regulation of caspase activation by cytochrome oxidase and tetramethylphenylenediamine via cytosolic cytochrome c redox state. J. Biol. Chem. 282, 31124–31130 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Carreras, M. C. & Poderoso, J. J. Mitochondrial nitric oxide in the signaling of cell integrated responses. Am. J. Physiol. Cell Physiol. 292, C1569–C1580 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Schonhoff, C. M., Gaston, B. & Mannick, J. B. Nitrosylation of cytochrome c during apoptosis. J. Biol. Chem. 278, 18265–18270 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Vlasova, I. I. et al. Nitric oxide inhibits peroxidase activity of cytochrome c cardiolipin complex and blocks cardiolipin oxidation. J. Biol. Chem. 281, 14554–14562 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Konishi, A. et al. Involvement of histone H1.2 in apoptosis induced by DNA double-strand breaks. Cell 114, 673–688 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Yan, N. & Shi, Y. Histone H1.2 as a trigger for apoptosis. Nature Struct. Biol. 10, 983–985 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Chipuk, J. E. & Green, D. R. Dissecting p53-dependent apoptosis. Cell Death Differ. 13, 994–1002 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Ruiz-Vela, A. & Korsmeyer, S. J. Proapoptotic histone H1.2 induces CASP-3 and -7 activation by forming a protein complex with CYT c, APAF-1 and CASP-9. FEBS Lett. 581, 3422–3428 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Khodjakov, A., Rieder, C., Mannella, C. A. & Kinnally, K. W. Laser micro-irradiation of mitochondria: is there an amplified mitochondrial death signal in neural cells? Mitochondrion 3, 217–227 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Colell, A. et al. GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell 129, 983–997 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Deshmukh, M., Kuida, K. & Johnson, E. M. Jr. Caspase inhibition extends the commitment to neuronal death beyond cytochrome c release to the point of mitochondrial depolarization. J. Cell Biol. 150, 131–143 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wright, K. M., Vaughn, A. E. & Deshmukh, M. Apoptosome dependent caspase-3 activation pathway is non-redundant and necessary for apoptosis in sympathetic neurons. Cell Death Differ. 14, 625–633 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Martinou, I. et al. The release of cytochrome c from mitochondria during apoptosis of NGF-deprived sympathetic neurons is a reversible event. J. Cell Biol. 144, 883–889 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mendes, C. S. et al. Cytochrome c-d regulates developmental apoptosis in the Drosophila retina. EMBO Rep. 7, 933–939 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Honarpour, N. et al. Adult Apaf-1-deficient mice exhibit male infertility. Dev. Biol. 218, 248–258 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Kim, R., Emi, M. & Tanabe, K. Role of mitochondria as the gardens of cell death. Cancer Chemother. Pharmacol. 57, 545–553 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Hegde, R. et al. Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. J. Biol. Chem. 277, 432–438 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Modjtahedi, N., Giordanetto, F., Madeo, F. & Kroemer, G. Apoptosis-inducing factor: vital and lethal. Trends Cell Biol. 16, 264–272 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Krantic, S., Mechawar, N., Reix, S. & Quirion, R. Apoptosis-inducing factor: a matter of neuron life and death. Prog. Neurobiol. 81, 179–196 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Arnoult, D. et al. Mitochondrial release of AIF and EndoG requires caspase activation downstream of Bax/Bak-mediated permeabilization. EMBO J. 22, 4385–4399 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hill, M. M., Adrain, C., Duriez, P. J., Creagh, E. M. & Martin, S. J. Analysis of the composition, assembly kinetics and activity of native Apaf-1 apoptosomes. EMBO J. 23, 2134–2145 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Bernardi, P. et al. The mitochondrial permeability transition from in vitro artifact to disease target. FEBS J. 273, 2077–2099 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Jurgensmeier, J. M. et al. Bax directly induces release of cytochrome c from isolated mitochondria. Proc. Natl Acad. Sci. USA 95, 4997–5002 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Siu, W. P., Pun, P. B., Latchoumycandane, C. & Boelsterli, U. A. Bax-mediated mitochondrial outer membrane permeabilization (MOMP), distinct from the mitochondrial permeability transition, is a key mechanism in diclofenac-induced hepatocyte injury: multiple protective roles of cyclosporin A. Toxicol. Appl. Pharmacol. 227, 451–461 (2007).

    Article  PubMed  CAS  Google Scholar 

  107. Lee, M. & Park, J. Regulation of NFAT activation: a potential therapeutic target for immunosuppression. Mol. Cells 22, 1–7 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Serfling, E. et al. NFAT transcription factors in control of peripheral T cell tolerance. Eur. J. Immunol. 36, 2837–2843 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Woodside, K. J. et al. Apoptosis of allospecifically activated human helper T cells is blocked by calcineurin inhibition. Transpl. Immunol. 15, 229–234 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Canning, M. T., Nay, S. L., Pena, A. V. & Yarosh, D. B. Calcineurin inhibitors reduce nuclear localization of transcription factor NFAT in UV-irradiated keratinocytes and reduce DNA repair. J. Mol. Histol. 37, 285–291 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Bao, Q. & Shi, Y. Apoptosome: a platform for the activation of initiator caspases. Cell Death Differ. 14, 56–65 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Ho, L. H., Read, S. H., Dorstyn, L., Lambrusco, L. & Kumar, S. Caspase-2 is required for cell death induced by cytoskeletal disruption. Oncogene 14 Jan 2008 (doi:10.1038/sj.onc.1211005)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

Tak W. Mak's homepage

Glossary

Caspase

A signalling Cys protease that cleaves after Asp residues. Caspases have an important role in apoptosis. An initiator caspase cleaves and activates itself to initiate the apoptotic programme. An executioner caspase executes the apoptotic programme through the cleavage of an array of vital proteins.

Extrinsic pathway

An apoptotic pathway that is mediated by the binding of an extracellular ligand to a transmembrane receptor.

Intrinsic pathway

An apoptotic pathway in which the crucial step is the permeabilization of the outer mitochondrial membrane.

Death-inducing signalling complex

(DISC). The signalling platform of the extrinsic pathway.

Cristae junction

An inner membrane projection into the matrix by tubular structures of uniform diameter.

Redox intermediate

An electron carrier in a reaction in which electrons are transferred from donor molecules to acceptor molecules.

Apoptosome

A signalling platform that activates the intrinsic pathway.

SMAC

A pro-apoptotic protein that is released from the intermembrane space that neutralizes the inhibitory activity of inhibitors of apoptosis proteins.

Reactive oxygen species

(ROS). Byproducts of oxidative metabolism that are highly reactive owing to unpaired electrons.

Mitochondrial outer membrane permeabilization

(MOMP). The permeabilization of the outer mitochondrial membrane to proteins.

Caspase recruitment domain

(CARD). A homotypic protein interaction motif that consists of six α-helices.

WD40

A sequence of 40 amino acids that usually ends with Try-Asp (W-D). This is found in some regulatory proteins.

AAA+ family

A family of ATPases in which the defining feature is the formation of an oligomer that has a circular structure. This occurs as a result of one ATPase domain nested next to the ATPase domain of its neighbour.

Permeability transition pore

(PTP). A large high-conductance multimeric complex that spans the outer and inner mitochondrial membranes. Its opening leads to mitochondrial permeability transition, a sudden increase of the permeability of the membrane to solutes.

Adenine nucleotide translocator

(ANT). A carrier that is found in the inner mitochondrial membrane that transports ADP into, and ATP out of, the mitochondrial matrix. It is thought to be a component of the permeability transition pore.

Cyclophilin D

(CypD). An enzyme that is found in the mitochondrial matrix and that catalyses the cis/trans-isomerization of prolyl peptide bonds. It is thought to be a component of the permeability transition pore.

Membrane potential

(Δψm). The proton-motive force that results from the generation of a proton gradient across the inner mitochondrial membrane. This enables the F0F1 ATPase to synthesize ATP from ADP and inorganic phosphate as the protons flow spontaneously across the membrane.

BH3-only proteins

Pro-apoptotic BCL2-family members that have only the third of four BCL2 homology domains.

Heat-shock protein

A protein that functions as a molecular chaperone that is upregulated during stress.

Rhomboid proteases

A class of highly hydrophobic proteases. They contain a Ser-protease catalytic dyad which suggests that they can cleave the transmembrane domains of integral membrane proteins.

Apocytochrome c

The cytochrome c protein that is produced by translation and co-translational modification in the cytosol.

Holocytochrome c

The mature cytochrome c protein that contains the haem moiety.

Inhibitors of apoptosis proteins

(IAPs). A family of proteins that associates with and inhibits caspases. These are defined by baculovirus-repeat domains and, in some cases, a RING zinc-finger domain.

Autophagy

A process in which the parts of a cell that are sequestered within double-membraned vacuoles are digested by lysosomal hydrolases.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ow, YL., Green, D., Hao, Z. et al. Cytochrome c: functions beyond respiration. Nat Rev Mol Cell Biol 9, 532–542 (2008). https://doi.org/10.1038/nrm2434

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2434

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing