Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Is there a code embedded in proteins that is based on post-translational modifications?

Abstract

Covalent post-translational modifications (PTMs) provide vast indexing potential and expanded protein use. The 'histone code' hypothesis has inspired rapid advances throughout chromatin biology, and has recently been tapped for its relevance to non-histone proteins. Comprehensive analyses suggest that rather than constituting a general code, the covalent modifications of proteins (including histones) provide surfaces that are recognized by effectors that can give rise to intricate interactions and downstream events. These are reminiscent of other regulatory cascades in transcription and cell signalling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Different modes of functional readout during transcription.
Figure 2: Post-translational modifications.

Similar content being viewed by others

References

  1. Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  Google Scholar 

  2. Turner, B. M. Defining an epigenetic code. Nature Cell Biol. 9, 2–6 (2007).

    Article  CAS  Google Scholar 

  3. Byvoet, P., Shepherd, G. R., Hardin, J. M. & Noland, B. J. The distribution and turnover of labeled methyl groups in histone fractions of cultured mammalian cells. Arch. Biochem. Biophys. 148, 558–567 (1972).

    Article  CAS  Google Scholar 

  4. Duerre, J. A. & Lee, C. T. In vivo methylation and turnover of rat brain histones. J. Neurochem. 23, 541–547 (1974).

    Article  CAS  Google Scholar 

  5. Borun, T. W., Pearson, D. & Paik, W. K. Studies of histone methylation during the HeLa S-3 cell cycle. J. Biol. Chem. 247, 4288–4298 (1972).

    CAS  PubMed  Google Scholar 

  6. Annunziato, A. T., Eason, M. B. & Perry, C. A. Relationship between methylation and acetylation of arginine-rich histones in cycling and arrested HeLa cells. Biochemistry 34, 2916–2924 (1995).

    Article  CAS  Google Scholar 

  7. Trojer, P. & Reinberg, D. Histone lysine demethylases and their impact on epigenetics. Cell 125, 213–217 (2006).

    Article  CAS  Google Scholar 

  8. Bedford, M. T. Arginine methylation at a glance. J. Cell Sci. 120, 4243–4246 (2007).

    Article  CAS  Google Scholar 

  9. Huang, J. & Berger, S. L. The emerging field of dynamic lysine methylation of non-histone proteins. Curr. Opin. Genet. Dev. 18, 152–158 (2008).

    Article  CAS  Google Scholar 

  10. Sampath, S. C. et al. Methylation of a histone mimic within the histone methyltransferase G9a regulates protein complex assembly. Mol. Cell 27, 596–608 (2007).

    Article  CAS  Google Scholar 

  11. Shi, X. et al. Modulation of p53 function by SET8-mediated methylation at lysine 382. Mol. Cell 27, 636–646 (2007).

    Article  CAS  Google Scholar 

  12. Yang, X. J. Multisite protein modification and intramolecular signaling. Oncogene 24, 1653–1662 (2005).

    Article  CAS  Google Scholar 

  13. Heldin, C. H. Simultaneous induction of stimulatory and inhibitory signals by PDGF. FEBS Lett. 410, 17–21 (1997).

    Article  CAS  Google Scholar 

  14. Sims, R. J. 3rd & Reinberg, D. Histone H3 Lys 4 methylation: caught in a bind? Genes Dev. 20, 2779–2786 (2006).

    Article  CAS  Google Scholar 

  15. Taverna, S. D., Li, H., Ruthenburg, A. J., Allis, C. D. & Patel, D. J. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nature Struct. Mol. Biol. 14, 1025–1040 (2007).

    Article  CAS  Google Scholar 

  16. Wysocka, J. et al. A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 442, 86–90 (2006).

    Article  CAS  Google Scholar 

  17. Shi, X. et al. ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature 442, 96–99 (2006).

    Article  CAS  Google Scholar 

  18. Taverna, S. D. et al. Yng1 PHD finger binding to H3 trimethylated at K4 promotes NuA3 HAT activity at K14 of H3 and transcription at a subset of targeted ORFs. Mol. Cell 24, 785–796 (2006).

    Article  CAS  Google Scholar 

  19. Sims, R. J. 3rd et al. Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre-mRNA splicing. Mol. Cell 28, 665–676 (2007).

    Article  CAS  Google Scholar 

  20. Ruthenburg, A. J., Allis, C. D. & Wysocka, J. Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol. Cell 25, 15–30 (2007).

    Article  CAS  Google Scholar 

  21. Matthews, A. G. et al. RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination. Nature 450, 1106–1110 (2007).

    Article  CAS  Google Scholar 

  22. Trojer, P. & Reinberg, D. Facultative heterochromatin: is there a distinctive molecular signature? Mol. Cell 12, 1–13 (2007).

    Article  Google Scholar 

  23. Vakoc, C. R., Mandat, S. A., Olenchock, B. A. & Blobel, G. A. Histone H3 lysine 9 methylation and HP1γ are associated with transcription elongation through mammalian chromatin. Mol. Cell 19, 381–391 (2005).

    Article  CAS  Google Scholar 

  24. Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307–310 (2000).

    Article  CAS  Google Scholar 

  25. Riley, K. J. & Maher, L. J. p53 RNA interactions: new clues in an old mystery. RNA 13, 1825–1833 (2007).

    Article  CAS  Google Scholar 

  26. Glozak, M. A., Sengupta, N., Zhang, X. & Seto, E. Acetylation and deacetylation of non-histone proteins. Gene 363, 15–23 (2005).

    Article  CAS  Google Scholar 

  27. Grewal, S. I. & Jia, S. Heterochromatin revisited. Nature Rev. Genet. 8, 35–46 (2007).

    Article  CAS  Google Scholar 

  28. Prives, C. & Manley, J. L. Why is p53 acetylated? Cell 107, 815–818 (2001).

    Article  CAS  Google Scholar 

  29. Luo, J. et al. Acetylation of p53 augments its site-specific DNA binding both in vitro and in vivo. Proc. Natl Acad. Sci. USA 101, 2259–2264 (2004).

    Article  CAS  Google Scholar 

  30. Dhalluin, C. et al. Structure and ligand of a histone acetyltransferase bromodomain. Nature 399, 491–496 (1999).

    Article  CAS  Google Scholar 

  31. Jacobson, R. H., Ladurner, A. G., King, D. S. & Tjian, R. Structure and function of a human TAFII250 double bromodomain module. Science 288, 1422–1425 (2000).

    Article  CAS  Google Scholar 

  32. Hassan, A. H. et al. Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell 111, 369–379 (2002).

    Article  CAS  Google Scholar 

  33. VanDemark, A. P. et al. Autoregulation of the Rsc4 tandem bromodomain by Gcn5 acetylation. Mol. Cell 27, 817–828 (2007).

    Article  CAS  Google Scholar 

  34. Chuikov, S. et al. Regulation of p53 activity through lysine methylation. Nature 432, 353–360 (2004).

    Article  CAS  Google Scholar 

  35. Wang, H. et al. Purification and functional characterization of a histone H3-lysine 4-specific methyltransferase. Mol. Cell 8, 1207–1217 (2001).

    Article  CAS  Google Scholar 

  36. Nishioka, K. et al. Set9, a novel histone H3 methyltransferase that facilitates transcription by precluding histone tail modifications required for heterochromatin formation. Genes Dev. 16, 479–489 (2002).

    Article  CAS  Google Scholar 

  37. Kurash, J. K. et al. Methylation of p53 by Set7/9 mediates p53 acetylation and activity in vivo. Mol. Cell 29, 392–400 (2008).

    Article  CAS  Google Scholar 

  38. Huang, J. et al. Repression of p53 activity by Smyd2-mediated methylation. Nature 444, 629–632 (2006).

    Article  CAS  Google Scholar 

  39. Brown, M. A., Sims, R. J. 3rd, Gottlieb, P. D. & Tucker, P. W. Identification and characterization of Smyd2: a split SET/MYND domain-containing histone H3 lysine 36-specific methyltransferase that interacts with the Sin3 histone deacetylase complex. Mol. Cancer 5, 26 (2006).

    Article  Google Scholar 

  40. Huang, J. et al. p53 is regulated by the lysine demethylase LSD1. Nature 449, 105–108 (2007).

    Article  CAS  Google Scholar 

  41. Nishioka, K. et al. PR-Set7 is a nucleosome-specific methyltransferase that modifies lysine 20 of histone H4 and is associated with silent chromatin. Mol. Cell 9, 1201–1213 (2002).

    Article  CAS  Google Scholar 

  42. Phatnani, H. P. & Greenleaf, A. L. Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev. 20, 2922–2936 (2006).

    Article  CAS  Google Scholar 

  43. Fischle, W. et al. Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 438, 1116–1122 (2005).

    Article  CAS  Google Scholar 

  44. Fischle, W., Wang, Y. & Allis, C. D. Binary switches and modification cassettes in histone biology and beyond. Nature 425, 475–479 (2003).

    Article  CAS  Google Scholar 

  45. Lan, F. et al. Recognition of unmethylated histone H3 lysine 4 links BHC80 to LSD1-mediated gene repression. Nature 448, 718–722 (2007).

    Article  CAS  Google Scholar 

  46. Iberg, A. N. et al. Arginine methylation of the histone H3 tail impedes effector binding. J. Biol. Chem. 283, 3006–3010 (2008).

    Article  CAS  Google Scholar 

  47. Guccione, E. et al. Methylation of histone H3R2 by PRMT6 and H3K4 by an MLL complex are mutually exclusive. Nature 449, 933–937 (2007).

    Article  CAS  Google Scholar 

  48. Hyllus, D. et al. PRMT6-mediated methylation of R2 in histone H3 antagonizes H3 K4 trimethylation. Genes Dev. 21, 3369–3380 (2007).

    Article  CAS  Google Scholar 

  49. Rathert, P. et al. Protein lysine methyltransferase G9a acts on non-histone targets. Nature Chem. Biol. 4, 344–346 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the scientists that read this commentary and offered comments on the manuscript. We also thank the many scientists that encouraged us to publish this piece.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

InterPro

SH2

FURTHER INFORMATION

Danny Reinberg's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sims, R., Reinberg, D. Is there a code embedded in proteins that is based on post-translational modifications?. Nat Rev Mol Cell Biol 9, 815–820 (2008). https://doi.org/10.1038/nrm2502

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2502

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing