Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Emerging role for the cytoskeleton as an organizer and regulator of translation

Abstract

The cytoskeleton is an intricate and dynamic fibrous network that has an essential role in the generation and regulation of cell architecture and cellular mechanical properties. The cytoskeleton also evolved as a scaffold that supports diverse biochemical pathways. Recent evidence favours the hypothesis that the cytoskeleton participates in the spatial organization and regulation of translation, at both the global and local level, in a manner that is crucial for cellular growth, proliferation and function.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Physical association between the cytoskeleton and translational machinery.
Figure 2: Reciprocal regulation between the cytoskeleton and the eEF1 complex.
Figure 3: A hypothetical model of the organization of the protein synthesis machinery by the cytoskeleton.

Similar content being viewed by others

References

  1. Sotiropoulos, A., Gineitis, D., Copeland, J. & Treisman, R. Signal-regulated activation of serum response factor is mediated by changes in actin dynamics. Cell 98, 159–169 (1999).

    Article  CAS  Google Scholar 

  2. Dong, C., Li, Z., Alvarez, R. Jr., Feng, X. H. & Goldschmidt-Clermont, P. J. Microtubule binding to Smads may regulate TGFβ activity. Mol. Cell 5, 27–34 (2000).

    Article  CAS  Google Scholar 

  3. Kim, S., Wong, P. & Coulombe, P. A. Keratin cytoskeletal protein regulates protein synthesis and epithelial cell growth. Nature 441, 362–365 (2006).

    Article  CAS  Google Scholar 

  4. Singer, R. H., Langevin, G. L. & Lawrence, J. B. Ultrastructural visualization of cytoskeletal mRNAs and their associated proteins using double-label in situ hybridization. J. Cell Biol. 108, 2343–2353 (1989).

    Article  CAS  Google Scholar 

  5. St. Johnston, D. Moving messages: the intracellular localization of mRNAs. Nature Rev. Mol. Cell Biol. 6, 363–375 (2005).

    Article  CAS  Google Scholar 

  6. Wolosewick, J. J. & Porter, K. R. Stereo high-voltage electron microscopy of whole cells of the human diploid line, WI-38. Am. J. Anat. 147, 303–323 (1976).

    Article  CAS  Google Scholar 

  7. Wolosewick, J. J. & Porter, K. R. Observation on the morphological heterogeneity of WI-38 cells. Am. J. Anat. 149, 197–225 (1977).

    Article  CAS  Google Scholar 

  8. Lenk, R., Ransom, L., Kaufmann, Y. & Penman, S. A cytoskeletal structure with associated polyribosomes obtained from HeLa cells. Cell 10, 67–78 (1977).

    Article  CAS  Google Scholar 

  9. Fulton, A. B., Wan, K. M. & Penman, S. The spatial distribution of polyribosomes in 3T3 cells and the associated assembly of proteins into the skeletal framework. Cell 20, 849–857 (1980).

    Article  CAS  Google Scholar 

  10. Ramaekers, F. C., Benedetti, E. L., Dunia, I., Vorstenbosch, P. & Bloemendal, H. Polyribosomes associated with microfilaments in cultured lens cells. Biochim. Biophys. Acta 740, 441–448 (1983).

    Article  CAS  Google Scholar 

  11. Moon, R. T., Nicosia, R. F., Olsen, C., Hille, M. B. & Jeffery, W. R. The cytoskeletal framework of sea urchin eggs and embryos: developmental changes in the association of messenger RNA. Dev. Biol. 95, 447–458 (1983).

    Article  CAS  Google Scholar 

  12. Hesketh, J. E. & Pryme, I. F. Evidence that insulin increases the proportion of polysomes that are bound to the cytoskeleton in 3T3 fibroblasts. FEBS. Lett. 231, 62–66 (1988).

    Article  CAS  Google Scholar 

  13. Medalia, O. et al. Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science 298, 1209–1213 (2002).

    Article  CAS  Google Scholar 

  14. Hamill, D., Davis, J., Drawbridge. J. & Suprenant, K. A. Polyribosome targeting to microtubules: enrichment of specific mRNAs in a reconstituted microtubule preparation from sea urchin embryos. J. Cell Biol. 127, 973–984 (1994).

    Article  CAS  Google Scholar 

  15. Thornell, L. E. & Eriksson, A. Filament systems in the Purkinje fibres of the heart. Am. J. Physiol. 241, 291–305 (1981).

    Google Scholar 

  16. Horne, Z. & Hesketh, J. Increased association of ribosomes with myofibrils during the skeletal-muscle hypertrophy induced either by the β-adrenoceptor agonist clenbuterol or by tenotomy. Biochem. J. 272, 831–833 (1990).

    Article  CAS  Google Scholar 

  17. Kaminska, M. et al. Dynamic organization of aminoacyl-tRNA synthetase complexes in the cytoplasm of human cells. J. Biol. Chem. 284, 13746–13754 (2009).

    Article  CAS  Google Scholar 

  18. Murti, K. & Goorha, R. Synthesis of frog virus 3 proteins occurs on intermediate filament-bound polyribosomes. Biol. Cell 65, 205–214 (1989).

    Article  CAS  Google Scholar 

  19. Berciano, M. T., Andres, M. A., Calle, E. & Lafarga, M. Age-induced hypertrophy of astrocytes in rat supraoptic nucleus: a cytological, morphometric, and immunocytochemical study. Anat. Rec. 243, 129–144 (1995).

    Article  CAS  Google Scholar 

  20. Toh, B. H., Lolait, S. J., Mathy, J. P. & Baum, R. Association of mitochondria with intermediate filaments and of polyribosomes with cytoplasmic actin. Cell Tissue Res. 211, 163–169 (1980).

    Article  CAS  Google Scholar 

  21. Traub, P., Nelson, W. J. & Hoppe Seylers, Z. Polyribosomes are not associated with vimentin-type intermediate filaments in Ehrlich ascites tumor cells. Physiol. Chem. 363, 1177–1185 (1982).

    Article  CAS  Google Scholar 

  22. Grossi de Sa, M. F. et al. The association of prosomes with some of the intermediate filament networks of the animal cell. J. Cell Biol. 107, 1517–1530 (1988).

    Article  CAS  Google Scholar 

  23. Traub, P., Bauer, C., Hartig, R., Grüb, S. & Stahl, J. Colocalization of single ribosomes with intermediate filaments in puromycin-treated and serum-starved mouse embryo fibroblasts. Biol. Cell 90, 319–337 (1998).

    CAS  PubMed  Google Scholar 

  24. Stapulionis, R., Kolli, S. & Deutscher, M. P. Efficient mammalian protein synthesis requires an intact F-actin system. J. Biol. Chem. 272, 24980–24986 (1997).

    Article  CAS  Google Scholar 

  25. Morelli, J. K., Zhou, W., Yu, J., Lu, C. & Vayda, M. E. Actin depolymerization affects stress-induced translational activity of potato tuber tissue. Plant Physiol. 116, 1227–12237 (1998).

    Article  CAS  Google Scholar 

  26. Louvet, E & Percipalle, P. Transcriptional control of gene expression by actin and myosin. Int. Rev. Cell. Mol. Biol. 272, 107–147 (2009).

    Article  CAS  Google Scholar 

  27. Gross, S. R. & Kinzy, T. G. Improper organization of the actin cytoskeleton affects protein synthesis at initiation. Mol. Cell Biol. 27, 1974–1989 (2007).

    Article  CAS  Google Scholar 

  28. Kandl, K. A. et al. Identification of a role for actin in translational fidelity in yeast. Mol. Genet. Genomics. 268, 10–18 (2002).

    Article  CAS  Google Scholar 

  29. Vijayaraj, P. et al. Keratins regulate protein biosynthesis through localization of GLUT1 and -3 upstream of AMP kinase and Raptor. J. Cell Biol. 187, 175–184 (2009).

    Article  CAS  Google Scholar 

  30. Colucci-Guyon, E. et al., Mice lacking vimentin develop and reproduce without an obvious phenotype. Cell 79, 679–694 (1994).

    Article  CAS  Google Scholar 

  31. Eckes, B. et al. Impaired wound healing in embryonic and adult mice lacking vimentin. J. Cell Sci. 113, 2455–2462 (2000).

    CAS  Google Scholar 

  32. Suda, M. et al. Overproduction of elongation factor 1α, an essential translational component, causes aberrant cell morphology by affecting the control of growth polarity in fission yeast. Genes Cells 4, 517–527 (1999).

    Article  CAS  Google Scholar 

  33. Gross, S. R. & Kinzy, T. G. Translation elongation factor 1A is essential for regulation of the actin cytoskeleton and cell morphology. Nature Struct. Mol. Biol. 12, 772–778 (2005).

    Article  CAS  Google Scholar 

  34. Edmonds, B. T. et al. Elongation factor-1α is an overexpressed actin binding protein in metastatic rat mammary adenocarcinoma. J. Cell Sci. 109, 2705–2714 (1996).

    CAS  PubMed  Google Scholar 

  35. Shiina, N., Gotoh, Y., Kubomura, N., Iwamatsu, A. & Nishida, E. Microtubule severing by elongation factor 1α. Science 266, 282–285 (1994).

    Article  CAS  Google Scholar 

  36. Munshi, R. et al. Overexpression of translation elongation factor 1A affects the organization and function of the actin cytoskeleton in yeast. Genetics 157, 1425–1436 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang, F., Demma, M., Warren, V., Dharmawardhane, S. & Condeelis, J. Identification of an actin-binding protein from Dictyostelium as elongation factor 1. Nature 347, 494–496 (1990).

    Article  CAS  Google Scholar 

  38. Owen, C. H., DeRosier, D. J. & Condeelis, J. Actin crosslinking protein EF-1a of Dictyostelium discoideum has a unique bonding rule that allows square-packed bundles. J. Struct. Biol. 109, 248–254 (1992).

    Article  CAS  Google Scholar 

  39. Edmonds, B. T., Bell, A., Wyckoff, J., Condeelis, J. & Leyh, T. S. The effect of F-actin on the binding and hydrolysis of guanine nucleotide by Dictyostelium elongation factor 1A. J. Biol. Chem. 273, 10288–10295 (1998).

    Article  CAS  Google Scholar 

  40. Liu, G. et al. F-actin sequesters elongation factor 1α from interaction with aminoacyl-tRNA in a pH-dependent reaction. J. Cell Biol. 135, 953–963 (1996).

    Article  CAS  Google Scholar 

  41. Pittman, Y. R., Kandl, K., Lewis, M., Valente, L. & Kinzy, T. G. Coordination of eukaryotic translation elongation factor 1A (eEF1A) function in actin organization and translation elongation by the guanine nucleotide exchange factor eEF1Bα. J. Biol. Chem. 284, 4739–4747 (2009).

    Article  CAS  Google Scholar 

  42. Andersen, G. R. et al. Structural basis for nucleotide exchange and competition with tRNA in the yeast elongation factor complex eEF1A:eEF1Bα. Mol. Cell 6, 1261–1266 (2000).

    Article  CAS  Google Scholar 

  43. Kim, S., Kellner, J., Lee, C. H. & Coulombe, P. A. Interaction between the keratin cytoskeleton and eEF1Bγ affects protein synthesis in epithelial cells. Nature Struct. Mol. Biol. 14, 982–983 (2007).

    Article  Google Scholar 

  44. Omary, M. B., Coulombe, P. A. & McLean, W. H. Intermediate filament proteins and their associated diseases. N. Engl. J. Med. 351, 2087–2100 (2004).

    Article  CAS  Google Scholar 

  45. McGowan, K. & Coulombe, P. A. in Subcellular Biochemistry Vol. 31: Intermediate Filaments (eds Herrmann, H. & Harris, R.) 173–204 (Plenum Press, New York, 1998).

    Google Scholar 

  46. Rosenwald, I. B. The role of translation in neoplastic transformation from a pathologist's point of view. Oncogene 23, 3230–3247 (2004).

    Article  CAS  Google Scholar 

  47. Steward, O. & Levy, W. B. Preferential localization of polyribosomes under the base of dendritic spines in granule cells of the dentate gyrus. J. Neurosci. 2, 284–291 (1982).

    Article  CAS  Google Scholar 

  48. Deitch, J. S. & Banker, G. A. An electron microscopic analysis of hippocampal neurons developing in culture: early stages in the emergence of polarity. J. Neurosci. 13, 4301–4315 (1993).

    Article  CAS  Google Scholar 

  49. Tiedge, H. & Brosius, J. Translational machinery in dendrites of hippocampal neurons in culture. J. Neurosci. 16, 7171–7181 (1996).

    Article  CAS  Google Scholar 

  50. Smart, F. M., Edelman, G. M. & Vanderklish, P. W. BDNF induces translocation of initiation factor 4E to mRNA granules: evidence for a role of synaptic microfilaments and integrins. Proc. Natl. Acad. Sci. USA 100, 14403–14408 (2003).

    Article  CAS  Google Scholar 

  51. Rodriguez, A. J., Czaplinski, K., Condeelis, J. S. & Singer, R. H. Mechanisms and cellular roles of local protein synthesis in mammalian cells. Curr. Opin. Cell Biol. 20, 144–149 (2008).

    Article  CAS  Google Scholar 

  52. Bramham, C. R. Local protein synthesis, actin dynamics, and LTP consolidation. Curr. Opin. Neurobiol. 18, 524–531 (2008).

    Article  CAS  Google Scholar 

  53. Fukazawa, Y. et al. Hippocampal LTP is accompanied by enhanced F-actin content within the dendritic spine that is essential for late LTP maintenance in vivo. Neuron 38, 447–460 (2003).

    Article  CAS  Google Scholar 

  54. Ostroff, L. E., Fiala, J. C., Allwardt, B. & Harris, K. M. Polyribosomes redistribute from dendritic shafts into spines with enlarged synapses during LTP in developing rat hippocampal slices. Neuron 35, 535–545 (2002).

    Article  CAS  Google Scholar 

  55. Kim, C. H. & Lisman, J. E. A role of actin filament in synaptic transmission and long-term potentiation. J. Neurosci. 19, 4314–4324 (1999).

    Article  CAS  Google Scholar 

  56. Kelly, M. T., Yao, Y., Sondhi, R. & Sacktor, T. C. Actin polymerization regulates the synthesis of PKMζ in LTP. Neuropharmacology 52, 41–45 (2007).

    Article  CAS  Google Scholar 

  57. Sotelo-Silveira, J., Crispino, M., Puppo, A., Sotelo, J. R. & Koenig, E. Myelinated axons contain β-actin mRNA and ZBP-1 in periaxoplasmic ribosomal plaques and depend on cyclic AMP and F-actin integrity for in vitro translation. J. Neurochem. 104, 545–557 (2008).

    CAS  PubMed  Google Scholar 

  58. Lee, S. et al. The F-actin-microtubule crosslinker Shot is a platform for Krasavietz-mediated translational regulation of midline axon repulsion. Development 134, 1767–1777 (2007).

    Article  CAS  Google Scholar 

  59. Lazarides, E. Intermediate filaments as mechanical integrators of cellular space. Nature 283, 249–255 (1980).

    Article  CAS  Google Scholar 

  60. Stapulionis, R. & Deutscher, M. P. A channeled tRNA cycle during mammalian protein synthesis. Proc. Natl. Acad. Sci. USA 92, 7158–7161 (1995).

    Article  CAS  Google Scholar 

  61. Chhabra, E. S. & Higgs, H. N. The many faces of actin: matching assembly factors with cellular structures. Nature Cell Biol. 9, 1110–1121 (2007).

    Article  CAS  Google Scholar 

  62. Akhmanova, A. & Steinmetz, M. O. Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nature Rev. Mol. Cell Biol. 9, 309–322 (2008).

    Article  CAS  Google Scholar 

  63. Heuijerjans, J. H. et al. Association of mRNA and eIF-2α with the cytoskeleton in cells lacking vimentin. Exp. Cell Res. 181, 317–330 (1989).

    Article  CAS  Google Scholar 

  64. Gavrilova, L. P. et al. Immunofluorescent localization of protein synthesis components in mouse embryo fibroblasts. Cell Biol. Int. Rep. 11, 745–753 (1987).

    Article  CAS  Google Scholar 

  65. Howe, J. G. & Hershey, J. W. Translational initiation factor and ribosome association with the cytoskeletal framework fraction from HeLa cells. Cell 37, 85–93 (1984).

    Article  CAS  Google Scholar 

  66. Pincheira, R. et al. Two subcellular localizations of eIF3 p170 and its interaction with membrane-bound microfilaments: implications for alternative functions of p170. Eur. J. Cell Biol. 80, 410–418 (2001).

    Article  CAS  Google Scholar 

  67. Palecek, J. et al. Rpg1p/Tif32p, a subunit of translation initiation factor 3, interacts with actin-associated protein Sla2p, Biochem. Biophys. Res. Commun. 282, 1244–1250 (2001).

    Article  CAS  Google Scholar 

  68. Hasek, J. et al. Rpg1p, the subunit of the Saccharomyces cerevisiae eIF3 core complex, is a microtubule-interacting protein. Cell. Motil. Cytoskeleton 45, 235–246 (2000).

    Article  CAS  Google Scholar 

  69. Carotenuto, R. et al. Phosphorylation of p27(BBP)/eIF6 and its association with the cytoskeleton are developmentally regulated in Xenopus oogenesis. Cell. Mol. Life Sci. 62, 1641–1652 (2005).

    Article  CAS  Google Scholar 

  70. Lin, L., Holbro, T., Alonso, G., Gerosa, D. & Burger, M. M. Molecular interaction between human tumor marker protein p150, the largest subunit of eIF3, and intermediate filament protein K7. J. Cell Biochem. 80, 483–490 (2001).

    Article  CAS  Google Scholar 

  71. Zumbé, A., Stähli, C. & Trachsel, H. Association of a Mr 50,000 cap-binding protein with the cytoskeleton in baby hamster kidney cells. Proc. Natl. Acad. Sci. USA 79, 2927–2931 (1982).

    Article  Google Scholar 

  72. Dang, C. V., Yang, D. C. & Pollard, T. D. Association of methionyl-tRNA synthetase with detergent-insoluble components of the rough endoplasmic reticulum. J. Cell Biol. 96, 1138–1147 (1983).

    Article  CAS  Google Scholar 

  73. Mirande, M. et al. Association of an aminoacyl-tRNA synthetase complex and of phenylalanyl-tRNA synthetase with the cytoskeletal framework fraction from mammalian cells. Exp. Cell Res. 156, 91–102 (1985).

    Article  CAS  Google Scholar 

  74. Furukawa, R. et al. Elongation factor 1β is an actin-binding protein. Biochim. Biophys. Acta. 1527, 30–140 (2001).

    Google Scholar 

  75. Bektas, M., Nurten, R., Gurel, Z., Sayers, Z. & Bermek, E. Interactions of eukaryotic elongation factor 2 with actin: a possible link between protein synthetic machinery and cytoskeleton. FEBS. Lett. 356, 89–93 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We apologize to all scientists whose work has not been appropriately discussed owing to space limitations. The authors thank C. Parent for advice. This effort was supported by grant AR44232 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre A. Coulombe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

FURTHER INFORMATION

Pierre A. coulombe's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S., Coulombe, P. Emerging role for the cytoskeleton as an organizer and regulator of translation. Nat Rev Mol Cell Biol 11, 75–81 (2010). https://doi.org/10.1038/nrm2818

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2818

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing