Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Geometry and force behind kinetochore orientation: lessons from meiosis

Key Points

  • Chromosome segregation is a fundamental process that is necessary for the propagation of all organisms.

  • In meiosis there is a unique form of chromosome segregation in which sister chromatids co-segregate to the same pole, rather than moving apart to opposite poles as in mitosis.

  • This is facilitated by meiosis-specific changes to chromosomes, such as replacement of mitotic cohesin with meiotic cohesin and the presence of the centromeric protein shugoshin.

  • Comparative studies of meiosis and mitosis may draw a general principle that kinetochore geometry and tension exerted by microtubules synergistically generate chromosome orientation.

  • Errors in chromosome segregation in meiosis I may contribute to aneuploidy in aged oocytes.

Abstract

During mitosis, replicated chromosomes (sister chromatids) become attached at the kinetochore by spindle microtubules emanating from opposite poles and segregate equationally. In the first division of meiosis, however, sister chromatids become attached from the same pole and co-segregate, whereas homologous chromosomes connected by chiasmata segregate to opposite poles. Disorder in this specialized chromosome attachment in meiosis is the leading cause of miscarriage in humans. Recent studies have elucidated the molecular mechanisms determining chromosome orientation, and consequently segregation, in meiosis. Comparative studies of meiosis and mitosis have led to the general principle that kinetochore geometry and tension exerted by microtubules synergistically generate chromosome orientation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Types of chromosome structure, kinetochore geometry and kinetochore–microtubule attachment.
Figure 2: Sgo1–PP2A protects cohesin at centromeres.
Figure 3: Kinetochore geometry is defined by cohesion within the centromere.
Figure 4: Tension-dependent reorientation by Aurora B.
Figure 5: Repositioning of Aurora B promoted by chiasmata establishes meiotic chromosome orientation.

Similar content being viewed by others

References

  1. Ricke, R. M., van Ree, J. H. & van Deursen, J. M. Whole chromosome instability and cancer: a complex relationship. Trends Genet. 24, 457–466 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Gordon, D. J., Resio, B. & Pellman, D. Causes and consequences of aneuploidy in cancer. Nature Rev. Genet. 13, 189–203 (2012).

    CAS  PubMed  Google Scholar 

  3. Moore, D. P. & Orr-Weaver, T. L. Chromosome segregation during meiosis: building an unambivalent bivalent. Curr. Top. Dev. Biol. 37, 263–299 (1998).

    CAS  PubMed  Google Scholar 

  4. Petronczki, M., Siomos, M. F. & Nasmyth, K. Un menage a quatre: the molecular biology of chromosome segregation in meiosis. Cell 112, 423–440 (2003).

    CAS  PubMed  Google Scholar 

  5. Tanaka, T. U. Kinetochore-microtubule interactions: steps towards bi-orientation. EMBO J. 29, 4070–4082 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Hauf, S. & Watanabe, Y. Kinetochore orientation in mitosis and meiosis. Cell 119, 317–327 (2004).

    CAS  PubMed  Google Scholar 

  7. Cheeseman, I. M. & Desai, A. Molecular architecture of the kinetochore-microtubule interface. Nature Rev. Mol. Cell Biol. 9, 33–46 (2008).

    CAS  Google Scholar 

  8. Santaguida, S. & Musacchio, A. The life and miracles of kinetochores. EMBO J. 28, 2511–2531 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Cimini, D. et al. Merotelic kinetochore orientation is a major mechanism of aneuploidy in mitotic mammalian tissue cells. J. Cell Biol. 153, 517–527 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Uhlmann, F. A matter of choice: the establishment of sister chromatid cohesion. EMBO Rep. 10, 1095–1102 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Nasmyth, K. Cohesin: a catenase with separate entry and exit gates? Nature Cell Biol. 13, 1170–1177 (2011).

    CAS  PubMed  Google Scholar 

  12. Watanabe, Y. Sister chromatid cohesion along arms and at centromeres. Trends Genet. 21, 405–412 (2005).

    CAS  PubMed  Google Scholar 

  13. Ishiguro, K., Kim, J., Fujiyama-Nakamura, S., Kato, S. & Watanabe, Y. A new meiosis-specific cohesin complex implicated in the cohesin code for homologous pairing. EMBO Rep. 12, 267–275 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee, J. & Hirano, T. RAD21L, a novel cohesin subunit implicated in linking homologous chromosomes in mammalian meiosis. J. Cell Biol. 192, 263–276 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Herran, Y. et al. The cohesin subunit RAD21L functions in meiotic synapsis and exhibits sexual dimorphism in fertility. EMBO J. 30, 3091–3105 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Severson, A. F., Ling, L., van Zuylen, V. & Meyer, B. J. The axial element protein HTP-3 promotes cohesin loading and meiotic axis assembly in C. elegans to implement the meiotic program of chromosome segregation. Genes Dev. 23, 1763–1778 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Revenkova, E. & Jessberger, R. Keeping sister chromatids together: cohesins in meiosis. Reproduction 130, 783–790 (2005).

    CAS  PubMed  Google Scholar 

  18. Kitajima, T. S., Yokobayashi, S., Yamamoto, M. & Watanabe, Y. Distinct cohesin complexes organize meiotic chromosome domains. Science 300, 1152–1155 (2003).

    CAS  PubMed  Google Scholar 

  19. Klein, F. et al. A central role for cohesins in sister chromatid cohesion, formation of axial elements, and recombination during yeast meiosis. Cell 98, 91–103 (1999). The first study describing the central role of meiotic cohesin in chromosome differentiation.

    CAS  PubMed  Google Scholar 

  20. Watanabe, Y. & Nurse, P. Cohesin Rec8 is required for reductional chromosome segregation at meiosis. Nature 400, 461–464 (1999). The first study to show that cohesin Rec8 is required for establishing mono-orientation of sister kinetochores.

    CAS  PubMed  Google Scholar 

  21. Xu, H., Beasley, M. D., Warren, W. D., van der Horst, G. T. & McKay, M. J. Absence of mouse REC8 cohesin promotes synapsis of sister chromatids in meiosis. Dev. Cell 8, 949–961 (2005).

    CAS  PubMed  Google Scholar 

  22. Kim, K. P. et al. Sister cohesion and structural axis components mediate homolog bias of meiotic recombination. Cell 143, 924–937 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ellermeier, C. & Smith, G. R. Cohesins are required for meiotic DNA breakage and recombination in Schizosaccharomyces pombe. Proc. Natl Acad. Sci. USA 102, 10952–10957 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Neale, M. J. & Keeney, S. Clarifying the mechanics of DNA strand exchange in meiotic recombination. Nature 442, 153–158 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Gerton, J. L. & Hawley, R. S. Homologous chromosome interactions in meiosis: diversity amidst conservation. Nature Rev. Genet. 6, 477–487 (2005).

    CAS  PubMed  Google Scholar 

  26. Bhalla, N. & Dernburg, A. F. Prelude to a division. Annu. Rev. Cell Dev. Biol. 24, 397–424 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Scherthan, H. A bouquet makes ends meet. Nature Rev. Mol. Cell Biol. 2, 621–627 (2001).

    CAS  Google Scholar 

  28. Yamamoto, A. & Hiraoka, Y. How do meiotic chromosomes meet their homologous partners?: lessons from fission yeast. Bioessays 23, 526–533 (2001).

    CAS  PubMed  Google Scholar 

  29. Sato, A. et al. Cytoskeletal forces span the nuclear envelope to coordinate meiotic chromosome pairing and synapsis. Cell 139, 907–919 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Wolf, K. W. How meiotic cells deal with non-exchange chromosomes. Bioessays 16, 107–114 (1994).

    CAS  PubMed  Google Scholar 

  31. Buonomo, S. B. et al. Disjunction of homologous chromosomes in meiosis I depends on proteolytic cleavage of the meiotic cohesin Rec8 by separin. Cell 103, 387–398 (2000).

    CAS  PubMed  Google Scholar 

  32. Kitajima, T. S., Miyazaki, Y., Yamamoto, M. & Watanabe, Y. Rec8 cleavage by separase is required for meiotic nuclear divisions in fission yeast. EMBO J. 22, 5643–5653 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Goldstein, L. S. Mechanisms of chromosome orientation revealed by two meiotic mutants in Drosophila melanogaster. Chromosoma 78, 79–111 (1980).

    CAS  PubMed  Google Scholar 

  34. Miyazaki, W. Y. & Orr-Weaver, T. L. Sister-chromatid cohesion in mitosis and meiosis. Annu. Rev. Genet. 28, 167–168 (1994).

    CAS  PubMed  Google Scholar 

  35. Kitajima, T. S., Kawashima, S. A. & Watanabe, Y. The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis. Nature 427, 510–517 (2004). The first study to identify shugoshins as protectors of cohesin at the centromeres.

    CAS  PubMed  Google Scholar 

  36. Rabitsch, K. P. et al. Two fission yeast homologs of Drosophila Mei-S332 are required for chromosome segregation during meiosis I and II. Curr. Biol. 14, 287–301 (2004).

    CAS  PubMed  Google Scholar 

  37. Marston, A. L., Tham, W. H., Shah, H. & Amon, A. A genome-wide screen identifies genes required for centromeric cohesion. Science 303, 1367–1370 (2004).

    CAS  PubMed  Google Scholar 

  38. Katis, V. L., Galova, M., Rabitsch, K. P., Gregan, J. & Nasmyth, K. Maintenance of cohesin at centromeres after meiosis I in budding yeast requires a kinetochore-associated protein related to MEI-S332. Curr. Biol. 14, 560–572 (2004).

    CAS  PubMed  Google Scholar 

  39. Hamant, O. et al. A REC8-dependent plant shugoshin is required for maintenance of centromeric cohesion during meiosis and has no mitotic functions. Curr. Biol. 15, 948–954 (2005).

    CAS  PubMed  Google Scholar 

  40. Lee, J. et al. Unified mode of centromeric protection by shugoshin in mammalian oocytes and somatic cells. Nature Cell Biol. 10, 42–52 (2008).

    CAS  PubMed  Google Scholar 

  41. Llano, E. et al. Shugoshin-2 is essential for the completion of meiosis but not for mitotic cell division in mice. Genes Dev. 22, 2400–2413 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang, M. et al. OsSGO1 maintains synaptonemal complex stabilization in addition to protecting centromeric cohesion during rice meiosis. Plant J. 67, 583–594 (2011).

    CAS  PubMed  Google Scholar 

  43. Kitajima, T. S. et al. Shugoshin collaborates with protein phosphatase 2A to protect cohesin. Nature 441, 46–52 (2006).

    CAS  PubMed  Google Scholar 

  44. Riedel, C. G. et al. Protein phosphatase 2A protects centromeric sister chromatid cohesion during meiosis I. Nature 441, 53–61 (2006).

    CAS  PubMed  Google Scholar 

  45. Brar, G. A. et al. Rec8 phosphorylation and recombination promote the step-wise loss of cohesins in meiosis. Nature 441, 532–536 (2006).

    CAS  PubMed  Google Scholar 

  46. Ishiguro, T., Tanaka, K., Sakuno, T. & Watanabe, Y. Shugoshin-PP2A counteracts casein-kinase-1-dependent cleavage of Rec8 by separase. Nature Cell Biol. 12, 500–506 (2010).

    CAS  PubMed  Google Scholar 

  47. Katis, V. L. et al. Rec8 phosphorylation by casein kinase 1 and Cdc7–Dbf4 kinase regulates cohesin cleavage by separase during meiosis. Dev. Cell 18, 397–409 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Salic, A., Waters, J. C. & Mitchison, T. J. Vertebrate shugoshin links sister centromere cohesion and kinetochore microtubule stability in mitosis. Cell 118, 567–578 (2004). The first demonstration that shugoshins protect centromeric cohesion in vertebrate mitotic cells.

    CAS  PubMed  Google Scholar 

  49. McGuinness, B. E., Hirota, T., Kudo, N. R., Peters, J.-M. & Nasmyth, K. Shugoshin prevents dissociation of cohesin from centromeres during mitosis in vertebrate cells. PLoS Biol. 3, e86 (2005).

    PubMed  PubMed Central  Google Scholar 

  50. Kitajima, T. S., Hauf, S., Ohsugi, M., Yamamoto, T. & Watanabe, Y. Human Bub1 defines the persistent cohesion site along the mitotic chromosome by affecting shugoshin localization. Curr. Biol. 15, 353–359 (2005).

    CAS  PubMed  Google Scholar 

  51. Tanno, Y. et al. Phosphorylation of mammalian Sgo2 by Aurora B recruits PP2A and MCAK to centromeres. Genes Dev. 24, 2169–2179 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Huang, H. et al. Tripin/hSgo2 recruits MCAK to the inner centromere to correct defective kinetochore attachments. J. Cell Biol. 177, 413–424 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Rivera, T. et al. Xenopus Shugoshin 2 regulates the spindle assembly pathway mediated by the chromosomal passenger complex. EMBO J. 31, 1467–1479 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Östergren, G. The mechanism of co-orientation in bivalents and multivalents. Hereditas 37, 85–156 (1951).

    Google Scholar 

  55. Journey, L. J. & Whaley, A. Kinetochore ultrastructure in vincristine-treated mammalian cells. J. Cell Sci. 7, 49–54 (1970).

    CAS  Google Scholar 

  56. Goldstein, L. S. Kinetochore structure and its role in chromosome orientation during the first meiotic division in male D. melanogaster. Cell 25, 591–602 (1981). This paper outlines the morphological differences between mitotic and meiotic sister kinetochores.

    CAS  PubMed  Google Scholar 

  57. Hodges, C. A. & Hunt, P. A. Simultaneous analysis of chromosomes and chromosome-associated proteins in mammalian oocytes and embryos. Chromosoma 111, 165–169 (2002).

    CAS  PubMed  Google Scholar 

  58. Toth, A. et al. Functional genomics identifies monopolin: a kinetochore protein required for segregation of homologs during meiosis I. Cell 103, 1155–1168 (2000). By using a genetic approach, this study identifies monopolin as a necessary complex for sister kinetochore mono-orientation in budding yeast.

    CAS  PubMed  Google Scholar 

  59. Rabitsch, K. P. et al. Kinetochore recruitment of two nucleolar proteins is required for homolog segregation in meiosis I. Dev. Cell 4, 535–548 (2003).

    CAS  PubMed  Google Scholar 

  60. Petronczki, M. et al. Monopolar attachment of sister kinetochores at meiosis I requires casein kinase 1. Cell 126, 1049–1064 (2006).

    CAS  PubMed  Google Scholar 

  61. Katis, V. L. et al. Spo13 facilitates monopolin recruitment to kinetochores and regulates maintenance of centromeric cohesion during yeast meiosis. Curr. Biol. 14, 2183–2196 (2004).

    CAS  PubMed  Google Scholar 

  62. Lee, B. H., Kiburz, B. M. & Amon, A. Spo13 maintains centromeric cohesion and kinetochore coorientation during meiosis I. Curr. Biol. 14, 2168–2182 (2004).

    CAS  PubMed  Google Scholar 

  63. Matos, J. et al. Dbf4-dependent CDC7 kinase links DNA replication to the segregation of homologous chromosomes in meiosis I. Cell 135, 662–678 (2008).

    CAS  PubMed  Google Scholar 

  64. Gregan, J. et al. The kinetochore proteins Pcs1 and Mde4 and heterochromatin are required to prevent merotelic orientation. Curr. Biol. 17, 1190–1200 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Corbett, K. D. et al. The monopolin complex crosslinks kinetochore components to regulate chromosome-microtubule attachments. Cell 142, 556–567 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Tada, K., Susumu, H., Sakuno, T. & Watanabe, Y. Condensin association with histone H2A shapes mitotic chromosomes. Nature 474, 477–483 (2011).

    CAS  PubMed  Google Scholar 

  67. Monje-Casas, F., Prabhu, V. R., Lee, B. H., Boselli, M. & Amon, A. Kinetochore orientation during meiosis is controlled by Aurora B and the monopolin complex. Cell 128, 477–490 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Watanabe, Y., Yokobayashi, S., Yamamoto, M. & Nurse, P. Pre-meiotic S phase is linked to reductional chromosome segregation and recombination. Nature 409, 359–363 (2001).

    CAS  PubMed  Google Scholar 

  69. Pidoux, A. & Allshire, R. Kinetochore and heterochromatin domains of the fission yeast centromere. Chromosome Res. 12, 521–534 (2004).

    CAS  PubMed  Google Scholar 

  70. Yokobayashi, S., Yamamoto, M. & Watanabe, Y. Cohesins determine the attachment manner of kinetochores to spindle microtubules at meiosis I in fission yeast. Mol. Cell. Biol. 23, 3965–3973 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Yokobayashi, S. & Watanabe, Y. The kinetochore protein Moa1 enables cohesion-mediated monopolar attachment at meiosis I. Cell 123, 803–817 (2005).

    CAS  PubMed  Google Scholar 

  72. Kagami, A. et al. Acetylation regulates monopolar attachment at multiple levels during meiosis I in fission yeast. EMBO Rep. 12, 1189–1195 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Yu, H.-G. & Dawe, R. K. Functional redundancy in the maize meiotic kinetochore. J. Cell Biol. 151, 131–141 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Chelysheva, L. et al. AtREC8 and AtSCC3 are essential to the monopolar orientation of the kinetochores during meiosis. J. Cell Sci. 118, 4621–4632 (2005).

    CAS  PubMed  Google Scholar 

  75. Sakuno, T., Tada, K. & Watanabe, Y. Kinetochore geometry defined by cohesion within the centromere. Nature 458, 852–858 (2009). This study establishes the causal link between kinetochore geometry and cohesion within the centromere.

    CAS  PubMed  Google Scholar 

  76. Tanaka, T. U. et al. Evidence that the Ipl1–Sli15 (Aurora kinase-INCENP) complex promotes chromosome bi-orientation by altering kinetochore-spindle pole connections. Cell 108, 317–329 (2002). This first study to show that Aurora B destabilizes microtubule–kinetochore attachment and thereby promotes chromosome bi-orientation.

    CAS  PubMed  Google Scholar 

  77. Hauf, S. et al. The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. J. Cell Biol. 161, 281–294 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Ruchaud, S., Carmena, M. & Earnshaw, W. C. Chromosomal passengers: conducting cell division. Nature Rev. Mol. Cell Biol. 8, 798–812 (2007).

    CAS  Google Scholar 

  79. Liu, D., Vader, G., Vromans, M. J., Lampson, M. A. & Lens, S. M. Sensing chromosome bi-orientation by spatial separation of aurora B kinase from kinetochore substrates. Science 323, 1350–1353 (2009). This study demonstrates the influence of the relative location of Aurora B and kinetochores on the stability of the microtubule–kinetochore attachment.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. DeLuca, J. G. et al. Kinetochore microtubule dynamics and attachment stability are regulated by Hec1. Cell 127, 969–982 (2006).

    CAS  PubMed  Google Scholar 

  81. Welburn, J. P. et al. Aurora B phosphorylates spatially distinct targets to differentially regulate the kinetochore-microtubule interface. Mol. Cell 38, 383–392 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Liu, D. et al. Regulated targeting of protein phosphatase 1 to the outer kinetochore by KNL1 opposes Aurora B kinase. J. Cell Biol. 188, 809–820 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Lampson, M. A. & Cheeseman, I. M. Sensing centromere tension: Aurora B and the regulation of kinetochore function. Trends Cell Biol. 21, 133–140 (2011).

    CAS  PubMed  Google Scholar 

  84. Foley, E. A., Maldonado, M. & Kapoor, T. M. Formation of stable attachments between kinetochores and microtubules depends on the B56-PP2A phosphatase. Nature Cell Biol. 13, 1265–1271 (2011).

    CAS  PubMed  Google Scholar 

  85. Kawashima, S. A., Yamagishi, Y., Honda, T., Ishiguro, K. & Watanabe, Y. Phosphorylation of H2A by Bub1 prevents chromosomal instability through localizing shugoshin. Science 327, 172–177 (2010).

    CAS  PubMed  Google Scholar 

  86. Kawashima, S. A. et al. Shugoshin enables tension-generating attachment of kinetochores by loading Aurora to centromeres. Genes Dev. 21, 420–435 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Vanoosthuyse, V., Prykhozhij, S. & Hardwick, K. G. Shugoshin 2 regulates localization of the chromosomal passenger proteins in fission yeast mitosis. Mol. Biol. Cell 18, 1657–1669 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Tsukahara, T., Tanno, Y. & Watanabe, Y. Phosphorylation of the CPC by Cdk1 promotes chromosome bi-orientation. Nature 467, 719–723 (2010).

    CAS  PubMed  Google Scholar 

  89. Indjeian, V. B., Stern, B. M. & Murray, A. W. The centromeric protein Sgo1 is required to sense lack of tension on mitotic chromosomes. Science 307, 130–133 (2005).

    CAS  PubMed  Google Scholar 

  90. Kelly, A. E. et al. Survivin reads phosphorylated histone H3 threonine 3 to activate the mitotic kinase Aurora B. Science 330, 235–239 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Wang, F. et al. Histone H3 Thr-3 phosphorylation by Haspin positions Aurora B at centromeres in mitosis. Science 330, 231–235 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Yamagishi, Y., Honda, T., Tanno, Y. & Watanabe, Y. Two histone marks establish the inner centromere and chromosome bi-orientation. Science 330, 239–243 (2010). This study, together with references 85, 90 and 91, establishes that the inner centromere (or Aurora B position) is defined by the ICS network, which is composed of two histone phosphorylation pathways.

    CAS  PubMed  Google Scholar 

  93. Jeyaprakash, A. A., Basquin, C., Jayachandran, U. & Conti, E. Structural basis for the recognition of phosphorylated histone h3 by the survivin subunit of the chromosomal passenger complex. Structure 19, 1625–1634 (2011).

    CAS  PubMed  Google Scholar 

  94. Maresca, T. J. & Salmon, E. D. Intrakinetochore stretch is associated with changes in kinetochore phosphorylation and spindle assembly checkpoint activity. J. Cell Biol. 184, 373–381 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Uchida, K. S. et al. Kinetochore stretching inactivates the spindle assembly checkpoint. J. Cell Biol. 184, 383–390 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Akiyoshi, B. et al. Tension directly stabilizes reconstituted kinetochore–microtubule attachments. Nature 468, 576–579 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Pinsky, B. A. & Biggins, S. The spindle checkpoint: tension versus attachment. Trends Cell Biol. 15, 486–493 (2005).

    CAS  PubMed  Google Scholar 

  98. Nezi, L. & Musacchio, A. Sister chromatid tension and the spindle assembly checkpoint. Curr. Opin. Cell Biol. 21, 785–795 (2009).

    CAS  PubMed  Google Scholar 

  99. Murray, A. W. A brief history of error. Nature Cell Biol. 13, 1178–1182 (2011).

    CAS  PubMed  Google Scholar 

  100. Nicklas, R. B. How cells get the right chromosomes. Science 275, 632–637 (1997).

    CAS  PubMed  Google Scholar 

  101. Nicklas, R. B. & Koch, C. A. Chromosome micromanipulation. 3. Spindle fiber tension and the reorientation of mal-oriented chromosomes. J. Cell Biol. 43, 40–50 (1969). Micromanipulation experiments in meiotic cells demonstrate that the physical appliance of tension can lead to a stabilization of attachment.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Hauf, S. et al. Aurora controls sister kinetochore mono-orientation and homolog bi-orientation in meiosis-I. EMBO J. 26, 4475–4486 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Kitajima, T. S., Ohsugi, M. & Ellenberg, J. Complete kinetochore tracking reveals error-prone homologous chromosome biorientation in mammalian oocytes. Cell 146, 568–581 (2011).

    CAS  PubMed  Google Scholar 

  104. Lane, S. I., Chang, H. Y., Jennings, P. C. & Jones, K. T. The Aurora kinase inhibitor ZM447439 accelerates first meiosis in mouse oocytes by overriding the spindle assembly checkpoint. Reproduction 140, 521–530 (2010).

    CAS  PubMed  Google Scholar 

  105. Shuda, K., Schindler, K., Ma, J., Schultz, R. M. & Donovan, P. J. Aurora kinase B modulates chromosome alignment in mouse oocytes. Mol. Reprod. Dev. 76, 1094–1105 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Sharif, B. et al. The chromosome passenger complex is required for fidelity of chromosome transmission and cytokinesis in meiosis of mouse oocytes. J. Cell Sci. 123, 4292–4300 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Yang, K. T. et al. Aurora-C kinase deficiency causes cytokinesis failure in meiosis I and production of large polyploid oocytes in mice. Mol. Biol. Cell 21, 2371–2383 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Sakuno, T., Tanaka, K., Hauf, S. & Watanabe, Y. Repositioning of Aurora B promoted by chiasmata ensures sister chromatid mono-orientation in meiosis I. Dev. Cell 21, 534–545 (2011). This study identifies a molecular mechanism that explains how chiasmata are more likely to cause the bi-orientation of bivalents than the bi-orientation of univalents at meiosis I.

    CAS  PubMed  Google Scholar 

  109. Parra, M. T. et al. A perikinetochoric ring defined by MCAK and Aurora-B as a novel centromere domain. PLoS Genet. 2, e84 (2006).

    PubMed  PubMed Central  Google Scholar 

  110. Maguire, M. P. A possible role for the synaptonemal complex in chiasma maintenance. Exp. Cell Res. 112, 297–308 (1978).

    CAS  PubMed  Google Scholar 

  111. LeMaire-Adkins, R., Radke, K. & Hunt, P. A. Lack of checkpoint control at the metaphase/anaphase transition: a mechanism of meiotic nondisjunction in mammalian females. J. Cell Biol. 139, 1611–1619 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Nagaoka, S. I., Hodges, C. A., Albertini, D. F. & Hunt, P. A. Oocyte-specific differences in cell-cycle control create an innate susceptibility to meiotic errors. Curr. Biol. 21, 651–657 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Hirose, Y. et al. Chiasmata promote monopolar attachment of sister chromatids and their co-segregation toward the proper pole during meiosis I. PLoS Genet. 7, e1001329 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Hassold, T. & Hunt, P. To err (meiotically) is human: the genesis of human aneuploidy. Nature Rev. Genet. 2, 280–291 (2001).

    CAS  PubMed  Google Scholar 

  115. Henderson, S. A. & Edwards, R. G. Chiasma frequency and maternal age in mammals. Nature 218, 22–28 (1968).

    CAS  PubMed  Google Scholar 

  116. Angell, R. R., Xian, J., Keith, J., Ledger, W. & Baird, D. T. First meiotic division abnormalities in human oocytes: mechanism of trisomy formation. Cytogenet. Cell Genet. 65, 194–202 (1994).

    CAS  PubMed  Google Scholar 

  117. Revenkova, E. et al. Cohesin SMC1β is required for meiotic chromosome dynamics, sister chromatid cohesion and DNA recombination. Nature Cell Biol. 6, 555–562 (2004).

    CAS  PubMed  Google Scholar 

  118. Hodges, C. A., Revenkova, E., Jessberger, R., Hassold, T. J. & Hunt, P. A. SMC1β-deficient female mice provide evidence that cohesins are a missing link in age-related nondisjunction. Nature Genet. 37, 1351–1355 (2005).

    CAS  PubMed  Google Scholar 

  119. Leland, S. et al. Heterozygosity for a Bub1 mutation causes female-specific germ cell aneuploidy in mice. Proc. Natl Acad. Sci. USA 106, 12776–12781 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Chiang, T., Duncan, F. E., Schindler, K., Schultz, R. M. & Lampson, M. A. Evidence that weakened centromere cohesion is a leading cause of age-related aneuploidy in oocytes. Curr. Biol. 20, 1522–1528 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Lister, L. M. et al. Age-related meiotic segregation errors in mammalian oocytes are preceded by depletion of cohesin and Sgo2. Curr. Biol. 20, 1511–1521 (2010).

    CAS  PubMed  Google Scholar 

  122. Revenkova, E., Herrmann, K., Adelfalk, C. & Jessberger, R. Oocyte cohesin expression restricted to predictyate stages provides full fertility and prevents aneuploidy. Curr. Biol. 20, 1529–1533 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Tachibana-Konwalski, K. et al. Rec8-containing cohesin maintains bivalents without turnover during the growing phase of mouse oocytes. Genes Dev. 24, 2505–2516 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Kouznetsova, A., Lister, L., Nordenskjold, M., Herbert, M. & Hoog, C. Bi-orientation of achiasmatic chromosomes in meiosis I oocytes contributes to aneuploidy in mice. Nature Genet. 39, 966–968 (2007). The first study to suggest that bi-orientated univalents evade the SAC, thus raising the risk of aneuploidy.

    CAS  PubMed  Google Scholar 

  125. Loncarek, J. et al. The centromere geometry essential for keeping mitosis error free is controlled by spindle forces. Nature 450, 745–749 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Magidson, V. et al. The spatial arrangement of chromosomes during prometaphase facilitates spindle assembly. Cell 146, 555–567 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Barber, T. D. et al. Chromatid cohesion defects may underlie chromosome instability in human colorectal cancers. Proc. Natl Acad. Sci. USA 105, 3443–3448 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Solomon, D. A. et al. Mutational inactivation of STAG2 causes aneuploidy in human cancer. Science 333, 1039–1043 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Holland, A. J. & Cleveland, D. W. Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis. Nature Rev. Mol. Cell Biol. 10, 478–487 (2009).

    CAS  Google Scholar 

  130. Kiburz, B. M., Amon, A. & Marston, A. L. Shugoshin promotes sister kinetochore biorientation in Saccharomyces cerevisiae. Mol. Biol. Cell 19, 1199–1209 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Tang, Z., Sun, Y., Harley, S. E., Zou, H. & Yu, H. Human Bub1 protects centromeric sister-chromatid cohesion through Shugoshin during mitosis. Proc. Natl Acad. Sci. USA 101, 18012–18017 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Boyarchuk, Y., Salic, A., Dasso, M. & Arnaoutov, A. Bub1 is essential for assembly of the functional inner centromere. J. Cell Biol. 176, 919–928 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Yamagishi, Y., Sakuno, T., Shimura, M. & Watanabe, Y. Heterochromatin links to centromeric protection by recruiting shugoshin. Nature 455, 251–255 (2008).

    CAS  PubMed  Google Scholar 

  134. Kiburz, B. M. et al. The core centromere and Sgo1 establish a 50-kb cohesin-protected domain around centromeres during meiosis I. Genes Dev. 19, 3017–3030 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Lampert, F. & Westermann, S. A blueprint for kinetochores — new insights into the molecular mechanics of cell division. Nature Rev. Mol. Cell Biol. 12, 407–412 (2011).

    CAS  Google Scholar 

Download references

Acknowledgements

The author thanks S. Hauf for critically reading the manuscript and his current and previous laboratory members for discussions. The author apologizes to authors whose work was not discussed in this Review owing to space limitations. Work in the Y.W. laboratory was supported by a Grant-in-Aid for Specially Promoted Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Yoshinori Watanabe's homepage

Glossary

Kinetochores

Large protein complexes that assemble on chromosomes and mediate the attachment to spindle microtubules.

Centromeres

Specialized genomic regions where the kinetochore assembles.

Synaptonemal complexes

Ribbon-like protein structures between pachytene chromosomes that mediate synapsis.

APC/C

(Anaphase-promoting complex; also known as the cyclosome). A multicomponent ubiquitin ligase that targets proteins for degradation by the proteasome.

Condensin

A major protein component of mitotic chromosomes that is required for chromosome condensation. The molecular architecture of condensin is similar to that of cohesin, in which two SMC (structural maintenance of chromosome) proteins are linked to each other at one end, and the other end is closed by a kleisin subunit.

Pericentric heterochromatin

Heterochromatin that is assembled at the pericentric region and is composed of repeated specific DNA sequences.

KMN network

The conserved kinetochore linker complex that directly binds to the microtubule plus end and is composed of KNL1 (kinetochore null protein 1), MIS12 and NDC80 subcomplexes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, Y. Geometry and force behind kinetochore orientation: lessons from meiosis. Nat Rev Mol Cell Biol 13, 370–382 (2012). https://doi.org/10.1038/nrm3349

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3349

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing