Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Sticking together the Crumbs — an unexpected function for an old friend

Abstract

Cell polarity and cell–cell junctions have pivotal roles in organizing cells into tissues and in mediating cell–cell communication. The transmembrane protein Crumbs has a well-established role in the maintenance of epithelial polarity, and it can also regulate signalling via the Notch and Hippo pathways to influence tissue growth. The functions of Crumbs in epithelial polarity and Hippo-mediated growth depend on its short intracellular domain. Recent evidence now points to a conserved and fundamental role for the extracellular domain of Crumbs in mediating homophilic Crumbs–Crumbs interactions at cell–cell junctions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Classic functions of Crumbs.
Figure 2: Role of the extracellular domain of Crumbs in the retina.
Figure 3: Crumbs–Crumbs interactions in trans mediate cell–cell communication.
Figure 4: Role of the Crumbs extracellular domain during salivary gland morphogenesis and in follicle and border cells.

Similar content being viewed by others

References

  1. Tepass, U. Theres, C. & Knust, E. crumbs encodes an EGF-like protein expressed on apical membranes of Drosophila epithelial cells and required for organization of epithelia. Cell 61, 787–799 (1990).

    Article  CAS  Google Scholar 

  2. Jürgens, G., Wieschaus, E., Nüsslein-Volhard, C. & Kluding, H. Mutations affecting the pattern of larval cuticle in Drosophila. Roux' Arch. Dev. Biol. 193, 283–295 (1984).

    Article  Google Scholar 

  3. Wodarz, A., Grawe, F. & Knust, E. CRUMBS is involved in the control of apical protein targeting during Drosophila epithelial development. Mech. Dev. 44, 175–187 (1993).

    Article  CAS  Google Scholar 

  4. Bulgakova, N. A. & Knust, E. The Crumbs complex: from epithelial-cell polarity to retinal degeneration. J. Cell Sci. 122, 2587–2596 (2009).

    Article  CAS  Google Scholar 

  5. den Hollander, A. I. et al. Mutations in a human homologue of Drosophila crumbs cause retinitis pigmentosa (RP12). Nature Genet. 23, 217–221 (1999).

    Article  CAS  Google Scholar 

  6. Mehalow, A. K. et al. CRB1 is essential for external limiting membrane integrity and photoreceptor morphogenesis in the mammalian retina. Hum. Mol. Genet. 12, 2179–2189 (2003).

    Article  CAS  Google Scholar 

  7. Omori, Y. & Malicki, J. oko meduzy and related crumbs genes are determinants of apical cell features in the vertebrate embryo. Curr. Biol. 16, 945–957 (2006).

    Article  CAS  Google Scholar 

  8. Tepass, U. The apical polarity protein network in Drosophila epithelial cells: regulation of polarity, junctions, morphogenesis, cell growth, and survival. Annu. Rev. Cell Dev. Biol. 28, 655–685 (2012).

    Article  CAS  Google Scholar 

  9. Zou, J., Wang, X. & Wei, X. Crb apical polarity proteins maintain zebrafish retinal cone mosaics via intercellular binding of their extracellular domains. Dev. Cell 22, 1261–1274 (2012).

    Article  CAS  Google Scholar 

  10. Fletcher, G. C., Lucas, E. P., Brain, R., Tournier, A. & Thompson, B. J. Positive feedback and mutual antagonism combine to polarize Crumbs in the Drosophila follicle cell epithelium. Curr. Biol. 22, 1116–1122 (2012).

    Article  CAS  Google Scholar 

  11. Röper, K. Anisotropy of Crumbs and aPKC drives myosin cable assembly during tube formation. Dev. Cell 23, 939–953 (2012).

    Article  Google Scholar 

  12. Letizia, A., Ricardo, S., Moussian, B., Martin, N. & Llimargas, M. A functional role of the extracellular domain of Crumbs in cell architecture and apicobasal polarity. J. Cell Sci. 22 March 2013 (doi:10.1242/jcs.122382).

  13. Wodarz, A., Hinz, U., Engelbert, M. & Knust, E. Expression of crumbs confers apical character on plasma membrane domains of ectodermal epithelia of Drosophila. Cell 82, 67–76 (1995).

    Article  CAS  Google Scholar 

  14. Klebes, A. & Knust, E. A conserved motif in Crumbs is required for E-cadherin localisation and zonula adherens formation in Drosophila. Curr. Biol. 10, 76–85 (2000).

    Article  CAS  Google Scholar 

  15. den Hollander, A. I. et al. CRB1 has a cytoplasmic domain that is functionally conserved between human and Drosophila. Hum. Mol. Genet. 10, 2767–2773 (2001).

    Article  CAS  Google Scholar 

  16. den Hollander, A. I. et al. Leber congenital amaurosis and retinitis pigmentosa with Coats-like exudative vasculopathy are associated with mutations in the crumbs homologue 1 (CRB1) gene. Am. J. Hum. Genet. 69, 198–203 (2001).

    Article  CAS  Google Scholar 

  17. Morais-de-Sa, E. Mirouse, V. & St. Johnston, D. aPKC phosphorylation of Bazooka defines the apical/lateral border in Drosophila epithelial cells. Cell 141, 509–523 (2010).

    Article  CAS  Google Scholar 

  18. Walther, R. F. & Pichaud, F. Crumbs/DaPKC-dependent apical exclusion of Bazooka promotes photoreceptor polarity remodeling. Curr. Biol. 20, 1065–1074 (2010).

    Article  CAS  Google Scholar 

  19. Krahn, M. P., Buckers, J., Kastrup, L. & Wodarz, A. Formation of a Bazooka–Stardust complex is essential for plasma membrane polarity in epithelia. J. Cell Biol. 190, 751–760 (2010).

    Article  CAS  Google Scholar 

  20. Lotery, A. J. et al. Mutations in the CRB1 gene cause Leber congenital amaurosis. Arch. Ophthalmol. 119, 415–420 (2001).

    Article  CAS  Google Scholar 

  21. Alves, C. H. et al. Loss of CRB2 in the mouse retina mimics human retinitis pigmentosa due to mutations in the CRB1 gene. Hum. Mol. Genet. 22, 35–50 (2012).

    Article  Google Scholar 

  22. Pellikka, M. et al. Crumbs, the Drosophila homologue of human CRB1/RP12, is essential for photoreceptor morphogenesis. Nature 416, 143–149 (2002).

    Article  CAS  Google Scholar 

  23. Izaddoost, S., Nam, S. C., Bhat, M. A., Bellen, H. J. & Choi, K. W. Drosophila Crumbs is a positional cue in photoreceptor adherens junctions and rhabdomeres. Nature 416, 178–183 (2002).

    Article  CAS  Google Scholar 

  24. van de Pavert, S. A. et al. Crumbs homologue 1 is required for maintenance of photoreceptor cell polarization and adhesion during light exposure. J. Cell Sci. 117, 4169–4177 (2004).

    Article  CAS  Google Scholar 

  25. Chartier, F. J., Hardy, E. J. & Laprise, P. Crumbs limits oxidase-dependent signaling to maintain epithelial integrity and prevent photoreceptor cell death. J. Cell Biol. 198, 991–998 (2012).

    Article  CAS  Google Scholar 

  26. Robinson, B. S., Huang, J., Hong, Y. & Moberg, K. H. Crumbs regulates Salvador/Warts/Hippo signaling in Drosophila via the FERM-domain protein Expanded. Curr. Biol. 20, 582–590 (2010).

    Article  CAS  Google Scholar 

  27. Grzeschik, N. A., Parsons, L. M., Allott, M. L., Harvey, K. F. & Richardson, H. E. Lgl, aPKC, and Crumbs regulate the Salvador/Warts/Hippo pathway through two distinct mechanisms. Curr. Biol. 20, 573–581 (2010).

    Article  CAS  Google Scholar 

  28. Ling, C. et al. The apical transmembrane protein Crumbs functions as a tumor suppressor that regulates Hippo signaling by binding to Expanded. Proc. Natl Acad. Sci. USA 107, 10532–10537 (2010).

    Article  CAS  Google Scholar 

  29. Chen, C. L. et al. The apical–basal cell polarity determinant Crumbs regulates Hippo signaling in Drosophila. Proc. Natl Acad. Sci. USA 107, 15810–15815 (2010).

    Article  CAS  Google Scholar 

  30. Herranz, H., Stamataki, E., Feiguin, F. & Milan, M. Self-refinement of Notch activity through the transmembrane protein Crumbs: modulation of γ-secretase activity. EMBO Rep. 7, 297–302 (2006).

    Article  CAS  Google Scholar 

  31. Richardson, E. C. & Pichaud, F. Crumbs is required to achieve proper organ size control during Drosophila head development. Development 137, 641–650 (2010).

    Article  CAS  Google Scholar 

  32. Ohata, S. et al. Dual roles of Notch in regulation of apically restricted mitosis and apicobasal polarity of neuroepithelial cells. Neuron 69, 215–230 (2011).

    Article  CAS  Google Scholar 

  33. Tanentzapf, G. & Tepass, U. Interactions between the crumbs, lethal giant larvae and bazooka pathways in epithelial polarization. Nature Cell Biol. 5, 46–52 (2003).

    Article  CAS  Google Scholar 

  34. Klose, S., Flores-Benitez, D., Riedel, F. & Knust, E. Fosmid-based structure-function analysis reveals functionally distinct domains in the cytoplasmic domain of Drosophila crumbs. G3 (Bethesda) 3, 153–165 (2013).

    Article  CAS  Google Scholar 

  35. Bilder, D., Schober, M. & Perrimon, N. Integrated activity of PDZ protein complexes regulates epithelial polarity. Nature Cell Biol. 5, 53–58 (2003).

    Article  CAS  Google Scholar 

  36. Knoblich, J. A. Asymmetric cell division: recent developments and their implications for tumour biology. Nature Rev. Mol. Cell Biol. 11, 849–860 (2010).

    Article  CAS  Google Scholar 

  37. Campbell, K., Knust, E. & Skaer, H. Crumbs stabilises epithelial polarity during tissue remodelling. J. Cell Sci. 122, 2604–2612 (2009).

    Article  CAS  Google Scholar 

  38. Grawe, F., Wodarz, A., Lee, B., Knust, E. & Skaer, H. The Drosophila genes crumbs and stardust are involved in the biogenesis of adherens junctions. Development 122, 951–959 (1996).

    CAS  PubMed  Google Scholar 

  39. Zallen, J. A. & Wieschaus, E. Patterned gene expression directs bipolar planar polarity in Drosophila. Dev. Cell 6, 343–355 (2004).

    Article  CAS  Google Scholar 

  40. Simoes Sde, M. et al. Rho-kinase directs Bazooka/Par-3 planar polarity during Drosophila axis elongation. Dev. Cell 19, 377–388 (2010).

    Article  Google Scholar 

  41. den Hollander, A. I. et al. CRB1 mutation spectrum in inherited retinal dystrophies. Hum. Mutat. 24, 355–369 (2004).

    Article  CAS  Google Scholar 

  42. Richard, M., Muschalik, N., Grawe, F., Ozuyaman, S. & Knust, E. A role for the extracellular domain of Crumbs in morphogenesis of Drosophila photoreceptor cells. Eur. J. Cell Biol. 88, 765–777 (2009).

    Article  CAS  Google Scholar 

  43. Harris, K. P. & Tepass, U. Cdc42 and Par proteins stabilize dynamic adherens junctions in the Drosophila neuroectoderm through regulation of apical endocytosis. J. Cell Biol. 183, 1129–1143 (2008).

    Article  CAS  Google Scholar 

  44. Hafezi, Y., Bosch, J. A. & Hariharan, I. K. Differences in levels of the transmembrane protein Crumbs can influence cell survival at clonal boundaries. Dev. Biol. 368, 358–369 (2012).

    Article  CAS  Google Scholar 

  45. Pichaud, F. & Desplan, C. Cell biology: a new view of photoreceptors. Nature 416, 139–140 (2002).

    Article  CAS  Google Scholar 

  46. Grusche, F. A., Degoutin, J. L., Richardson, H. E. & Harvey, K. F. The Salvador/Warts/Hippo pathway controls regenerative tissue growth in Drosophila melanogaster. Dev. Biol. 350, 255–266 (2011).

    Article  CAS  Google Scholar 

  47. Varelas, X. et al. The Crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-β–SMAD pathway. Dev. Cell 19, 831–844 (2010).

    Article  CAS  Google Scholar 

  48. Zhao, B. et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 21, 2747–2761 (2007).

    Article  CAS  Google Scholar 

  49. Windler, S. L. & Bilder, D. Endocytic internalization routes required for Delta/Notch signaling. Curr. Biol. 20, 538–543 (2010).

    Article  CAS  Google Scholar 

  50. Pardossi-Piquard, R. et al. Overexpression of human CRB1 or related isoforms, CRB2 and CRB3, does not regulate the human presenilin complex in culture cells. Biochemistry 46, 13704–13710 (2007).

    Article  CAS  Google Scholar 

  51. Mitsuishi, Y. et al. Human CRB2 inhibits γ-secretase cleavage of amyloid precursor protein by binding to the presenilin complex. J. Biol. Chem. 285, 14920–14931 (2010).

    Article  CAS  Google Scholar 

  52. Niewiadomska, P., Godt, D. & Tepass, U. DE-cadherin is required for intercellular motility during Drosophila oogenesis. J. Cell Biol. 144, 533–547 (1999).

    Article  CAS  Google Scholar 

  53. Pinheiro, E. M. & Montell, D. J. Requirement for Par-6 and Bazooka in Drosophila border cell migration. Development 131, 5243–5251 (2004).

    Article  CAS  Google Scholar 

  54. Pocha, S. M., Wassmer, T., Niehage, C., Hoflack, B. & Knust, E. Retromer controls epithelial cell polarity by trafficking the apical determinant Crumbs. Curr. Biol. 21, 1111–1117 (2011).

    Article  CAS  Google Scholar 

  55. Harris, T. J. & Tepass, U. Adherens junctions: from molecules to morphogenesis. Nature Rev. Mol. Cell Biol. 11, 502–514 (2010).

    Article  CAS  Google Scholar 

  56. Chen, W. S. et al. Asymmetric homotypic interactions of the atypical cadherin flamingo mediate intercellular polarity signaling. Cell 133, 1093–1105 (2008).

    Article  CAS  Google Scholar 

  57. Yue, T., Tian, A. & Jiang, J. The cell adhesion molecule Echinoid functions as a tumor suppressor and upstream regulator of the Hippo signaling pathway. Dev. Cell 22, 255–267 (2012).

    Article  CAS  Google Scholar 

  58. Chang, L. H. et al. Differential adhesion and actomyosin cable collaborate to drive Echinoid-mediated cell sorting. Development 138, 3803–3812 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors apologize to colleagues whose work could not be cited or discussed in sufficient depth owing to space limitations. B.J.T. is supported by Cancer Research UK (CRUK), F.P. is supported by the Medical Research Council (MRC), and K.R. is also supported by the MRC (file reference number U105178780).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Barry J. Thompson, Franck Pichaud or Katja Röper.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Katja Röper's homepage

Barry Thompson's homepage

Franck Pichaud's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, B., Pichaud, F. & Röper, K. Sticking together the Crumbs — an unexpected function for an old friend. Nat Rev Mol Cell Biol 14, 307–314 (2013). https://doi.org/10.1038/nrm3568

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3568

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing