Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Functions of cofilin in cell locomotion and invasion

Key Points

  • Cofilin is an actin-binding protein that can influence actin dynamics to regulate the initiation and shape of cell protrusions.

  • Cofilin severing activity can generate free filament ends that are accessible to G-actin, thus triggering actin polymerization and actin depolymerization without changing the rate constants for actin monomer association and dissociation at either filament end.

  • The cofilin activity cycle includes several activation–inactivation steps that need to be spatially and temporally regulated by different proteins in order to achieve efficient cell motility.

  • Several molecules are involved in the activation of cofilin at protrusions, including Na+–H+ exchanger 1 (NHE1), phospholipase C (PLC) and cortactin, which contribute to the first activation step of cofilin. Cofilin can also be activated upon dephosphorylation by phosphatases such as Slingshot (SSH) and chronophin (CIN).

  • Cofilin is inactivated by LIM-domain kinase (LIMK)- and TES kinase (TESK)-mediated phosphorylation at Ser3.

  • Visualization of cofilin activity in live cells is crucial to understand its biological function. Cofilin activity can be studied in vivo using different techniques such as FRAP (fluorescence recovery after photobleaching), FRET (fluorescence resonance energy transfer), FLIP (fluorescence loss in photobleaching), BiFC (bimolecular fluorescence complementation), barbed end assays, PLA (proximity ligation assay) and cofilin uncaging.

Abstract

Recently, a consensus has emerged that cofilin severing activity can generate free actin filament ends that are accessible for F-actin polymerization and depolymerization without changing the rate of G-actin association and dissociation at either filament end. The structural basis of actin filament severing by cofilin is now better understood. These results have been integrated with recently discovered mechanisms for cofilin activation in migrating cells, which led to new models for cofilin function that provide insights into how cofilin regulation determines the temporal and spatial control of cell behaviour.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Steps of the cell motility cycle.
Figure 2: Domain structure of cofilin and its main functions.
Figure 3: Regulatory mechanisms of cofilin phosphorylation and dephosphorylation.
Figure 4: A new model for the activation of cofilin at the leading edge of locomotory protrusions.
Figure 5: A new model for the activation of cofilin in invasive protrusions.
Figure 6: Models for cofilin function.

Similar content being viewed by others

References

  1. Charras, G. & Paluch, E. Blebs lead the way: how to migrate without lamellipodia. Nature Rev. Mol. Cell Biol. 9, 730–736 (2008).

    CAS  Google Scholar 

  2. Daubon, T., Rochelle, T., Bourmeyster, N. & Genot, E. Invadopodia and rolling-type motility are specific features of highly invasive p190bcr-abl leukemic cells. Eur. J. Cell Biol. 91, 978–987 (2012).

    CAS  PubMed  Google Scholar 

  3. Bear, J. E. & Gertler, F. B. Ena/VASP: towards resolving a pointed controversy at the barbed end. J. Cell Sci. 122, 1947–1953 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Nurnberg, A., Kitzing, T. & Grosse, R. Nucleating actin for invasion. Nature Rev. Cancer 11, 177–187 (2011).

    Google Scholar 

  5. Ridley, A. J. Life at the leading edge. Cell 145, 1012–1022 (2011).

    CAS  PubMed  Google Scholar 

  6. Rotty, J. D., Wu, C. & Bear, J. E. New insights into the regulation and cellular functions of the ARP2/3 complex. Nature Rev. Mol. Cell Biol. 14, 7–12 (2012).

    Google Scholar 

  7. Webb, D. J., Parsons, J. T. & Horwitz, A. F. Adhesion assembly, disassembly and turnover in migrating cells — over and over and over again. Nature Cell Biol. 4, e97–e100 (2002).

    CAS  PubMed  Google Scholar 

  8. Roussos, E. T., Condeelis, J. S. & Patsialou, A. Chemotaxis in cancer. Nature Rev. Cancer 11, 573–587 (2011).

    CAS  Google Scholar 

  9. Chen, Q. & Pollard, T. D. Actin filament severing by cofilin is more important for assembly than constriction of the cytokinetic contractile ring. J. Cell Biol. 195, 485–498 (2011). Demonstrates that cofilin severing activity is crucial for the assembly and contractility of the contractile ring during cytokinesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang, L. et al. Regulation of cofilin phosphorylation and asymmetry in collective cell migration during morphogenesis. Development 138, 455–464 (2011).

    CAS  PubMed  Google Scholar 

  11. Gu, J. et al. ADF/cofilin-mediated actin dynamics regulate AMPA receptor trafficking during synaptic plasticity. Nature Neurosci. 13, 1208–1215 (2010).

    CAS  PubMed  Google Scholar 

  12. Bamburg, J. R. & Wiggan, O. P. ADF/cofilin and actin dynamics in disease. Trends Cell Biol. 12, 598–605 (2002).

    CAS  PubMed  Google Scholar 

  13. Bernstein, B. W. & Bamburg, J. R. ADF/cofilin: a functional node in cell biology. Trends Cell Biol. 20, 187–195 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Poukkula, M., Kremneva, E., Serlachius, M. & Lappalainen, P. Actin-depolymerizing factor homology domain: a conserved fold performing diverse roles in cytoskeletal dynamics. Cytoskeleton (Hoboken) 68, 471–490 (2011). Reviews the different proteins that contain ADF homology domains.

    CAS  Google Scholar 

  15. Andrianantoandro, E. & Pollard, T. D. Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin. Mol. Cell 24, 13–23 (2006).

    CAS  PubMed  Google Scholar 

  16. Ichetovkin, I., Han, J., Pang, K. M., Knecht, D. A. & Condeelis, J. S. Actin filaments are severed by both native and recombinant dictyostelium cofilin but to different extents. Cell Motil. Cytoskeleton 45, 293–306 (2000).

    CAS  PubMed  Google Scholar 

  17. Pavlov, D., Muhlrad, A., Cooper, J., Wear, M. & Reisler, E. Actin filament severing by cofilin. J. Mol. Biol. 365, 1350–1358 (2007).

    CAS  PubMed  Google Scholar 

  18. Carlier, M. F. et al. Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. J. Cell Biol. 136, 1307–1322 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Carlier, M. F. & Pantaloni, D. Control of actin dynamics in cell motility. J. Mol. Biol. 269, 459–467 (1997).

    CAS  PubMed  Google Scholar 

  20. Ichetovkin, I., Grant, W. & Condeelis, J. Cofilin produces newly polymerized actin filaments that are preferred for dendritic nucleation by the Arp2/3 complex. Curr. Biol. 12, 79–84 (2002).

    CAS  PubMed  Google Scholar 

  21. Mahaffy, R. E. & Pollard, T. D. Kinetics of the formation and dissociation of actin filament branches mediated by Arp2/3 complex. Biophys. J. 91, 3519–3528 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Chan, C., Beltzner, C. C. & Pollard, T. D. Cofilin dissociates Arp2/3 complex and branches from actin filaments. Curr. Biol. 19, 537–545 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Mseka, T. & Cramer, L. P. Actin depolymerization-based force retracts the cell rear in polarizing and migrating cells. Curr. Biol. 21, 2085–2091 (2011).

    CAS  PubMed  Google Scholar 

  24. Wiggan, O., Shaw, A. E., DeLuca, J. G. & Bamburg, J. R. ADF/cofilin regulates actomyosin assembly through competitive inhibition of myosin II binding to F-actin. Dev. Cell 22, 530–543 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Galkin, V. E. et al. Remodeling of actin filaments by ADF/cofilin proteins. Proc. Natl Acad. Sci. USA 108, 20568–20572 (2011). Describes the mechanism of actin filament severing by cofilin.

    CAS  PubMed  Google Scholar 

  26. Prochniewicz, E., Janson, N., Thomas, D. D. & De La Cruz, E. M. Cofilin increases the torsional flexibility and dynamics of actin filaments. J. Mol. Biol. 353, 990–1000 (2005).

    CAS  PubMed  Google Scholar 

  27. Suarez, C. et al. Cofilin tunes the nucleotide state of actin filaments and severs at bare and decorated segment boundaries. Curr. Biol. 21, 862–868 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. McCullough, B. R., Blanchoin, L., Martiel, J. L. & De La Cruz, E. M. Cofilin increases the bending flexibility of actin filaments: implications for severing and cell mechanics. J. Mol. Biol. 381, 550–558 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Bobkov, A. A. et al. Cooperative effects of cofilin (ADF) on actin structure suggest allosteric mechanism of cofilin function. J. Mol. Biol. 356, 325–334 (2006).

    CAS  PubMed  Google Scholar 

  30. Mehta, S. & Sibley, L. D. Toxoplasma gondii actin depolymerizing factor acts primarily to sequester G-actin. J. Biol. Chem. 285, 6835–6847 (2010).

    CAS  PubMed  Google Scholar 

  31. Kuhn, J. R. & Pollard, T. D. Real-time measurements of actin filament polymerization by total internal reflection fluorescence microscopy. Biophys. J. 88, 1387–1402 (2005).

    CAS  PubMed  Google Scholar 

  32. Moriyama, K. & Yahara, I. Human CAP1 is a key factor in the recycling of cofilin and actin for rapid actin turnover. J. Cell Sci. 115, 1591–1601 (2002).

    CAS  PubMed  Google Scholar 

  33. Jockusch, B. M., Murk, K. & Rothkegel, M. The profile of profilins. Rev. Physiol. Biochem. Pharmacol. 159, 131–149 (2007).

    CAS  PubMed  Google Scholar 

  34. Normoyle, K. P. & Brieher, W. M. Cyclase-associated protein (CAP) acts directly on F-actin to accelerate cofilin-mediated actin severing across the range of physiological pH. J. Biol. Chem. 287, 35722–35732 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. DesMarais, V., Ghosh, M., Eddy, R. & Condeelis, J. Cofilin takes the lead. J. Cell Sci. 118, 19–26 (2005).

    CAS  PubMed  Google Scholar 

  36. Hotulainen, P., Paunola, E., Vartiainen, M. K. & Lappalainen, P. Actin-depolymerizing factor and cofilin-1 play overlapping roles in promoting rapid F-actin depolymerization in mammalian nonmuscle cells. Mol. Biol. Cell 16, 649–664 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kiuchi, T., Ohashi, K., Kurita, S. & Mizuno, K. Cofilin promotes stimulus-induced lamellipodium formation by generating an abundant supply of actin monomers. J. Cell Biol. 177, 465–476 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bravo-Cordero, J. J., Hodgson, L. & Condeelis, J. Directed cell invasion and migration during metastasis. Curr. Opin. Cell Biol. 24, 277–283 (2012).

    CAS  PubMed  Google Scholar 

  39. Brieher, W. M., Kueh, H. Y., Ballif, B. A. & Mitchison, T. J. Rapid actin monomer-insensitive depolymerization of Listeria actin comet tails by cofilin, coronin, and Aip1. J. Cell Biol. 175, 315–324 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Lin, M. C., Galletta, B. J., Sept, D. & Cooper, J. A. Overlapping and distinct functions for cofilin, coronin and Aip1 in actin dynamics in vivo. J. Cell Sci. 123, 1329–1342 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Mohri, K., Ono, K., Yu, R., Yamashiro, S. & Ono, S. Enhancement of actin-depolymerizing factor/cofilin-dependent actin disassembly by actin-interacting protein 1 is required for organized actin filament assembly in the Caenorhabditis elegans body wall muscle. Mol. Biol. Cell 17, 2190–2199 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Okada, K. et al. Xenopus actin-interacting protein 1 (XAip1) enhances cofilin fragmentation of filaments by capping filament ends. J. Biol. Chem. 277, 43011–43016 (2002).

    CAS  PubMed  Google Scholar 

  43. Ono, S., Mohri, K. & Ono, K. Microscopic evidence that actin-interacting protein 1 actively disassembles actin-depolymerizing factor/Cofilin-bound actin filaments. J. Biol. Chem. 279, 14207–14212 (2004).

    CAS  PubMed  Google Scholar 

  44. Philippar, U. et al. A Mena invasion isoform potentiates EGF-induced carcinoma cell invasion and metastasis. Dev. Cell 15, 813–828 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Bravo-Cordero, J. J. et al. A novel spatiotemporal RhoC activation pathway locally regulates cofilin activity at invadopodia. Curr. Biol. 21, 635–644 (2011). Shows that confinement of cofilin activity at the invadopodium core involves RHOC-mediated cofilin phosphorylation outside the invadopodium, concentrating activated cofilin inside the invadopodium core.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Bravo-Cordero, J. J. et al. Spatial regulation of RhoC activity defines protrusion formation in migrating cells. J. Cell Sci. 23 May 2013 (doi:10.1242/jcs.123547). Demonstrates how RHOC spatially restricts cofilin activity at the leading edge to drive polarized protrusions and chemotaxis.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Han, L. et al. Direct stimulation of receptor-controlled phospholipase D1 by phospho-cofilin. EMBO J. 26, 4189–4202 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. DesMarais, V., Macaluso, F., Condeelis, J. & Bailly, M. Synergistic interaction between the Arp2/3 complex and cofilin drives stimulated lamellipod extension. J. Cell Sci. 117, 3499–3510 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. van Rheenen, J. et al. EGF-induced PIP2 hydrolysis releases and activates cofilin locally in carcinoma cells. J. Cell Biol. 179, 1247–1259 (2007). Shows how PLC releases the inhibitory interaction of cofilin with PtdIns(4,5)P 2 at the plasma membrane, resulting in the local activation of cofilin severing activity.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kim, J. S., Huang, T. Y. & Bokoch, G. M. Reactive oxygen species regulate a Slingshot–cofilin activation pathway. Mol. Biol. Cell 20, 2650–2660 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Song, X. et al. Initiation of cofilin activity in response to EGF is uncoupled from cofilin phosphorylation and dephosphorylation in carcinoma cells. J. Cell Sci. 119, 2871–2881 (2006).

    CAS  PubMed  Google Scholar 

  52. Sakuma, M. et al. Novel PKCα-mediated phosphorylation site(s) on cofilin and their potential role in terminating histamine release. Mol. Biol. Cell 23, 3707–3721 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Yoo, Y., Ho, H. J., Wang, C. & Guan, J. L. Tyrosine phosphorylation of cofilin at Y68 by v-Src leads to its degradation through ubiquitin–proteasome pathway. Oncogene 29, 263–272 (2010).

    CAS  PubMed  Google Scholar 

  54. Delorme, V. et al. Cofilin activity downstream of Pak1 regulates cell protrusion efficiency by organizing lamellipodium and lamella actin networks. Dev. Cell 13, 646–662 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Mouneimne, G. et al. Spatial and temporal control of cofilin activity is required for directional sensing during chemotaxis. Curr. Biol. 16, 2193–2205 (2006).

    CAS  PubMed  Google Scholar 

  56. Sidani, M. et al. Cofilin determines the migration behavior and turning frequency of metastatic cancer cells. J. Cell Biol. 179, 777–791 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Cao, W., Goodarzi, J. P. & De La Cruz, E. M. Energetics and kinetics of cooperative cofilin–actin filament interactions. J. Mol. Biol. 361, 257–267 (2006).

    CAS  PubMed  Google Scholar 

  58. Ressad, F., Didry, D., Egile, C., Pantaloni, D. & Carlier, M. F. Control of actin filament length and turnover by actin depolymerizing factor (ADF/cofilin) in the presence of capping proteins and ARP2/3 complex. J. Biol. Chem. 274, 20970–20976 (1999).

    CAS  PubMed  Google Scholar 

  59. Tania, N., Prosk, E., Condeelis, J. & Edelstein-Keshet, L. A temporal model of cofilin regulation and the early peak of actin barbed ends in invasive tumor cells. Biophys. J. 100, 1883–1892 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. DesMarais, V., Ichetovkin, I., Condeelis, J. & Hitchcock-DeGregori, S. E. Spatial regulation of actin dynamics: a tropomyosin-free, actin-rich compartment at the leading edge. J. Cell Sci. 115, 4649–4660 (2002).

    CAS  PubMed  Google Scholar 

  61. Munsie, L. N., Desmond, C. R. & Truant, R. Cofilin nuclear–cytoplasmic shuttling affects cofilin–actin rod formation during stress. J. Cell Sci. 125, 3977–3988 (2012).

    CAS  PubMed  Google Scholar 

  62. Obrdlik, A. & Percipalle, P. The F-actin severing protein cofilin-1 is required for RNA polymerase II transcription elongation. Nucleus 2, 72–79 (2011).

    PubMed  PubMed Central  Google Scholar 

  63. Arber, S. et al. Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393, 805–809 (1998).

    CAS  PubMed  Google Scholar 

  64. Nagaoka, R., Minami, N., Hayakawa, K., Abe, H. & Obinata, T. Quantitative analysis of low molecular weight G-actin-binding proteins, cofilin, ADF and profilin, expressed in developing and degenerating chicken skeletal muscles. J. Muscle Res. Cell Motil. 17, 463–473 (1996).

    CAS  PubMed  Google Scholar 

  65. Moriyama, K., Iida, K. & Yahara, I. Phosphorylation of Ser-3 of cofilin regulates its essential function on actin. Genes Cells 1, 73–86 (1996).

    CAS  PubMed  Google Scholar 

  66. Niwa, R., Nagata-Ohashi, K., Takeichi, M., Mizuno, K. & Uemura, T. Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell 108, 233–246 (2002).

    CAS  PubMed  Google Scholar 

  67. Gohla, A., Birkenfeld, J. & Bokoch, G. M. Chronophin, a novel HAD-type serine protein phosphatase, regulates cofilin-dependent actin dynamics. Nature Cell Biol. 7, 21–29 (2005).

    CAS  PubMed  Google Scholar 

  68. Ambach, A. et al. The serine phosphatases PP1 and PP2A associate with and activate the actin-binding protein cofilin in human T lymphocytes. Eur. J. Immunol. 30, 3422–3431 (2000).

    CAS  PubMed  Google Scholar 

  69. Mizuno, K. Signaling mechanisms and functional roles of cofilin phosphorylation and dephosphorylation. Cell. Signal. 25, 457–469 (2012). Reviews the mechanisms regulating the activity of LIMK and SSH and how these proteins influence cofilin activity.

    PubMed  Google Scholar 

  70. Cai, L., Marshall, T. W., Uetrecht, A. C., Schafer, D. A. & Bear, J. E. Coronin 1B coordinates Arp2/3 complex and cofilin activities at the leading edge. Cell 128, 915–929 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Nagata-Ohashi, K. et al. A pathway of neuregulin-induced activation of cofilin-phosphatase Slingshot and cofilin in lamellipodia. J. Cell Biol. 165, 465–471 (2004).

    PubMed  PubMed Central  Google Scholar 

  72. Eiseler, T. et al. Protein kinase D1 regulates cofilin-mediated F-actin reorganization and cell motility through slingshot. Nature Cell Biol. 11, 545–556 (2009).

    CAS  PubMed  Google Scholar 

  73. Spratley, S. J., Bastea, L. I., Doppler, H., Mizuno, K. & Storz, P. Protein kinase D regulates cofilin activity through p21-activated kinase 4. J. Biol. Chem. 286, 34254–34261 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Peterburs, P. et al. Protein kinase D regulates cell migration by direct phosphorylation of the cofilin phosphatase slingshot 1 like. Cancer Res. 69, 5634–5638 (2009).

    CAS  PubMed  Google Scholar 

  75. Wang, Y., Shibasaki, F. & Mizuno, K. Calcium signal-induced cofilin dephosphorylation is mediated by Slingshot via calcineurin. J. Biol. Chem. 280, 12683–12689 (2005).

    CAS  PubMed  Google Scholar 

  76. Zhao, J. W. et al. Regulation of cofilin activity by CaMKII and calcineurin. Am. J. Med. Sci. 344, 462–472 (2012).

    PubMed  Google Scholar 

  77. Zoudilova, M. et al. β-arrestin-dependent regulation of the cofilin pathway downstream of protease-activated receptor-2. J. Biol. Chem. 282, 20634–20646 (2007).

    CAS  PubMed  Google Scholar 

  78. Hirayama, A., Adachi, R., Otani, S., Kasahara, T. & Suzuki, K. Cofilin plays a critical role in IL-8-dependent chemotaxis of neutrophilic HL-60 cells through changes in phosphorylation. J. Leukoc. Biol. 81, 720–728 (2007).

    CAS  PubMed  Google Scholar 

  79. Boldt, K., Rist, W., Weiss, S. M., Weith, A. & Lenter, M. C. FPRL-1 induces modifications of migration-associated proteins in human neutrophils. Proteomics 6, 4790–4799 (2006).

    CAS  PubMed  Google Scholar 

  80. Sun, C. X., Magalhaes, M. A. & Glogauer, M. Rac1 and Rac2 differentially regulate actin free barbed end formation downstream of the fMLP receptor. J. Cell Biol. 179, 239–245 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Tang, W. et al. A PLCβ/PI3Kγ–GSK3 signaling pathway regulates cofilin phosphatase slingshot2 and neutrophil polarization and chemotaxis. Dev. Cell 21, 1038–1050 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Nishita, M. et al. Phosphoinositide 3-kinase-mediated activation of cofilin phosphatase Slingshot and its role for insulin-induced membrane protrusion. J. Biol. Chem. 279, 7193–7198 (2004).

    CAS  PubMed  Google Scholar 

  83. Scott, R. W. et al. LIM kinases are required for invasive path generation by tumor and tumor-associated stromal cells. J. Cell Biol. 191, 169–185 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Toshima, J. et al. Cofilin phosphorylation by protein kinase testicular protein kinase 1 and its role in integrin-mediated actin reorganization and focal adhesion formation. Mol. Biol. Cell 12, 1131–1145 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Toshima, J., Toshima, J. Y., Takeuchi, K., Mori, R. & Mizuno, K. Cofilin phosphorylation and actin reorganization activities of testicular protein kinase 2 and its predominant expression in testicular Sertoli cells. J. Biol. Chem. 276, 31449–31458 (2001).

    CAS  PubMed  Google Scholar 

  86. Maekawa, M. et al. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285, 895–898 (1999).

    Article  CAS  Google Scholar 

  87. Dan, C., Kelly, A., Bernard, O. & Minden, A. Cytoskeletal changes regulated by the PAK4 serine/threonine kinase are mediated by LIM kinase 1 and cofilin. J. Biol. Chem. 276, 32115–32121 (2001).

    CAS  PubMed  Google Scholar 

  88. Edwards, D. C., Sanders, L. C., Bokoch, G. M. & Gill, G. N. Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nature Cell Biol. 1, 253–259 (1999).

    CAS  PubMed  Google Scholar 

  89. Sumi, T., Matsumoto, K., Shibuya, A. & Nakamura, T. Activation of LIM kinases by myotonic dystrophy kinase-related Cdc42-binding kinase α. J. Biol. Chem. 276, 23092–23096 (2001).

    CAS  PubMed  Google Scholar 

  90. Kobayashi, M., Nishita, M., Mishima, T., Ohashi, K. & Mizuno, K. MAPKAPK-2-mediated LIM-kinase activation is critical for VEGF-induced actin remodeling and cell migration. EMBO J. 25, 713–726 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Wang, W., Eddy, R. & Condeelis, J. The cofilin pathway in breast cancer invasion and metastasis. Nature Rev. Cancer 7, 429–440 (2007).

    CAS  Google Scholar 

  92. Gorbatyuk, V. Y. et al. Mapping the phosphoinositide-binding site on chick cofilin explains how PIP2 regulates the cofilin–actin interaction. Mol. Cell 24, 511–522 (2006).

    CAS  PubMed  Google Scholar 

  93. Yonezawa, N., Nishida, E., Iida, K., Yahara, I. & Sakai, H. Inhibition of the interactions of cofilin, destrin, and deoxyribonuclease I with actin by phosphoinositides. J. Biol. Chem. 265, 8382–8386 (1990).

    CAS  PubMed  Google Scholar 

  94. Sun, H. Q., Yamamoto, M., Mejillano, M. & Yin, H. L. Gelsolin, a multifunctional actin regulatory protein. J. Biol. Chem. 274, 33179–33182 (1999).

    CAS  PubMed  Google Scholar 

  95. Yin, H. L. & Janmey, P. A. Phosphoinositide regulation of the actin cytoskeleton. Annu. Rev. Physiol. 65, 761–789 (2003).

    CAS  PubMed  Google Scholar 

  96. Leyman, S. et al. Unbalancing the phosphatidylinositol-4,5-bisphosphate–cofilin interaction impairs cell steering. Mol. Biol. Cell 20, 4509–4523 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Ghosh, M. et al. Cofilin promotes actin polymerization and defines the direction of cell motility. Science 304, 743–746 (2004).

    CAS  PubMed  Google Scholar 

  98. Chen, H. et al. In vitro activity differences between proteins of the ADF/cofilin family define two distinct subgroups. Biochemistry 43, 7127–7142 (2004).

    CAS  PubMed  Google Scholar 

  99. Hawkins, M., Pope, B., Maciver, S. K. & Weeds, A. G. Human actin depolymerizing factor mediates a pH-sensitive destruction of actin filaments. Biochemistry 32, 9985–9993 (1993).

    CAS  PubMed  Google Scholar 

  100. Maciver, S. K., Pope, B. J., Whytock, S. & Weeds, A. G. The effect of two actin depolymerizing factors (ADF/cofilins) on actin filament turnover: pH sensitivity of F-actin binding by human ADF, but not of Acanthamoeba actophorin. Eur. J. Biochem. 256, 388–397 (1998).

    CAS  PubMed  Google Scholar 

  101. Bernstein, B. W. et al. Intracellular pH modulation of ADF/cofilin proteins. Cell Motil. Cytoskeleton 47, 319–336 (2000).

    CAS  PubMed  Google Scholar 

  102. Frantz, C. et al. Cofilin is a pH sensor for actin free barbed end formation: role of phosphoinositide binding. J. Cell Biol. 183, 865–879 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Magalhaes, M. A. et al. Cortactin phosphorylation regulates cell invasion through a pH-dependent pathway. J. Cell Biol. 195, 903–920 (2011). Shows that the recruitment of NHE1 to invadopodia locally increases the pH, which releases the inhibitory interacting of cofilin with cortactin and leads to the activation of cofilin severing activity.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Kemp, G., Young, H. & Fliegel, L. Structure and function of the human Na+/H+ exchanger isoform 1. Channels (Austin) 2, 329–336 (2008).

    Google Scholar 

  105. Zhao, H., Hakala, M. & Lappalainen, P. ADF/cofilin binds phosphoinositides in a multivalent manner to act as a PIP2-density sensor. Biophys. J. 98, 2327–2336 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Webb, B. A., Chimenti, M., Jacobson, M. P. & Barber, D. L. Dysregulated pH: a perfect storm for cancer progression. Nature Rev. Cancer 11, 671–677 (2011).

    CAS  Google Scholar 

  107. Wang, W. et al. The activity status of cofilin is directly related to invasion, intravasation, and metastasis of mammary tumors. J. Cell Biol. 173, 395–404 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Wang, W. et al. Coordinated regulation of pathways for enhanced cell motility and chemotaxis is conserved in rat and mouse mammary tumors. Cancer Res. 67, 3505–3511 (2007).

    CAS  PubMed  Google Scholar 

  109. Buccione, R., Caldieri, G. & Ayala, I. Invadopodia: specialized tumor cell structures for the focal degradation of the extracellular matrix. Cancer Metastasis Rev. 28, 137–149 (2009).

    PubMed  Google Scholar 

  110. Linder, S., Wiesner, C. & Himmel, M. Degrading devices: invadosomes in proteolytic cell invasion. Annu. Rev. Cell Dev. Biol. 27, 185–211 (2011).

    CAS  PubMed  Google Scholar 

  111. Murphy, D. A. & Courtneidge, S. A. The 'ins' and 'outs' of podosomes and invadopodia: characteristics, formation and function. Nature Rev. Mol. Cell Biol. 12, 413–426 (2011).

    CAS  Google Scholar 

  112. Weaver, A. M. Invadopodia: specialized cell structures for cancer invasion. Clin. Exp. Metastasis 23, 97–105 (2006). References 109–112 review invasive protrusions.

    PubMed  Google Scholar 

  113. Oser, M. et al. Cortactin regulates cofilin and N-WASp activities to control the stages of invadopodium assembly and maturation. J. Cell Biol. 186, 571–587 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Mader, C. C. et al. An EGFR–Src–Arg–cortactin pathway mediates functional maturation of invadopodia and breast cancer cell invasion. Cancer Res. 71, 1730–1741 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Pollard, T. D., Blanchoin, L. & Mullins, R. D. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu. Rev. Biophys. Biomol. Struct. 29, 545–576 (2000).

    CAS  PubMed  Google Scholar 

  116. Pollard, T. D. & Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003).

    CAS  PubMed  Google Scholar 

  117. Mouneimne, G. et al. Phospholipase C and cofilin are required for carcinoma cell directionality in response to EGF stimulation. J. Cell Biol. 166, 697–708 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Shao, D., Forge, A., Munro, P. M. & Bailly, M. Arp2/3 complex-mediated actin polymerisation occurs on specific pre-existing networks in cells and requires spatial restriction to sustain functional lamellipod extension. Cell Motil. Cytoskeleton 63, 395–414 (2006).

    CAS  PubMed  Google Scholar 

  119. Wu, C. et al. Arp2/3 is critical for lamellipodia and response to extracellular matrix cues but is dispensable for chemotaxis. Cell 148, 973–987 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. van Rheenen, J., Condeelis, J. & Glogauer, M. A common cofilin activity cycle in invasive tumor cells and inflammatory cells. J. Cell Sci. 122, 305–311 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Lai, F. P. et al. Arp2/3 complex interactions and actin network turnover in lamellipodia. EMBO J. 27, 982–992 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Okreglak, V. & Drubin, D. G. Cofilin recruitment and function during actin-mediated endocytosis dictated by actin nucleotide state. J. Cell Biol. 178, 1251–1264 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Ohashi, K., Kiuchi, T., Shoji, K., Sampei, K. & Mizuno, K. Visualization of cofilin-actin and Ras–Raf interactions by bimolecular fluorescence complementation assays using a new pair of split Venus fragments. Biotechniques 52, 45–50 (2012).

    CAS  PubMed  Google Scholar 

  124. Soderberg, O. et al. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nature Methods 3, 995–1000 (2006).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank members of the Condeelis and Hodgson laboratories for helpful discussions. They apologize to those whose work could not be cited owing to space limitations. The authors' research is funded by grants GM093121 (to L.H. and J.J.B.-C.) and CA150344 (to J.C., R.E. and J.J.B.-C.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jose Javier Bravo-Cordero or John Condeelis.

Ethics declarations

Competing interests

John Condeelis acknowledges a financial interest in MetaStat, Inc. Jose Javier Bravo-Cordero, Marco A. O. Magalhaes, Robert J. Eddy and Louis Hodgson declare no competing financial interests.

Related links

FURTHER INFORMATION

John Condeelis's homepage

PowerPoint slides

Supplementary information

Glossary

Motility cycle

A series of steps that enables cell movement. The first step is the formation of a directional protrusion driven by actin polymerization, followed by adhesion, contractile tension and tail retraction.

Amoeboid cell migration

A common type of motility whereby cells extend actin polymerization-dependent protrusions in the direction of migration.

Chemotaxis

Polarized cell migration in response to extracellular, soluble cues. Chemotaxis is characterized by the directional extension of a locomotory protrusion towards the source of a chemoattractant.

Pointed end

The end of the actin filament that is characterized by a slow growing rate.

Barbed ends

The fast growing ends of actin filaments that are characterized by a fast 'on rate' and high affinity for ATP•G-actin.

Invadopodium

Invasive protrusion that is extended by actin polymerization and is involved in extracellular matrix degradation.

Lamellipodium

A common locomotory protrusion that is extended by actin polymerization.

Histamine degranulation

Release of the pro-inflammatory molecule histamine from intracellular granules.

Crawling cells

Cells that use the motility cycle for locomotion.

Focal adhesion

Macromolecular complexes involved in cell–extracellular matrix interactions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bravo-Cordero, J., Magalhaes, M., Eddy, R. et al. Functions of cofilin in cell locomotion and invasion. Nat Rev Mol Cell Biol 14, 405–415 (2013). https://doi.org/10.1038/nrm3609

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3609

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing