Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular control of the NEMO family of ubiquitin-binding proteins

Key Points

  • NF-κB essential modulator (NEMO) is an integral regulatory component of the canonical IκB kinase (IKK) complex that has key roles in controlling the activation of IKKα and IKKβ by ubiquitin chains and in substrate recognition.

  • NEMO interacts with linear (Met1-linked) ubiquitin dimers through its UBAN (ubiquitin binding in ABIN and NEMO) domain. Disruption of this domain, for example by mutating Asp311 to Asn, prevents its recruitment to Met1-linked ubiquitin chains, reducing the activation of the canonical IKK complex by TGFβ-activated kinase 1 (TAK1) and the phosphorylation of its substrates.

  • Most of the Met1-linked ubiquitin oligomers formed in response to interleukin-1 (IL-1) are attached covalently to Lys63-linked ubiquitin oligomers, which may facilitate the activation of the canonical IKK complex by TAK1.

  • The NEMO–TANK (TRAF-associated NF-κB activator) complex facilitates crosstalk within the IKK family. Disruption of the complex interferes with the ability of the IKK-related kinases to limit the activation of the canonical IKKs, which is an important feedback control mechanism in vivo.

  • By regulating the activation of TANK-binding kinase 1 (TBK1) and IKKɛ, NEMO also controls the activation of the transcription factor IFN regulatory factor 3 (IRF3), which is required for the production of type I interferons.

  • The ubiquitin-binding domain of NEMO is also present in A20-binding inhibitor of NF-κB 1 (ABIN1), ABIN2, ABIN3 and optineurin, and ubiquitin binding to these proteins also regulates key molecular networks in the immune system.

Abstract

Research over the past decade has revealed how NF-κB essential modulator (NEMO; also known as IKKγ) regulates the IKKα–IKKβ signalling axis in the innate immune system. The discovery that NEMO is a polyubiquitin-binding protein and that the IKK complex is modulated by other protein kinases that are themselves controlled by polyubiquitin chains has provided a deeper molecular understanding of the non-degradative roles of ubiquitylation. New mechanistic insights of NEMO and related polyubiquitin-binding proteins have become a paradigm for how the interplay between phosphorylation and ubiquitylation controls cell signalling networks in health and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Colocalization of the TAK1 and canonical IKK complexes on Met1- and Lys63-linked hybrid ubiquitin molecules in response to IL-1.
Figure 2: Negative regulation of the canonical and non-canonical IKK complexes by IKK-related kinases.
Figure 3: Key amino acid residues mediating ubiquitin binding to NEMO and related proteins.

Similar content being viewed by others

References

  1. Rothwarf, D. M., Zandi, E., Natoli, G. & Karin, M. IKK-γ is an essential regulatory subunit of the IκB kinase complex. Nature 395, 297–300 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Yamaoka, S. et al. Complementation cloning of NEMO, a component of the IκB kinase complex essential for NF-κB activation. Cell 93, 1231–1240 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Makris, C. et al. Female mice heterozygous for IKKγ/NEMO deficiencies develop a dermatopathy similar to the human X-linked disorder incontinentia pigmenti. Mol. Cell 5, 969–979 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Schmidt-Supprian, M. et al. NEMO/IKKγ-deficient mice model incontinentia pigmenti. Mol. Cell 5, 981–992 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Rudolph, D. et al. Severe liver degeneration and lack of NF-κB activation in NEMO/IKKγ-deficient mice. Genes Dev. 14, 854–862 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Courtois, G. & Israel, A. IKK regulation and human genetics. Curr. Top. Microbiol. Immunol. 349, 73–95 (2011).

    CAS  PubMed  Google Scholar 

  7. McCool, K. W. & Miyamoto, S. DNA damage-dependent NF-κB activation: NEMO turns nuclear signaling inside out. Immunol. Rev. 246, 311–326 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen, Z. J., Parent, L. & Maniatis, T. Site-specific phosphorylation of IκBα by a novel ubiquitination-dependent protein kinase activity. Cell 84, 853–862 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Lo, Y. C. et al. Structural basis for recognition of diubiquitins by NEMO. Mol. Cell 33, 602–615 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rahighi, S. et al. Specific recognition of linear ubiquitin chains by NEMO is important for NF-κB activation. Cell 136, 1098–1109 (2009). References 9 and 10 provide structural insights into the differential binding of the UBAN domain of NEMO to linear Met1-linked diubiquitin versus Lys63-linked diubiquitin.

    Article  CAS  PubMed  Google Scholar 

  11. Ea, C. K., Deng, L., Xia, Z. P., Pineda, G. & Chen, Z. J. Activation of IKK by TNFα requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol. Cell 22, 245–257 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Wu, C. J., Conze, D. B., Li, T. Srinivasula, S. M. & Ashwell, J. D. Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-κB activation. Nature Cell Biol. 8, 398–406 (2006). References 11 and 12 identify the key role of the polyubiquitin-binding function of NEMO in regulating the activation of the canonical IKK complex in response to inflammatory stimuli.

    Article  CAS  PubMed  Google Scholar 

  13. Heyninck, K., Kreike, M. M. & Beyaert, R. Structure-function analysis of the A20-binding inhibitor of NF-κB activation, ABIN-1. FEBS Lett. 536, 135–140 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Wagner, S. et al. Ubiquitin binding mediates the NF-κB inhibitory potential of ABIN proteins. Oncogene 27, 3739–3745 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Husnjak, K. & Dikic, I. Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu. Rev. Biochem. 81, 291–322 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Kulathu, Y. & Komander, D. Atypical ubiquitylation — the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nature Rev. Mol. Cell. Biol. 13, 508–523 (2012).

    Article  CAS  Google Scholar 

  17. Kensche, T. et al. Analysis of nuclear factor-κB (NF-κB) essential modulator (NEMO) binding to linear and lysine-linked ubiquitin chains and its role in the activation of NF-κB. J. Biol. Chem. 287, 23626–23634 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nanda, S. K. et al. Polyubiquitin binding to ABIN1 is required to prevent autoimmunity. J. Exp. Med. 208, 1215–1228 (2011). Establishes that the polyubiquitin-binding function of ABIN1 is essential to suppress signalling in the innate immune system and prevent autoimmunity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ivins, F. J. et al. NEMO oligomerization and its ubiquitin-binding properties. Biochem. J. 421, 243–251 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Polley, S. et al. A structural basis for IκB kinase 2 activation via oligomerization-dependent trans auto-phosphorylation. PLoS Biol. 11, e1001581 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Windheim, M., Stafford, M., Peggie, M. & Cohen, P. Interleukin-1 (IL-1) induces the Lys63-linked polyubiquitination of IL-1 receptor-associated kinase 1 to facilitate NEMO binding and the activation of IκBα kinase. Mol. Cell. Biol. 28, 1783–1791 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hubeau, M. et al. New mechanism of X-linked anhidrotic ectodermal dysplasia with immunodeficiency: impairment of ubiquitin binding despite normal folding of NEMO protein. Blood 118, 926–935 (2011). Shows that defects in the polyubiquitin-binding function of NEMO block signalling networks in human patients leading to immune disorders.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Doffinger, R. et al. X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-κB signaling. Nature Genet. 27, 277–285 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Shim, J. H. et al. TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes Dev. 19, 2668–2681 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sato, S. et al. Essential function for the kinase TAK1 in innate and adaptive immune responses. Nature Immunol. 6, 1087–1095 (2005).

    Article  CAS  Google Scholar 

  26. Ori, D. et al. Essential roles of K63-linked polyubiquitin-binding proteins TAB2 and TAB3 in B cell activation via MAPKs. J. Immunol. 190, 4037–4045 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Kulathu, Y., Akutsu, M., Bremm, A., Hofmann, K. & Komander, D. Two-sided ubiquitin binding explains specificity of the TAB2 NZF domain. Nature Struct. Mol. Biol. 16, 1328–1330 (2009).

    Article  CAS  Google Scholar 

  28. Kanayama, A. et al. TAB2 and TAB3 activate the NF-κB pathway through binding to polyubiquitin chains. Mol. Cell 15, 535–548 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Wang, C. et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346–351 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Xia, Z. P. et al. Direct activation of protein kinases by unanchored polyubiquitin chains. Nature 461, 114–119 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu, M., Skaug, B., Zeng, W. & Chen, Z. J. A ubiquitin replacement strategy in human cells reveals distinct mechanisms of IKK activation by TNFα and IL-1β. Mol. Cell 36, 302–314 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Emmerich, C. H. et al. Enhanced activation of the canonical IKK complex via the MyD88-dependent formation of Lys63/Met1-linked hybrid ubiquitin chains. Proc. Natl Acad. Sci. USA (in the press). Describes the formation of Lys63- and Met1-linked hybrid ubiquitin chains in response to IL-1 and their potential roles in the IL-1-mediated activation of the canonical IKK complex.

  33. Fukushima, T. et al. Ubiquitin-conjugating enzyme Ubc13 is a critical component of TNF receptor-associated factor (TRAF)-mediated inflammatory responses. Proc. Natl Acad. Sci. USA 104, 6371–6376 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yamamoto, M. et al. Key function for the Ubc13 E2 ubiquitin-conjugating enzyme in immune receptor signaling. Nature Immunol. 7, 962–970 (2006).

    Article  CAS  Google Scholar 

  35. Kirisako, T. et al. A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J. 25, 4877–4887 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gerlach, B. et al. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 471, 591–596 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Ikeda, F. et al. SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis. Nature 471, 637–641 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tokunaga, F. et al. SHARPIN is a component of the NF-κB-activating linear ubiquitin chain assembly complex. Nature 471, 633–636 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Stieglitz, B., Morris-Davies, A. C., Koliopoulos, M. G., Christodoulou, E. & Rittinger, K. LUBAC synthesizes linear ubiquitin chains via a thioester intermediate. EMBO Rep. 13, 840–846 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tokunaga, F. et al. Involvement of linear polyubiquitylation of NEMO in NF-κB activation. Nature Cell Biol. 11, 123–132 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Boisson, B. et al. Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency. Nature Immunol. 13, 1178–1186 (2012).

    Article  CAS  Google Scholar 

  42. Clark, K. et al. Novel cross-talk within the IKK family controls innate immunity. Biochem. J. 434, 93–104 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Delhase, M., Hayakawa, M., Chen, Y. & Karin, M. Positive and negative regulation of IκB kinase activity through IKKβ subunit phosphorylation. Science 284, 309–313 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Walsh, D. A., Perkins, J. P., Brosom, C. O., Ho, E. S. & Kreb, E. G. Catalysis of the phosphorylase kinase activation reaction. J. Biol. Chem. 246, 1968–1976 (1971).

    CAS  PubMed  Google Scholar 

  45. Stegert, M. R., Hergovich, A., Tamaskovic, R., Bichsel, S. J. & Hemmings, B. A. Regulation of NDR protein kinase by hydrophobic motif phosphorylation mediated by the mammalian Ste20-like kinase MST3. Mol. Cell. Biol. 25, 11019–11029 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fleming, Y. et al. Synergistic activation of stress-activated protein kinase 1/c-Jun N-terminal kinase (SAPK1/JNK) isoforms by mitogen-activated protein kinase kinase 4 (MKK4) and MKK7. Biochem. J. 352, 145–154 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bloor, S. et al. Signal processing by its coil zipper domain activates IKKγ. Proc. Natl Acad. Sci. USA 105, 1279–1284 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Grubisha, O. et al. DARPin-assisted crystallography of the CC2-LZ domain of NEMO reveals a coupling between dimerization and ubiquitin binding. J. Mol. Biol. 395, 89–104 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Schrofelbauer, B., Polley, S., Behar, M., Ghosh, G. & Hoffmann, A. NEMO ensures signaling specificity of the pleiotropic IKKβ by directing its kinase activity toward IκBα. Mol. Cell 47, 111–121 (2012). Shows that NEMO also regulates canonical IKKs by functioning as a platform for substrate recognition.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Siggs, O. M. et al. A mutation of Ikbkg causes immune deficiency without impairing degradation of IκBα. Proc. Natl Acad. Sci. USA 107, 3046–3051 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hacker, H. & Karin, M. Regulation and function of IKK and IKK-related kinases. Sci. STKE 2006, re13 (2006).

    Article  PubMed  Google Scholar 

  52. Pomerantz, J. L. & Baltimore, D. NF-κB activation by a signaling complex containing TRAF2, TANK and TBK1, a novel IKK-related kinase. EMBO J. 18, 6694–6704 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ryzhakov, G. & Randow, F. SINTBAD, a novel component of innate antiviral immunity, shares a TBK1-binding domain with NAP1 and TANK. EMBO J. 26, 3180–3190 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fujita, F. et al. Identification of NAP1, a regulatory subunit of IκB kinase-related kinases that potentiates NF-κB signaling. Mol. Cell. Biol. 23, 7780–7793 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Morton, S., Hesson, L., Peggie, M. & Cohen, P. Enhanced binding of TBK1 by an optineurin mutant that causes a familial form of primary open angle glaucoma. FEBS Lett. 582, 997–1002 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Goncalves, A. et al. Functional dissection of the TBK1 molecular network. PLoS ONE 6, e23971 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chariot, A. et al. Association of the adaptor TANK with the IκB kinase (IKK) regulator NEMO connects IKK complexes with IKKɛand TBK1 kinases. J. Biol. Chem. 277, 37029–37036 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Zhao, T. et al. The NEMO adaptor bridges the nuclear factor-κB and interferon regulatory factor signaling pathways. Nature Immunol. 8, 592–600 (2007).

    Article  CAS  Google Scholar 

  59. Clark, K., Takeuchi, O., Akira, S. & Cohen, P. The TRAF-associated protein TANK facilitates cross-talk within the IkB kinase family during Toll-like receptor signaling. Proc. Natl Acad. Sci. USA 108, 17093–17098 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Jin, J. et al. The kinase TBK1 controls IgA class switching by negatively regulating noncanonical NF-κB signaling. Nature Immunol. 13, 1101–1109 (2012).

    Article  CAS  Google Scholar 

  61. Kawagoe, T. et al. TANK is a negative regulator of Toll-like receptor signaling and is critical for the prevention of autoimmune nephritis. Nature Immunol. 10, 965–972 (2009). Describes, together with reference 59, the key role of TANK as a negative regulator of innate immunity by enabling IKK-related kinases to limit the activation of canonical IKKs.

    Article  CAS  Google Scholar 

  62. Fitzgerald, K. A. et al. IKKɛ and TBK1 are essential components of the IRF3 signaling pathway. Nature Immunol. 4, 491–496 (2003).

    Article  CAS  Google Scholar 

  63. Sharma, S. et al. Triggering the interferon antiviral response through an IKK-related pathway. Science 300, 1148–1151 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Zeng, W., Xu, M., Liu, S., Sun, L. & Chen, Z. J. Key role of Ubc5 and lysine-63 polyubiquitination in viral activation of IRF3. Mol. Cell 36, 315–325 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Audry, M. et al. NEMO is a key component of NF-κB- and IRF-3-dependent TLR3-mediated immunity to herpes simplex virus. J. Allergy Clin. Immunol. 128, 610–617 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Herman, M. et al. Heterozygous TBK1 mutations impair TLR3 immunity and underlie herpes simplex encephalitis of childhood. J. Exp. Med. 209, 1567–1582 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gleason, C. E., Ordureau, A., Gourlay, R., Arthur, J. S. & Cohen, P. Polyubiquitin binding to optineurin is required for optimal activation of TANK-binding kinase 1 and production of interferon-β. J. Biol. Chem. 286, 35663–35674 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Belgnaoui, S. M. et al. Linear ubiquitination of NEMO negatively regulates the interferon antiviral response through disruption of the MAVS–TRAF3 complex. Cell Host Microbe 12, 211–222 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Inn, K. S. et al. Linear ubiquitin assembly complex negatively regulates RIG-I- and TRIM25-mediated type I interferon induction. Mol. Cell 41, 354–365 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang, Y. Y., Li, L., Han, K. J., Zhai, Z. & Shu, H. B. A20 is a potent inhibitor of TLR3- and Sendai virus-induced activation of NF-κB and ISRE and IFN-β promoter. FEBS Lett. 576, 86–90 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Saitoh, T. et al. A20 is a negative regulator of IFN regulatory factor 3 signaling. J. Immunol. 174, 1507–1512 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Carter, R. S., Pennington, K. N., Ungurait, B. J. & Ballard, D. W. In vivo identification of inducible phosphoacceptors in the IKKγ/NEMO subunit of human IκB kinase. J. Biol. Chem. 278, 19642–19648 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Palkowitsch, L., Leidner, J., Ghosh, S. & Marienfeld, R. B. Phosphorylation of serine 68 in the IκB kinase (IKK)-binding domain of NEMO interferes with the structure of the IKK complex and tumor necrosis factor-α-induced NF-κB activity. J. Biol. Chem. 283, 76–86 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Prajapati, S. & Gaynor, R. B. Regulation of IκB kinase (IKK)γ/NEMO function by IKKβ-mediated phosphorylation. J. Biol. Chem. 277, 24331–24339 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Schomer-Miller, B., Higashimoto, T., Lee, Y. K. & Zandi, E. Regulation of IκB kinase (IKK) complex by IKKγdependent phosphorylation of the T-loop and C terminus of IKKβ. J. Biol. Chem. 281, 15268–15276 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Ni, C. Y. et al. K63-linked polyubiquitination of NEMO modulates TLR signaling and inflammation in vivo. J. Immunol. 180, 7107–7111 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Lee, E. G. et al. Failure to regulate TNF-induced NF-κB and cell death responses in A20-deficient mice. Science 289, 2350–2354 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Laherty, C. D., Hu, H. M., Opipari, A. W., Wang, F. & Dixit, V. M. The Epstein–Barr virus LMP1 gene product induces A20 zinc finger protein expression by activating nuclear factor κB. J. Biol. Chem. 267, 24157–24160 (1992).

    CAS  PubMed  Google Scholar 

  79. Matmati, M. et al. A20 (TNFAIP3) deficiency in myeloid cells triggers erosive polyarthritis resembling rheumatoid arthritis. Nature Genet. 43, 908–912 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Wertz, I. E. et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. Nature 430, 694–699 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Komander, D. & Barford, D. Structure of the A20 OTU domain and mechanistic insights into deubiquitination. Biochem. J. 409, 77–85 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Evans, P. C. et al. Zinc-finger protein A20, a regulator of inflammation and cell survival, has de-ubiquitinating activity. Biochem. J. 378, 727–734 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Skaug, B. et al. Direct, noncatalytic mechanism of IKK inhibition by A20. Mol. Cell 44, 559–571 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tokunaga, F. et al. Specific recognition of linear polyubiquitin by A20 zinc finger 7 is involved in NF-κB regulation. EMBO J. 31, 3856–3870 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Verhelst, K. et al. A20 inhibits LUBAC-mediated NF-κB activation by binding linear polyubiquitin chains via its zinc finger 7. EMBO J. 31, 3845–3855 (2012). References 83–85 show that A20 directly interferes with NEMO function independently of its DUB activity by binding to polyubiquitin chains.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lu, T. T. et al. Dimerization and ubiquitin mediated recruitment of A20, a complex deubiquitinating enzyme. Immunity 38, 896–905 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Heyninck, K. et al. The zinc finger protein A20 inhibits TNF-induced NF-κB-dependent gene expression by interfering with an RIP- or TRAF2-mediated transactivation signal and directly binds to a novel NF-κB-inhibiting protein ABIN. J. Cell Biol. 145, 1471–1482 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mauro, C. et al. ABIN-1 binds to NEMO/IKKγ and co-operates with A20 in inhibiting NF-κB. J. Biol. Chem. 281, 18482–18488 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Musone, S. L. et al. Multiple polymorphisms in the TNFAIP3 region are independently associated with systemic lupus erythematosus. Nature Genet. 40, 1062–1064 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Adrianto, I. et al. Association of a functional variant downstream of TNFAIP3 with systemic lupus erythematosus. Nature Genet. 43, 253–258 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Gao, L. et al. ABIN1 protein cooperates with TAX1BP1 and A20 proteins to inhibit antiviral signaling. J. Biol. Chem. 286, 36592–36602 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Shembade, N., Ma, A. & Harhaj, E. W. Inhibition of NF-κB signaling by A20 through disruption of ubiquitin enzyme complexes. Science 327, 1135–1139 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Oshima, S. et al. ABIN-1 is a ubiquitin sensor that restricts cell death and sustains embryonic development. Nature 457, 906–909 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Zhou, J. et al. A20-binding inhibitor of NF-κB (ABIN1) controls Toll-like receptor-mediated CCAAT/enhancer-binding protein-β activation and protects from inflammatory disease. Proc. Natl Acad. Sci. USA 108, E998–E1006 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Lang, V. et al. ABIN-2 forms a ternary complex with TPL-2 and NF-κB1 p105 and is essential for TPL-2 protein stability. Mol. Cell. Biol. 24, 5235–5248 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Waterfield, M., Jin, W., Reiley, W., Zhang, M. & Sun, S. C. IκB kinase is an essential component of the Tpl2 signaling pathway. Mol. Cell. Biol. 24, 6040–6048 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yang, H. T. et al. Coordinate regulation of TPL-2 and NF-κB signaling in macrophages by NF-κB1 p105. Mol. Cell. Biol. 32, 3438–3451 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Rousseau, S. et al. TPL2-mediated activation of ERK1 and ERK2 regulates the processing of pre-TNFα in LPS-stimulated macrophages. J. Cell Sci. 121, 149–154 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Papoutsopoulou, S. et al. ABIN-2 is required for optimal activation of Erk MAP kinase in innate immune responses. Nature Immunol. 7, 606–615 (2006).

    Article  CAS  Google Scholar 

  100. Risco, A. et al. p38γ and p38δ kinases regulate the Toll-like receptor 4 (TLR4)-induced cytokine production by controlling ERK1/2 protein kinase pathway activation. Proc. Natl Acad. Sci. USA 109, 11200–11205 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Wullaert, A. et al. LIND/ABIN-3 is a novel lipopolysaccharide-inducible inhibitor of NF-κB activation. J. Biol. Chem. 282, 81–90 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Weaver, B. K., Bohn, E., Judd, B. A., Gil, M. P. & Schreiber, R. D. ABIN-3: a molecular basis for species divergence in IL-10-induced anti-inflammatory actions. Mol. Cell. Biol. 27, 4603–4616 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wild, P. et al. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333, 228–233 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Pilli, M. et al. TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation. Immunity 37, 223–234 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Rubino, E. et al. SQSTM1 mutations in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Neurology 79, 1556–1562 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Laurin, N., Brown, J. P., Morissette, J. & Raymond, V. Recurrent mutation of the gene encoding sequestosome 1 (SQSTM1/p62) in Paget disease of bone. Am. J. Hum. Genet. 70, 1582–1588 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Rezaie, T. et al. Adult-onset primary open-angle glaucoma caused by mutations in optineurin. Science 295, 1077–1079 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Kawase, K. et al. Confirmation of TBK1 duplication in normal tension glaucoma. Exp. Eye Res. 96, 178–180 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Marienfeld, R. B., Palkowitsch, L. & Ghosh, S. Dimerization of the IκB kinase-binding domain of NEMO is required for tumor necrosis factorα-induced NF-κB activity. Mol. Cell. Biol. 26, 9209–9219 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Israel, A. The IKK complex, a central regulator of NF-κB activation. Cold Spring Harb. Perspect. Biol. 2, a000158 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Tegethoff, S., Behlke, J. & Scheidereit, C. Tetrameric oligomerization of IκB kinase-γ (IKKγ) is obligatory for IKK complex activity and NF-κB activation. Mol. Cell. Biol. 23, 2029–2041 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Han, J. W. et al. Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nature Genet. 41, 1234–1237 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Nair, R. P. et al. Psoriasis bench to bedside: genetics meets immunology. Arch. Dermatol. 145, 462–464 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Yang, Q. et al. Investigation of 20 non-HLA (human leucocyte antigen) psoriasis susceptibility loci in Chinese patients with psoriatic arthritis and psoriasis vulgaris. Brit. J. Dermatol. 168, 1060–1065 (2013).

    Article  CAS  Google Scholar 

  115. Gregersen, P. K. et al. Risk for myasthenia gravis maps to a 151Pro → Ala change in TNIP1 and to human leukocyte antigen-B*08. Ann. Neurol. 72, 927–935 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. He, C. F. et al. TNIP1, SLC15A4, ETS1, RasGRP3 and IKZF1 are associated with clinical features of systemic lupus erythematosus in a Chinese Han population. Lupus 19, 1181–1186 (2010).

    Article  PubMed  Google Scholar 

  117. Caster, D. J. et al. Dysfunction of ABIN1 as a genetic basis for lupus nephritis. J. Am. Soc. Nephrol. http://dx.doi.org/10.1681/ASN2013020148 (2013).

  118. Dong, G. et al. A20, ABIN-1/2, and CARD11 mutations and their prognostic value in gastrointestinal diffuse large B-cell lymphoma. Clin. Cancer Res. 17, 1440–1451 (2011).

    Article  CAS  PubMed  Google Scholar 

  119. Maruyama, H. et al. Mutations of optineurin in amyotrophic lateral sclerosis. Nature 465, 223–226 (2010).

    Article  CAS  PubMed  Google Scholar 

  120. Albagha, O. M. et al. Genome-wide association study identifies variants at CSF1, OPTN and TNFRSF11A as genetic risk factors for Paget's disease of bone. Nature Genet. 42, 520–524 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Behrends, C. & Harper, J. W. Constructing and decoding unconventional ubiquitin chains. Nature Struct. Mol. Biol. 18, 520–528 (2011).

    Article  CAS  Google Scholar 

  122. Keusekotten, K. et al. OTULIN antagonizes LUBAC signaling by specifically hydrolyzing Met1-linked polyubiquitin. Cell 153, 1312–1326 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Rivkin, E. et al. The linear ubiquitin-specific deubiquitinase gumby regulates angiogenesis. Nature 498, 318–324 (2013). Identifies, together with reference 122, the first ubiquitin hydrolase specific for cleaving Met1-linked polyubiquitin chains.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sun, S. C. The noncanonical NF-κB pathway. Immunol. Rev. 246, 125–140 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research in the authors' laboratory is supported by a Wellcome Trust Senior Investigator Award (to P.C.) and by the UK Medical Research Council, AstraZeneca, Boehringer Ingelheim, GlaxoSmithKline, Janssen Pharmaceutica, Merck-Serono and Pfizer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Cohen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

UBC13–UEV1A

The E2 conjugating enzyme that directs the formation of Lys63-linked polyubiquitin.

Systemic lupus erythematosus

A chronic and systemic autoimmune disease caused when the immune system attacks healthy tissues, resulting in tissue and organ damage.

Paget's disease

A chronic disease caused by abnormal bone regeneration, leading to the formation of enlarged, weak and brittle bones.

Amyotrophic lateral sclerosis

(ALS). A progressive and fatal motor neuron disorder that affects the function of voluntary muscles, leading to an inability to move, swallow, speak and breathe.

Normal tension glaucoma

A form of glaucoma caused by progressive damage to the optic nerve and associated loss of vision, but without any increase in the intraocular pressure found in other types of glaucoma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clark, K., Nanda, S. & Cohen, P. Molecular control of the NEMO family of ubiquitin-binding proteins. Nat Rev Mol Cell Biol 14, 673–685 (2013). https://doi.org/10.1038/nrm3644

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3644

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing