Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cellular senescence: from physiology to pathology

Key Points

  • Cellular senescence is a process that is mainly designed to eliminate unwanted cells by inducing tissue remodelling.

  • In general, cellular senescence promotes tissue remodelling through three sequential processes: a stable proliferative arrest; a secretory phenotype (SASP) that recruits immune cells and modifies the extracellular matrix; and the mobilization of nearby progenitors that repopulate the tissue. We refer to this sequence of events as the senescence–clearance–regeneration model.

  • During normal embryonic development, cellular senescence contributes to tissue remodelling and morphogenesis by the elimination of transient structures and by regulating the relative abundance of different cell populations.

  • Senescence is also activated upon cellular damage as a defence mechanism. In the case of oncogenic damage, senescence limits tumour progression. Following tissue damage, senescence coordinates tissue remodelling, thereby participating in multiple pathologies, including fibrotic diseases, vascular disorders, obesity, type 2 diabetes, renal diseases and sarcopenia.

  • In these pathologies, cellular senescence usually has antagonistic roles. Initially, it functions to limit the fibrotic response (by inducing senescence in the damaged cells and in the activated fibroblasts), and it also triggers an immune response that clears the damaged cells. However, at advanced pathological stages, senescent cells are not efficiently removed but accumulate and contribute to aggravate the pathological manifestations.

  • Both pro-senescent and antisenescent approaches can be desirable depending on the therapeutic context. Pro-senescent therapies can be useful for cancer treatment and for ongoing tissue repair processes, whereas antisenescent therapies can be beneficial to eliminate the burden of senescent cells associated with stabilized fibrotic scars that accumulate during ageing or chronic damage.

  • Proof of principle for pro-senescent and antisenescent therapies is discussed.

Abstract

Recent discoveries are redefining our view of cellular senescence as a trigger of tissue remodelling that acts during normal embryonic development and upon tissue damage. To achieve this, senescent cells arrest their own proliferation, recruit phagocytic immune cells and promote tissue renewal. This sequence of events — senescence, followed by clearance and then regeneration — may not be efficiently completed in aged tissues or in pathological contexts, thereby resulting in the accumulation of senescent cells. Increasing evidence indicates that both pro-senescent therapies and antisenescent therapies can be beneficial. In cancer and during active tissue repair, pro-senescent therapies contribute to minimize the damage by limiting proliferation and fibrosis, respectively. Conversely, antisenescent therapies may help to eliminate accumulated senescent cells and to recover tissue function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular pathways of senescence.
Figure 2: Location of senescence in development and in adult diseases.
Figure 3: Unified model of senescence.

Similar content being viewed by others

References

  1. Hayflick, L. & Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621 (1961).

    Article  CAS  PubMed  Google Scholar 

  2. Campisi, J. & d'Adda di Fagagna, F. Cellular senescence: when bad things happen to good cells. Nature Rev. Mol. Cell Biol. 8, 729–740 (2007).

    Article  CAS  Google Scholar 

  3. Collado, M., Blasco, M. A. & Serrano, M. Cellular senescence in cancer and aging. Cell 130, 223–233 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Collado, M. & Serrano, M. Senescence in tumours: evidence from mice and humans. Nature Rev. Cancer 10, 51–57 (2010).

    Article  CAS  Google Scholar 

  5. Gorgoulis, V. G. & Halazonetis, T. D. Oncogene-induced senescence: the bright and dark side of the response. Curr. Opin. Cell Biol. 22, 816–827 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. van Deursen, J. M. The role of senescent cells in ageing. Nature 509, 439–446 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kuilman, T., Michaloglou, C., Mooi, W. J. & Peeper, D. S. The essence of senescence. Genes Dev. 24, 2463–2479 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Salama, R., Sadaie, M., Hoare, M. & Narita, M. Cellular senescence and its effector programs. Genes Dev. 28, 99–114 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chicas, A. et al. Dissecting the unique role of the retinoblastoma tumor suppressor during cellular senescence. Cancer Cell 17, 376–387 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Galluzzi, L. et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 19, 107–120 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Harley, C. B., Futcher, A. B. & Greider, C. W. Telomeres shorten during ageing of human fibroblasts. Nature 345, 458–460 (1990).

    Article  CAS  PubMed  Google Scholar 

  12. Parrinello, S. et al. Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nature Cell Biol. 5, 741–747 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Passos, J. F. et al. Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol. Syst. Biol. 6, 347 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Fumagalli, M. et al. Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nature Cell Biol. 14, 355–365 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Kim, W. Y. & Sharpless, N. E. The regulation of INK4/ARF in cancer and aging. Cell 127, 265–275 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Gil, J. & Peters, G. Regulation of the INK4b-ARF-INK4a tumour suppressor locus: all for one or one for all. Nature Rev. Mol. Cell Biol. 7, 667–677 (2006).

    Article  CAS  Google Scholar 

  17. Krishnamurthy, J. et al. Ink4a/Arf expression is a biomarker of aging. J. Clin. Invest. 114, 1299–1307 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jacobs, J. J., Kieboom, K., Marino, S., DePinho, R. A. & van Lohuizen, M. The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397, 164–168 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Bracken, A. P. et al. The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev. 21, 525–530 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Velimezi, G. et al. Functional interplay between the DNA-damage-response kinase ATM and ARF tumour suppressor protein in human cancer. Nature Cell Biol. 15, 967–977 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Evangelou, K. et al. The DNA damage checkpoint precedes activation of ARF in response to escalating oncogenic stress during tumorigenesis. Cell Death Differ. 20, 1485–1497 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Passos, J. F., Simillion, C., Hallinan, J., Wipat, A. & von Zglinicki, T. Cellular senescence: unravelling complexity. Age 31, 353–363 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Debacq-Chainiaux, F., Boilan, E., Dedessus Le Moutier, J., Weemaels, G. & Toussaint, O. p38(MAPK) in the senescence of human and murine fibroblasts. Adv. Exp. Med. Biol. 694, 126–137 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Chen, Q., Fischer, A., Reagan, J. D., Yan, L. J. & Ames, B. N. Oxidative DNA damage and senescence of human diploid fibroblast cells. Proc. Natl Acad. Sci. USA 92, 4337–4341 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee, A. C. et al. Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J. Biol. Chem. 274, 7936–7940 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Macip, S. et al. Inhibition of p21-mediated ROS accumulation can rescue p21-induced senescence. EMBO J. 21, 2180–2188 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sun, P. et al. PRAK is essential for ras-induced senescence and tumor suppression. Cell 128, 295–308 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Alimonti, A. et al. A novel type of cellular senescence that can be enhanced in mouse models and human tumor xenografts to suppress prostate tumorigenesis. J. Clin. Invest. 120, 681–693 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Courtois-Cox, S. et al. A negative feedback signaling network underlies oncogene-induced senescence. Cancer Cell 10, 459–472 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Young, A. P. et al. VHL loss actuates a HIF-independent senescence programme mediated by Rb and p400. Nature Cell Biol. 10, 361–369 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Bartkova, J. et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444, 633–637 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Di Micco, R. et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444, 638–642 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Efeyan, A. & Serrano, M. p53: guardian of the genome and policeman of the oncogenes. Cell Cycle 6, 1006–1010 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Halazonetis, T. D., Gorgoulis, V. G. & Bartek, J. An oncogene-induced DNA damage model for cancer development. Science 319, 1352–1355 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Evan, G. I. & d'Adda di Fagagna, F. Cellular senescence: hot or what? Curr. Opin. Genet. Dev. 19, 25–31 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Campisi, J. Aging, cellular senescence, and cancer. Annu. Rev. Physiol. 75, 685–705 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Coppe, J. P., Desprez, P. Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99–118 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kuilman, T. & Peeper, D. S. Senescence-messaging secretome: SMS-ing cellular stress. Nature Rev. Cancer 9, 81–94 (2009).

    Article  CAS  Google Scholar 

  40. Acosta, J. C. et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133, 1006–1018 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Coppe, J. P. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6, 2853–2868 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Kuilman, T. et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133, 1019–1031 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Xue, W. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656–660 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hoenicke, L. & Zender, L. Immune surveillance of senescent cells—biological significance in cancer- and non-cancer pathologies. Carcinogenesis 33, 1123–1126 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Acosta, J. C. et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nature Cell Biol. 15, 978–990 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Nelson, G. et al. A senescent cell bystander effect: senescence-induced senescence. Aging Cell 11, 345–349 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Hubackova, S., Krejcikova, K., Bartek, J. & Hodny, Z. IL1- and TGFβ-Nox4 signaling, oxidative stress and DNA damage response are shared features of replicative, oncogene-induced, and drug-induced paracrine 'bystander senescence'. Aging 4, 932–951 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Munoz-Espin, D. et al. Programmed cell senescence during mammalian embryonic development. Cell 155, 1104–1118 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Storer, M. et al. Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155, 1119–1130 (2013). References 48 and 49 report for the first time that senescence is a biological process during embryogenesis, which participates in morphogenesis and tissue remodelling.

    Article  CAS  PubMed  Google Scholar 

  50. Nacher, V. et al. The quail mesonephros: a new model for renal senescence? J. Vasc. Res. 43, 581–586 (2006).

    Article  PubMed  Google Scholar 

  51. Huang, T. & Rivera-Perez, J. A. Senescence-associated beta-galactosidase activity marks the visceral endoderm of mouse embryos but is not indicative of senescence. Genesis 52, 300–308 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kang, T. W. et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479, 547–551 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Fuchs, Y. & Steller, H. Programmed cell death in animal development and disease. Cell 147, 742–758 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lindsten, T. et al. The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol. Cell 6, 1389–1399 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ren, D. et al. BID, BIM, and PUMA are essential for activation of the BAX- and BAK-dependent cell death program. Science 330, 1390–1393 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Besancenot, R. et al. A senescence-like cell-cycle arrest occurs during megakaryocytic maturation: implications for physiological and pathological megakaryocytic proliferation. PLoS Biol. 8, e1000476 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Chuprin, A. et al. Cell fusion induced by ERVWE1 or measles virus causes cellular senescence. Genes Dev. 27, 2356–2366 (2013). Shows, together with reference 56, that senescence occurs in physiological processes in adult organisms, particularly, in megakaryocytes and in placental syncytiotrophoblasts. Suggests that senescence could be a general outcome of polyploidization.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ullah, Z., Lee, C. Y., Lilly, M. A. & DePamphilis, M. L. Developmentally programmed endoreduplication in animals. Cell Cycle 8, 1501–1509 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Kopp, H. G., Hooper, A. T., Shmelkov, S. V. & Rafii, S. β-galactosidase staining on bone marrow. The osteoclast pitfall. Histol. Histopathol. 22, 971–976 (2007).

    CAS  PubMed  Google Scholar 

  60. Ventura, A. et al. Restoration of p53 function leads to tumour regression in vivo. Nature 445, 661–665 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Michaud, K. et al. Pharmacologic inhibition of cyclin-dependent kinases 4 and 6 arrests the growth of glioblastoma multiforme intracranial xenografts. Cancer Res. 70, 3228–3238 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Thangavel, C. et al. Therapeutically activating RB: reestablishing cell cycle control in endocrine therapy-resistant breast cancer. Endocr. Relat. Cancer 18, 333–345 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rader, J. et al. Dual CDK4/CDK6 inhibition induces cell-cycle arrest and senescence in neuroblastoma. Clin. Cancer Res. 19, 6173–6182 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Leonard, J. P. et al. Selective CDK4/6 inhibition with tumor responses by PD0332991 in patients with mantle cell lymphoma. Blood 119, 4597–4607 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Guha, M. Blockbuster dreams for Pfizer's CDK inhibitor. Nature Biotech. 31, 187 (2013).

    Article  CAS  Google Scholar 

  66. Dickson, M. A. et al. Phase II trial of the CDK4 inhibitor PD0332991 in patients with advanced CDK4-amplified well-differentiated or dedifferentiated liposarcoma. J. Clin. Oncol. 31, 2024–2028 (2013). Demonstrates, together with references 64 and 65, clinical activity of pro-senescent chemotherapy against various cancers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sun, Y. et al. Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nature Med. 18, 1359–1368 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Wiemann, S. U. et al. Hepatocyte telomere shortening and senescence are general markers of human liver cirrhosis. FASEB J. 16, 935–942 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Krizhanovsky, V. et al. Senescence of activated stellate cells limits liver fibrosis. Cell 134, 657–667 (2008). Demonstrates, for the first time, the role of senescence in limiting a fibrotic disease, in this case, chemically-induced liver fibrosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Borkham-Kamphorst, E. et al. The anti-fibrotic effects of CCN1/CYR61 in primary portal myofibroblasts are mediated through induction of reactive oxygen species resulting in cellular senescence, apoptosis and attenuated TGF-beta signaling. Biochim. Biophys. Acta 1843, 902–914 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Kim, K. H., Chen, C. C., Monzon, R. I. & Lau, L. F. Matricellular protein CCN1 promotes regression of liver fibrosis through induction of cellular senescence in hepatic myofibroblasts. Mol. Cell. Biol. 33, 2078–2090 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wolstein, J. M. et al. INK4a knockout mice exhibit increased fibrosis under normal conditions and in response to unilateral ureteral obstruction. Am. J. Physiol. Renal Physiol. 299, F1486–1495 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ramakrishna, G. et al. Role of cellular senescence in hepatic wound healing and carcinogenesis. Eur. J. Cell Biol. 91, 739–747 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Kong, X. et al. Interleukin-22 induces hepatic stellate cell senescence and restricts liver fibrosis in mice. Hepatology 56, 1150–1159 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Klein, S. et al. Atorvastatin inhibits proliferation and apoptosis, but induces senescence in hepatic myofibroblasts and thereby attenuates hepatic fibrosis in rats. Lab Invest. 92, 1440–1450 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Jun, J. I. & Lau, L. F. The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nature Cell Biol. 12, 676–685 (2010). Demonstrates, in an elegant and compelling manner, the role of senescence in limiting fibrosis in skin wound healing. Shows the pivotal role of CCN1 in converting wound-activated fibroblasts into senescent fibroblasts.

    Article  CAS  PubMed  Google Scholar 

  77. Jun, J. I. & Lau, L. F. Cellular senescence controls fibrosis in wound healing. Aging 2, 627–631 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pitiyage, G. N. et al. Senescent mesenchymal cells accumulate in human fibrosis by a telomere-independent mechanism and ameliorate fibrosis through matrix metalloproteinases. J. Pathol. 223, 604–617 (2011).

    Article  PubMed  Google Scholar 

  79. Naesens, M. Replicative senescence in kidney aging, renal disease, and renal transplantation. Discov. Med. 11, 65–75 (2011).

    PubMed  Google Scholar 

  80. Joosten, S. A. et al. Telomere shortening and cellular senescence in a model of chronic renal allograft rejection. Am. J. Pathol. 162, 1305–1312 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Melk, A. Senescence of renal cells: molecular basis and clinical implications. Nephrol. Dial Transplant 18, 2474–2478 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Ding, G. et al. Tubular cell senescence and expression of TGF-β1 and p21(WAF1/CIP1) in tubulointerstitial fibrosis of aging rats. Exp. Mol. Pathol. 70, 43–53 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Liu, J. et al. Accelerated senescence of renal tubular epithelial cells is associated with disease progression of patients with immunoglobulin A (IgA) nephropathy. Transl. Res. 159, 454–463 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Verzola, D. et al. Accelerated senescence in the kidneys of patients with type 2 diabetic nephropathy. Am. J. Physiol. Renal Physiol. 295, F1563–1573 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Westhoff, J. H. et al. Hypertension induces somatic cellular senescence in rats and humans by induction of cell cycle inhibitor p16INK4a. Hypertension 52, 123–129 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Clements, M. E., Chaber, C. J., Ledbetter, S. R. & Zuk, A. Increased cellular senescence and vascular rarefaction exacerbate the progression of kidney fibrosis in aged mice following transient ischemic injury. PLoS ONE 8, e70464 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dirocco, D. et al. CDK4/6 inhibition induces epithelial cell cycle arrest and ameliorates acute kidney injury. Am. J. Physiol. Renal Physiol. 306, F379–388 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Braun, H. et al. Cellular senescence limits regenerative capacity and allograft survival. J. Am. Soc. Nephrol. 23, 1467–1473 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhu, F. et al. Senescent cardiac fibroblast is critical for cardiac fibrosis after myocardial infarction. PLoS ONE 8, e74535 (2013). Demonstrates the role of senescence in limiting cardiac fibrosis after myocardial infarction and the detrimental effect of loss of p53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Erusalimsky, J. D. Vascular endothelial senescence: from mechanisms to pathophysiology. J. Appl. Physiol. 106, 326–332 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Fyhrquist, F., Saijonmaa, O. & Strandberg, T. The roles of senescence and telomere shortening in cardiovascular disease. Nature Rev. Cardiol 10, 274–283 (2013).

    Article  CAS  Google Scholar 

  92. Wang, J. C. & Bennett, M. Aging and atherosclerosis: mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circ. Res. 111, 245–259 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Minamino, T. et al. Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction. Circulation 105, 1541–1544 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Holdt, L. M. et al. Expression of Chr9p21 genes CDKN2B (p15INK4b), CDKN2A (p16INK4a, 14ARF) and MTAP in human atherosclerotic plaque. Atherosclerosis 214, 264–270 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Ihling, C. et al. Topographical association between the cyclin-dependent kinases inhibitor P21, p53 accumulation, and cellular proliferation in human atherosclerotic tissue. Arterioscler Thromb. Vasc. Biol. 17, 2218–2224 (1997).

    Article  CAS  PubMed  Google Scholar 

  96. Gonzalez-Navarro, H. et al. p19ARF deficiency reduces macrophage and vascular smooth muscle cell apoptosis and aggravates atherosclerosis. J. Am. Coll. Cardiol 55, 2258–2268 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Mercer, J., Figg, N., Stoneman, V., Braganza, D. & Bennett, M. R. Endogenous p53 protects vascular smooth muscle cells from apoptosis and reduces atherosclerosis in ApoE knockout mice. Circ. Res. 96, 667–674 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Mercer, J. & Bennett, M. The role of p53 in atherosclerosis. Cell Cycle 5, 1907–1909 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Khanna, A. K. Enhanced susceptibility of cyclin kinase inhibitor p21 knockout mice to high fat diet induced atherosclerosis. J. Biomed. Sci. 16, 66 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Diez-Juan, A. & Andres, V. The growth suppressor p27Kip1 protects against diet-induced atherosclerosis. FASEB J. 15, 1989–1995 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Sanz-Gonzalez, S. M. et al. Increased p53 gene dosage reduces neointimal thickening induced by mechanical injury but has no effect on native atherosclerosis. Cardiovasc. Res. 75, 803–812 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Hayashi, T. et al. Endothelial cellular senescence is inhibited by liver X receptor activation with an additional mechanism for its atheroprotection in diabetes. Proc. Natl Acad. Sci. USA 111, 1168–1173 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sharpless, N. E. & DePinho, R. A. How stem cells age and why this makes us grow old. Nature Rev. Mol. Cell Biol. 8, 703–713 (2007).

    Article  CAS  Google Scholar 

  104. Jeck, W. R., Siebold, A. P. & Sharpless, N. E. Review: a meta-analysis of GWAS and age-associated diseases. Aging Cell 11, 727–731 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Liu, Y. et al. INK4/ARF transcript expression is associated with chromosome 9p21 variants linked to atherosclerosis. PLoS ONE 4, e5027 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Visel, A. et al. Targeted deletion of the 9p21 non-coding coronary artery disease risk interval in mice. Nature 464, 409–412 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kuo, C. L. et al. Cdkn2a is an atherosclerosis modifier locus that regulates monocyte/macrophage proliferation. Arterioscler Thromb. Vasc. Biol. 31, 2483–2492 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Noureddine, H. et al. Pulmonary artery smooth muscle cell senescence is a pathogenic mechanism for pulmonary hypertension in chronic lung disease. Circ. Res. 109, 543–553 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mizuno, S. et al. p53 Gene deficiency promotes hypoxia-induced pulmonary hypertension and vascular remodeling in mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 300, L753–761 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Mouraret, N. et al. Activation of lung p53 by Nutlin-3a prevents and reverses experimental pulmonary hypertension. Circulation 127, 1664–1676 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Geiger, H., de Haan, G. & Florian, M. C. The ageing haematopoietic stem cell compartment. Nature Rev. Immunol. 13, 376–389 (2013).

    Article  CAS  Google Scholar 

  112. Alder, J. K. et al. Short telomeres are a risk factor for idiopathic pulmonary fibrosis. Proc. Natl Acad. Sci. USA 105, 13051–13056 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Armanios, M. Y. et al. Telomerase mutations in families with idiopathic pulmonary fibrosis. N. Engl. J. Med. 356, 1317–1326 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Chilosi, M., Carloni, A., Rossi, A. & Poletti, V. Premature lung aging and cellular senescence in the pathogenesis of idiopathic pulmonary fibrosis and COPD/emphysema. Transl. Res. 162, 156–173 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Aoshiba, K., Tsuji, T. & Nagai, A. Bleomycin induces cellular senescence in alveolar epithelial cells. Eur. Respir. J. 22, 436–443 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Aoshiba, K. et al. Senescence-associated secretory phenotype in a mouse model of bleomycin-induced lung injury. Exp. Toxicol. Pathol. 65, 1053–1062 (2013).

    Article  CAS  PubMed  Google Scholar 

  117. Minagawa, S. et al. Accelerated epithelial cell senescence in IPF and the inhibitory role of SIRT6 in TGF-β-induced senescence of human bronchial epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 300, L391–401 (2011).

    Article  CAS  PubMed  Google Scholar 

  118. Hecker, L. et al. Reversal of persistent fibrosis in aging by targeting nox4-nrf2 redox imbalance. Sci. Transl Med. 6, 231ra47 (2014). Shows that senescence aggravates lung fibrosis through a mechanism that involves NOX4-mediated ROS. Reports the proof of principle that chemical inhibitors of NOX4 can revert lung fibrosis in mice.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Shivshankar, P. et al. Caveolin-1 deficiency protects from pulmonary fibrosis by modulating epithelial cell senescence in mice. Am. J. Respir. Cell. Mol. Biol. 47, 28–36 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lv, X. X. et al. Rupatadine protects against pulmonary fibrosis by attenuating PAF-mediated senescence in rodents. PLoS ONE 8, e68631 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Gregor, M. F. & Hotamisligil, G. S. Inflammatory mechanisms in obesity. Annu. Rev. Immunol. 29, 415–445 (2011).

    Article  CAS  PubMed  Google Scholar 

  122. Minamino, T. et al. A crucial role for adipose tissue p53 in the regulation of insulin resistance. Nature Med. 15, 1082–1087 (2009). Reports on the role of senescence in the adipose tissue and its detrimental effects on metabolism.

    Article  CAS  PubMed  Google Scholar 

  123. Tchkonia, T. et al. Fat tissue, aging, and cellular senescence. Aging Cell 9, 667–684 (2010).

    Article  CAS  PubMed  Google Scholar 

  124. Markowski, D. N. et al. HMGA2 expression in white adipose tissue linking cellular senescence with diabetes. Genes Nutr. 8, 449–456 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Baker, D. J. et al. Opposing roles for p16Ink4a and p19Arf in senescence and ageing caused by BubR1 insufficiency. Nature Cell Biol. 10, 825–836 (2008).

    Article  CAS  PubMed  Google Scholar 

  126. Baker, D. J. et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479, 232–236 (2011). Demonstrates, for the first time, the beneficial effects of senescent cell removal from a progeroid mouse model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Donath, M. Y., Dalmas, E., Sauter, N. S. & Boni-Schnetzler, M. Inflammation in obesity and diabetes: islet dysfunction and therapeutic opportunity. Cell. Metab. 17, 860–872 (2013).

    Article  CAS  PubMed  Google Scholar 

  128. Sone, H. & Kagawa, Y. Pancreatic β cell senescence contributes to the pathogenesis of type 2 diabetes in high-fat diet-induced diabetic mice. Diabetologia 48, 58–67 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Wang, Z., Moro, E., Kovacs, K., Yu, R. & Melmed, S. Pituitary tumor transforming gene-null male mice exhibit impaired pancreatic beta cell proliferation and diabetes. Proc. Natl Acad. Sci. USA 100, 3428–3432 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Chesnokova, V. et al. Diminished pancreatic β-cell mass in securin-null mice is caused by β-cell apoptosis and senescence. Endocrinology 150, 2603–2610 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Campaner, S. et al. Cdk2 suppresses cellular senescence induced by the c-myc oncogene. Nature Cell Biol. 12, 54–59 (2010).

    Article  CAS  PubMed  Google Scholar 

  132. Tavana, O., Puebla-Osorio, N., Sang, M. & Zhu, C. Absence of p53-dependent apoptosis combined with nonhomologous end-joining deficiency leads to a severe diabetic phenotype in mice. Diabetes 59, 135–142 (2010).

    Article  CAS  PubMed  Google Scholar 

  133. Tavana, O. & Zhu, C. Too many breaks (brakes): pancreatic β-cell senescence leads to diabetes. Cell Cycle 10, 2471–2484 (2011).

    Article  CAS  PubMed  Google Scholar 

  134. Doria, A., Patti, M. E. & Kahn, C. R. The emerging genetic architecture of type 2 diabetes. Cell. Metab. 8, 186–200 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Krishnamurthy, J. et al. p16INK4a induces an age-dependent decline in islet regenerative potential. Nature 443, 453–457 (2006).

    Article  CAS  PubMed  Google Scholar 

  136. Gonzalez-Navarro, H. et al. Increased dosage of Ink4/Arf protects against glucose intolerance and insulin resistance associated with aging. Aging Cell 12, 102–111 (2013).

    Article  CAS  PubMed  Google Scholar 

  137. Sousa-Victor, P. et al. Geriatric muscle stem cells switch reversible quiescence into senescence. Nature 506, 316–321 (2014).

    Article  CAS  PubMed  Google Scholar 

  138. Cosgrove, B. D. et al. Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nature Med. 20, 255–264 (2014).

    Article  CAS  PubMed  Google Scholar 

  139. Du, J. et al. Aging increases CCN1 expression leading to muscle senescence. Am. J. Physiol. Cell Physiol. 306, C28–36 (2014).

    Article  CAS  PubMed  Google Scholar 

  140. Bernet, J. D. et al. p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nature Med. 20, 265–271 (2014). Shows, together with references 137–139, that muscle stem cells undergo senescence with ageing, and reversal of senescence rescues their regenerative potential.

    Article  CAS  PubMed  Google Scholar 

  141. Iglesias-Bartolome, R. et al. mTOR inhibition prevents epithelial stem cell senescence and protects from radiation-induced mucositis. Cell Stem Cell 11, 401–414 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wei, H. et al. Changes and function of circulating endothelial progenitor cells in patients with cerebral aneurysm. J. Neurosci. Res. 89, 1822–1828 (2011).

    Article  CAS  PubMed  Google Scholar 

  143. Fukazawa, R. et al. Coronary artery aneurysm induced by Kawasaki disease in children show features typical senescence. Circ. J. 71, 709–715 (2007).

    Article  PubMed  Google Scholar 

  144. Yasuno, K. et al. Genome-wide association study of intracranial aneurysm identifies three new risk loci. Nature Genet. 42, 420–425 (2010).

    Article  CAS  PubMed  Google Scholar 

  145. Golledge, J. & Kuivaniemi, H. Genetics of abdominal aortic aneurysm. Curr. Opin. Cardiol 28, 290–296 (2013).

    Article  PubMed  Google Scholar 

  146. Liton, P. B. et al. Cellular senescence in the glaucomatous outflow pathway. Exp. Gerontol. 40, 745–748 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Ozel, A. B. et al. Genome-wide association study and meta-analysis of intraocular pressure. Hum. Genet. 133, 41–57 (2014).

    Article  CAS  PubMed  Google Scholar 

  148. Ng, S. K., Casson, R. J., Burdon, K. P. & Craig, J. E. Chromosome 9p21 primary open-angle glaucoma susceptibility locus: a review. Clin. Experiment Ophthalmol. 42, 25–32 (2014).

    Article  PubMed  Google Scholar 

  149. Bhat, R. et al. Astrocyte senescence as a component of Alzheimer's disease. PLoS ONE 7, e45069 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Chinta, S. J. et al. Environmental stress, ageing and glial cell senescence: a novel mechanistic link to Parkinson's disease? J. Intern. Med. 273, 429–436 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Hamshere, M. L. et al. Genome-wide linkage analysis of 723 affected relative pairs with late-onset Alzheimer's disease. Hum. Mol. Genet. 16, 2703–2712 (2007).

    Article  CAS  PubMed  Google Scholar 

  152. Zuchner, S. et al. Linkage and association study of late-onset Alzheimer disease families linked to 9p21.3. Ann. Hum. Genet. 72, 725–731 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Fischer, B. M. et al. Increased expression of senescence markers in cystic fibrosis airways. Am. J. Physiol. Lung Cell. Mol. Physiol. 304, L394–400 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Sohn, J. J. et al. Macrophages, nitric oxide and microRNAs are associated with DNA damage response pathway and senescence in inflammatory bowel disease. PLoS ONE 7, e44156 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Martin, J. A., Brown, T. D., Heiner, A. D. & Buckwalter, J. A. Chondrocyte senescence, joint loading and osteoarthritis. Clin. Orthop. Relat. Res. 427, S96–103 (2004).

    Article  Google Scholar 

  156. Price, J. S. et al. The role of chondrocyte senescence in osteoarthritis. Aging Cell 1, 57–65 (2002).

    Article  CAS  PubMed  Google Scholar 

  157. Roberts, S., Evans, E. H., Kletsas, D., Jaffray, D. C. & Eisenstein, S. M. Senescence in human intervertebral discs. Eur. Spine J. 15 (Suppl. 3), S312–316 (2006).

    Article  PubMed  Google Scholar 

  158. Le Maitre, C. L., Freemont, A. J. & Hoyland, J. A. Accelerated cellular senescence in degenerate intervertebral discs: a possible role in the pathogenesis of intervertebral disc degeneration. Arthritis Res. Ther. 9, R45 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Mishima, K. et al. Senescence-associated β-galactosidase histochemistry for the primate eye. Invest. Ophthalmol. Vis. Sci. 40, 1590–1593 (1999).

    CAS  PubMed  Google Scholar 

  160. Zhu, D., Wu, J., Spee, C., Ryan, S. J. & Hinton, D. R. BMP4 mediates oxidative stress-induced retinal pigment epithelial cell senescence and is overexpressed in age-related macular degeneration. J. Biol. Chem. 284, 9529–9539 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Salazar, L. M. & Herrera, A. M. Fibrotic response of tissue remodeling in COPD. Lung 189, 101–109 (2011).

    Article  PubMed  Google Scholar 

  162. Tsuji, T., Aoshiba, K. & Nagai, A. Cigarette smoke induces senescence in alveolar epithelial cells. Am. J. Respir. Cell. Mol. Biol. 31, 643–649 (2004).

    Article  CAS  PubMed  Google Scholar 

  163. Tsuji, T., Aoshiba, K. & Nagai, A. Alveolar cell senescence exacerbates pulmonary inflammation in patients with chronic obstructive pulmonary disease. Respiration 80, 59–70 (2010).

    Article  PubMed  Google Scholar 

  164. Fitzner, B. et al. Senescence determines the fate of activated rat pancreatic stellate cells. J. Cell. Mol. Med. 16, 2620–2630 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Michaloglou, C. et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436, 720–724 (2005).

    Article  CAS  PubMed  Google Scholar 

  166. Nardella, C., Clohessy, J. G., Alimonti, A. & Pandolfi, P. P. Pro-senescence therapy for cancer treatment. Nature Rev. Cancer 11, 503–511 (2011).

    Article  CAS  Google Scholar 

  167. Collado, M. & Serrano, M. The power and the promise of oncogene-induced senescence markers. Nature Rev. Cancer 6, 472–476 (2006).

    Article  CAS  Google Scholar 

  168. Dimri, G. P. et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl Acad. Sci. USA 92, 9363–9367 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Kurz, D. J., Decary, S., Hong, Y. & Erusalimsky, J. D. Senescence-associated β-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J. Cell Sci. 113, 3613–3622 (2000).

    CAS  PubMed  Google Scholar 

  170. Young, A. R. et al. Autophagy mediates the mitotic senescence transition. Genes Dev. 23, 798–803 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Georgakopoulou, E. A. et al. Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues. Aging 5, 37–50 (2013).

    Article  CAS  PubMed  Google Scholar 

  172. Narita, M. et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113, 703–716 (2003).

    Article  CAS  PubMed  Google Scholar 

  173. Zhang, R. et al. Formation of MacroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. Dev. Cell 8, 19–30 (2005).

    Article  CAS  PubMed  Google Scholar 

  174. Di Micco, R. et al. Interplay between oncogene-induced DNA damage response and heterochromatin in senescence and cancer. Nature Cell Biol. 13, 292–302 (2011).

    Article  CAS  PubMed  Google Scholar 

  175. Scaffidi, P. & Misteli, T. Lamin A-dependent nuclear defects in human aging. Science 312, 1059–1063 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Collado, M. et al. Tumour biology: senescence in premalignant tumours. Nature 436, 642 (2005).

    Article  CAS  PubMed  Google Scholar 

  177. Shimi, T. et al. The role of nuclear lamin B1 in cell proliferation and senescence. Genes Dev. 25, 2579–2593 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Freund, A., Laberge, R. M., Demaria, M. & Campisi, J. Lamin B1 loss is a senescence-associated biomarker. Mol. Biol. Cell 23, 2066–2075 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Herbig, U., Ferreira, M., Condel, L., Carey, D. & Sedivy, J. M. Cellular senescence in aging primates. Science 311, 1257 (2006).

    Article  CAS  PubMed  Google Scholar 

  180. Wang, C. et al. DNA damage response and cellular senescence in tissues of aging mice. Aging Cell 8, 311–323 (2009).

    Article  CAS  PubMed  Google Scholar 

  181. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Freund, A., Orjalo, A. V., Desprez, P. Y. & Campisi, J. Inflammatory networks during cellular senescence: causes and consequences. Trends Mol. Med. 16, 238–246 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Naylor, R. M., Baker, D. J. & van Deursen, J. M. Senescent cells: a novel therapeutic target for aging and age-related diseases. Clin. Pharmacol. Ther. 93, 105–116 (2013).

    Article  CAS  PubMed  Google Scholar 

  184. Campisi, J. Aging, tumor suppression and cancer: high wire-act! Mech. Ageing Dev. 126, 51–58 (2005).

    Article  CAS  PubMed  Google Scholar 

  185. Rajagopalan, S. & Long, E. O. Cellular senescence induced by CD158d reprograms natural killer cells to promote vascular remodeling. Proc. Natl Acad. Sci. USA 109, 20596–20601 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Dorr, J. R. et al. Synthetic lethal metabolic targeting of cellular senescence in cancer therapy. Nature 501, 421–425 (2013).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

D.M.-E. has been funded by the Juan de la Cierva Programme. Work in the laboratory of M.S. is funded by the Spanish National Cancer Research Centre (CNIO), by grants from the European Research Council (Advanced ERC Grant), the Framework Programme 7 of the European Union (RISK-IR), the Spanish Ministry of Economy (SAF), the Regional Government of Madrid, the Botín Foundation, the Ramón Areces Foundation and the AXA Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Serrano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Paracrine

Refers to a mode of signalling in which the cell responding to a signalling molecule is near the cell secreting the molecule.

Autocrine

Activation of cellular receptors by ligands produced by the same cell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muñoz-Espín, D., Serrano, M. Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol 15, 482–496 (2014). https://doi.org/10.1038/nrm3823

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3823

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer