Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bidirectional cargo transport: moving beyond tug of war

Key Points

  • Diverse intracellular cargos are transported along microtubules by the actions of kinesin and dynein molecular motors.

  • The 'tug-of-war' model describes bidirectional movement as a mechanical competition between kinesins and dyneins. This model is supported by both theoretical and experimental studies.

  • There are several studies in which inhibiting one motor was found to suppress transport in both directions, contrary to predictions from the tug-of-war model. This phenomenon is termed the 'paradox of co-dependence' of antagonistic motors.

  • Three hypothetical mechanisms are proposed to reconcile this paradox: microtubule tethering, mechanical activation and steric disinhibition. Each makes specific predictions regarding directional switching and the nature of the pause states.

  • A more complete understanding of bidirectional transport will require mathematical modelling to both frame the best experiments and interpret quantitative data. The three hypothetical mechanisms, and other potential mechanisms, can be incorporated into a common modelling framework.

Abstract

Vesicles, organelles and other intracellular cargo are transported by kinesin and dynein motors, which move in opposite directions along microtubules. This bidirectional cargo movement is frequently described as a 'tug of war' between oppositely directed molecular motors attached to the same cargo. However, although many experimental and modelling studies support the tug-of-war paradigm, numerous knockout and inhibition studies in various systems have found that inhibiting one motor leads to diminished motility in both directions, which is a 'paradox of co-dependence' that challenges the paradigm. In an effort to resolve this paradox, three classes of bidirectional transport models — microtubule tethering, mechanical activation and steric disinhibition — are proposed, and a general mathematical modelling framework for bidirectional cargo transport is put forward to guide future experiments.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Three classes of bidirectional transport in cells.
Figure 2: The tug-of-war model.
Figure 3: Different mechanisms for the pause state.
Figure 4: Examples of antagonistic motor co-dependence.
Figure 5: Three hypothetical mechanisms for resolving the paradox of co-dependence.
Figure 6: Mathematical modelling framework for bidirectional transport models.

Similar content being viewed by others

References

  1. Hirokawa, N., Niwa, S. & Tanaka, Y. Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron 68, 610–638 (2010).

    CAS  PubMed  Google Scholar 

  2. Hirokawa, N., Noda, Y., Tanaka, Y. & Niwa, S. Kinesin superfamily motor proteins and intracellular transport. Nature Rev. Mol. Cell Biol. 10, 682–696 (2009).

    CAS  Google Scholar 

  3. Rogers, S. L., Tint, I. S., Fanapour, P. C. & Gelfand, V. I. Regulated bidirectional motility of melanophore pigment granules along microtubules in vitro. Proc. Natl Acad. Sci. USA 94, 3720–3725 (1997).

    CAS  PubMed  Google Scholar 

  4. Gross, S. P. et al. Interactions and regulation of molecular motors in Xenopus melanophores. J. Cell Biol. 156, 855–865 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Ma, S. & Chisholm, R. L. Cytoplasmic dynein-associated structures move bidirectionally in vivo. J. Cell Sci. 115, 1453–1460 (2002).

    CAS  PubMed  Google Scholar 

  6. Ligon, L. A., Tokito, M., Finklestein, J. M., Grossman, F. E. & Holzbaur, E. L. A direct interaction between cytoplasmic dynein and kinesin I may coordinate motor activity. J. Biol. Chem. 279, 19201–19208 (2004).

    CAS  PubMed  Google Scholar 

  7. Hendricks, A. G. et al. Motor coordination via a tug-of-war mechanism drives bidirectional vesicle transport. Curr. Biol. 20, 697–702 (2010). Analyses vesicle transport both in cells and in vitro , estimates motor numbers and evaluates results using the Müller tug-of-war model.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Encalada, S. E., Szpankowski, L., Xia, C. H. & Goldstein, L. S. Stable kinesin and dynein assemblies drive the axonal transport of mammalian prion protein vesicles. Cell 144, 551–565 (2011). Shows that inhibiting kinesin diminishes retrograde transport and inhibiting dynein reduces anterograde transport during vesicle transport in axons, which supports the paradox of co-dependence.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. van Spronsen, M. et al. TRAK/Milton motor-adaptor proteins steer mitochondrial trafficking to axons and dendrites. Neuron 77, 485–502 (2013).

    CAS  PubMed  Google Scholar 

  10. Gross, S. P. Dynactin: coordinating motors with opposite inclinations. Curr. Biol. 13, R320–R322 (2003).

    CAS  PubMed  Google Scholar 

  11. Welte, M. A. Bidirectional transport along microtubules. Curr. Biol. 14, R525–R537 (2004).

    CAS  PubMed  Google Scholar 

  12. Ally, S., Larson, A. G., Barlan, K., Rice, S. E. & Gelfand, V. I. Opposite-polarity motors activate one another to trigger cargo transport in live cells. J. Cell Biol. 187, 1071–1082 (2009). Reports that inhibition of kinesin or dynein suppresses the overall transport of peroxisomes in D. melanogaster S2 cells. Also shows that transport can be rescued by different motors having the same directionality.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. De Vos, K. J., Grierson, A. J., Ackerley, S. & Miller, C. C. Role of axonal transport in neurodegenerative diseases. Annu. Rev. Neurosci. 31, 151–173 (2008).

    CAS  PubMed  Google Scholar 

  14. Chevalier-Larsen, E. & Holzbaur, E. L. Axonal transport and neurodegenerative disease. Biochim. Biophys. Acta 1762, 1094–1108 (2006).

    CAS  PubMed  Google Scholar 

  15. Bilsland, L. G. et al. Deficits in axonal transport precede ALS symptoms in vivo. Proc. Natl Acad. Sci. USA 107, 20523–20528 (2010).

    CAS  PubMed  Google Scholar 

  16. Morfini, G. A. et al. Pathogenic huntingtin inhibits fast axonal transport by activating JNK3 and phosphorylating kinesin. Nature Neurosci. 12, 864–871 (2009).

    CAS  PubMed  Google Scholar 

  17. Strom, A. L. et al. Retrograde axonal transport and motor neuron disease. J. Neurochem. 106, 495–505 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Perlson, E. et al. A switch in retrograde signaling from survival to stress in rapid-onset neurodegeneration. J. Neurosci. 29, 9903–9917 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Gross, S. P. Hither and yon: a review of bi-directional microtubule-based transport. Phys. Biol. 1, R1–R11 (2004).

    CAS  PubMed  Google Scholar 

  20. Hollenbeck, P. J. & Saxton, W. M. The axonal transport of mitochondria. J. Cell Sci. 118, 5411–5419 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Soldati, T. & Schliwa, M. Powering membrane traffic in endocytosis and recycling. Nature Rev. Mol. Cell Biol. 7, 897–908 (2006).

    CAS  Google Scholar 

  22. Saxton, W. M. & Hollenbeck, P. J. The axonal transport of mitochondria. J. Cell Sci. 125, 2095–2104 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Welte, M. A. Fat on the move: intracellular motion of lipid droplets. Biochem. Soc. Trans. 37, 991–996 (2009).

    CAS  PubMed  Google Scholar 

  24. Maeder, C. I., Shen, K. & Hoogenraad, C. C. Axon and dendritic trafficking. Curr. Opin. Neurobiol. 27C, 165–170 (2014).

  25. Bowman, A. B. et al. Kinesin-dependent axonal transport is mediated by the sunday driver (SYD) protein. Cell 103, 583–594 (2000).

    CAS  PubMed  Google Scholar 

  26. Berg, E. A. et al. Isolation and characterization of substance P-containing dense core vesicles from rabbit optic nerve and termini. J. Neurosci. Res. 62, 830–839 (2000).

    CAS  PubMed  Google Scholar 

  27. Barkus, R. V., Klyachko, O., Horiuchi, D., Dickson, B. J. & Saxton, W. M. Identification of an axonal kinesin-3 motor for fast anterograde vesicle transport that facilitates retrograde transport of neuropeptides. Mol. Biol. Cell 19, 274–283 (2008). Shows in D. melanogaster neurons that the inhibition of the kinesin-3 family motor Unc-104 inhibits both anterograde and retrograde transport of dense core vesicles, which supports the paradox of co-dependence.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Rosa-Ferreira, C. & Munro, S. Arl8 and SKIP act together to link lysosomes to kinesin-1. Dev. Cell 21, 1171–1178 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Maday, S., Wallace, K. E. & Holzbaur, E. L. Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons. J. Cell Biol. 196, 407–417 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kamal, A., Stokin, G. B., Yang, Z., Xia, C. H. & Goldstein, L. S. Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I. Neuron 28, 449–459 (2000).

    CAS  PubMed  Google Scholar 

  31. Fu, M. M. & Holzbaur, E. L. JIP1 regulates the directionality of APP axonal transport by coordinating kinesin and dynein motors. J. Cell Biol. 202, 495–508 (2013). Suggests that in mammalian neurons JIP1 acts as a scaffold that tethers kinesin and dynein to cargo and regulates their activity in a phosphorylation-dependent manner.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Almenar-Queralt, A. et al. UV irradiation accelerates amyloid precursor protein (APP) processing and disrupts APP axonal transport. J. Neurosci. 34, 3320–3339 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Deacon, S. W. et al. Dynactin is required for bidirectional organelle transport. J. Cell Biol. 160, 297–301 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Levi, V., Serpinskaya, A. S., Gratton, E. & Gelfand, V. Organelle transport along microtubules in Xenopus melanophores: evidence for cooperation between multiple motors. Biophys. J. 90, 318–327 (2006).

    CAS  PubMed  Google Scholar 

  35. Reilein, A. R., Tint, I. S., Peunova, N. I., Enikolopov, G. N. & Gelfand, V. I. Regulation of organelle movement in melanophores by protein kinase A (PKA), protein kinase C (PKC), and protein phosphatase 2A (PP2A). J. Cell Biol. 142, 803–813 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Rogers, S. L. & Gelfand, V. I. Myosin cooperates with microtubule motors during organelle transport in melanophores. Curr. Biol. 8, 161–164 (1998).

    CAS  PubMed  Google Scholar 

  37. Rogers, S. L. et al. Regulation of melanosome movement in the cell cycle by reversible association with myosin V. J. Cell Biol. 146, 1265–1276 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Rogers, S. L., Tint, I. S. & Gelfand, V. I. In vitro motility assay for melanophore pigment organelles. Methods Enzymol. 298, 361–372 (1998).

    CAS  PubMed  Google Scholar 

  39. Tuma, M. C., Zill, A., Le Bot, N., Vernos, I. & Gelfand, V. Heterotrimeric kinesin II is the microtubule motor protein responsible for pigment dispersion in Xenopus melanophores. J. Cell Biol. 143, 1547–1558 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kural, C. et al. Kinesin and dynein move a peroxisome in vivo: a tug-of-war or coordinated movement? Science 308, 1469–1472 (2005).

    CAS  PubMed  Google Scholar 

  41. Tanaka, Y. et al. Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Cell 93, 1147–1158 (1998).

    CAS  PubMed  Google Scholar 

  42. Pilling, A. D., Horiuchi, D., Lively, C. M. & Saxton, W. M. Kinesin-1 and Dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons. Mol. Biol. Cell 17, 2057–2068 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Barak, P., Rai, A., Rai, P. & Mallik, R. Quantitative optical trapping on single organelles in cell extract. Nature Methods 10, 68–70 (2013).

    CAS  PubMed  Google Scholar 

  44. Gross, S. P., Guo, Y., Martinez, J. E. & Welte, M. A. A determinant for directionality of organelle transport in Drosophila embryos. Curr. Biol. 13, 1660–1668 (2003).

    CAS  PubMed  Google Scholar 

  45. Gross, S. P., Welte, M. A., Block, S. M. & Wieschaus, E. F. Dynein-mediated cargo transport in vivo. A switch controls travel distance. J. Cell Biol. 148, 945–956 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Gross, S. P., Welte, M. A., Block, S. M. & Wieschaus, E. F. Coordination of opposite-polarity microtubule motors. J. Cell Biol. 156, 715–724 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Shubeita, G. T. et al. Consequences of motor copy number on the intracellular transport of kinesin-1-driven lipid droplets. Cell 135, 1098–1107 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Welte, M. A., Gross, S. P., Postner, M., Block, S. M. & Wieschaus, E. F. Developmental regulation of vesicle transport in Drosophila embryos: forces and kinetics. Cell 92, 547–557 (1998). This study of lipid droplet transport is the first to describe bidirectional cargo transport along microtubules as a tug of war, but it argues that data are more consistent with a coordination model.

    CAS  PubMed  Google Scholar 

  49. Welte, M. A. et al. Regulation of lipid-droplet transport by the perilipin homolog LSD2. Curr. Biol. 15, 1266–1275 (2005).

    CAS  PubMed  Google Scholar 

  50. Kozminski, K. G., Johnson, K. A., Forscher, P. & Rosenbaum, J. L. A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc. Natl Acad. Sci. USA 90, 5519–5523 (1993).

    CAS  PubMed  Google Scholar 

  51. Nonaka, S. et al. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95, 829–837 (1998).

    CAS  PubMed  Google Scholar 

  52. Cole, D. G. et al. Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. J. Cell Biol. 141, 993–1008 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Pazour, G. J., Wilkerson, C. G. & Witman, G. B. A dynein light chain is essential for the retrograde particle movement of intraflagellar transport (IFT). J. Cell Biol. 141, 979–992 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Pazour, G. J. et al. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J. Cell Biol. 151, 709–718 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Marszalek, J. R. & Goldstein, L. S. Understanding the functions of kinesin-II. Biochim. Biophys. Acta 1496, 142–150 (2000).

    CAS  PubMed  Google Scholar 

  56. Deane, J. A., Cole, D. G., Seeley, E. S., Diener, D. R. & Rosenbaum, J. L. Localization of intraflagellar transport protein IFT52 identifies basal body transitional fibers as the docking site for IFT particles. Curr. Biol. 11, 1586–1590 (2001).

    CAS  PubMed  Google Scholar 

  57. Mikami, A. et al. Molecular structure of cytoplasmic dynein 2 and its distribution in neuronal and ciliated cells. J. Cell Sci. 115, 4801–4808 (2002).

    CAS  PubMed  Google Scholar 

  58. Scholey, J. M. Intraflagellar transport. Annu. Rev. Cell Dev. Biol. 19, 423–443 (2003).

    CAS  PubMed  Google Scholar 

  59. Pan, X. et al. Mechanism of transport of IFT particles in C. elegans cilia by the concerted action of kinesin-II and OSM-3 motors. J. Cell Biol. 174, 1035–1045 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Snow, J. J. et al. Two anterograde intraflagellar transport motors cooperate to build sensory cilia on C. elegans neurons. Nature Cell Biol. 6, 1109–1113 (2004).

    CAS  PubMed  Google Scholar 

  61. Iomini, C., Babaev-Khaimov, V., Sassaroli, M. & Piperno, G. Protein particles in Chlamydomonas flagella undergo a transport cycle consisting of four phases. J. Cell Biol. 153, 13–24 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Schnitzer, M. J., Visscher, K. & Block, S. M. Force production by single kinesin motors. Nature Cell Biol. 2, 718–723 (2000).

    CAS  PubMed  Google Scholar 

  63. Tomishige, M., Klopfenstein, D. R. & Vale, R. D. Conversion of Unc104/KIF1A kinesin into a processive motor after dimerization. Science 297, 2263–2267 (2002).

    CAS  PubMed  Google Scholar 

  64. Okada, Y., Higuchi, H. & Hirokawa, N. Processivity of the single-headed kinesin KIF1A through biased binding to tubulin. Nature 424, 574–577 (2003).

    CAS  PubMed  Google Scholar 

  65. Carter, N. J. & Cross, R. A. Mechanics of the kinesin step. Nature 435, 308–312 (2005).

    CAS  PubMed  Google Scholar 

  66. Cai, D., McEwen, D. P., Martens, J. R., Meyhofer, E. & Verhey, K. J. Single molecule imaging reveals differences in microtubule track selection between Kinesin motors. PLoS Biol. 7, e1000216 (2009).

    PubMed  PubMed Central  Google Scholar 

  67. Schroeder, H. W. et al. Force-dependent detachment of kinesin-2 biases track switching at cytoskeletal filament intersections. Biophys. J. 103, 48–58 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Andreasson, J. O. L. Single-molecule biophysics of kinesin family motor proteins. Thesis, Stanford Univ. (2013).

    Google Scholar 

  69. Niclas, J., Allan, V. J. & Vale, R. D. Cell cycle regulation of dynein association with membranes modulates microtubule-based organelle transport. J. Cell Biol. 133, 585–593 (1996).

    CAS  PubMed  Google Scholar 

  70. Reilein, A. R., Rogers, S. L., Tuma, M. C. & Gelfand, V. I. Regulation of molecular motor proteins. Int. Rev. Cytol. 204, 179–238 (2001).

    CAS  PubMed  Google Scholar 

  71. Kamal, A. & Goldstein, L. S. Principles of cargo attachment to cytoplasmic motor proteins. Curr. Opin. Cell Biol. 14, 63–68 (2002).

    CAS  PubMed  Google Scholar 

  72. Bekker, J. M. et al. Direct interaction of Gas11 with microtubules: implications for the dynein regulatory complex. Cell. Motil. Cytoskeleton 64, 461–473 (2007).

    CAS  PubMed  Google Scholar 

  73. Dixit, R., Ross, J. L., Goldman, Y. E. & Holzbaur, E. L. Differential regulation of dynein and kinesin motor proteins by tau. Science 319, 1086–1089 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kardon, J. R. & Vale, R. D. Regulators of the cytoplasmic dynein motor. Nature Rev. Mol. Cell Biol. 10, 854–865 (2009).

    CAS  Google Scholar 

  75. McKenney, R. J., Vershinin, M., Kunwar, A., Vallee, R. B. & Gross, S. P. LIS1 and NudE induce a persistent dynein force-producing state. Cell 141, 304–314 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Lam, C., Vergnolle, M. A., Thorpe, L., Woodman, P. G. & Allan, V. J. Functional interplay between LIS1, NDE1 and NDEL1 in dynein-dependent organelle positioning. J. Cell Sci. 123, 202–212 (2010).

    CAS  PubMed  Google Scholar 

  77. Yi, J. Y. et al. High-resolution imaging reveals indirect coordination of opposite motors and a role for LIS1 in high-load axonal transport. J. Cell Biol. 195, 193–201 (2011). Reports that acute inhibition of dynein results in rapid anterograde transport, consistent with the tug-of-war model, but over time both anterograde and retrograde motility diminishes.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Markus, S. M., Kalutkiewicz, K. A. & Lee, W. L. She1-mediated inhibition of dynein motility along astral microtubules promotes polarized spindle movements. Curr. Biol. 22, 2221–2230 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Egan, M. J., Tan, K. & Reck-Peterson, S. L. Lis1 is an initiation factor for dynein-driven organelle transport. J. Cell Biol. 197, 971–982 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Huang, J., Roberts, A. J., Leschziner, A. E. & Reck-Peterson, S. L. Lis1 acts as a “clutch” between the ATPase and microtubule-binding domains of the dynein motor. Cell 150, 975–986 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Segal, M. et al. Ndel1-derived peptides modulate bidirectional transport of injected beads in the squid giant axon. Biol. Open 1, 220–231 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Rieder, C. L. & Salmon, E. D. Motile kinetochores and polar ejection forces dictate chromosome position on the vertebrate mitotic spindle. J. Cell Biol. 124, 223–233 (1994).

    CAS  PubMed  Google Scholar 

  83. Vale, R. D., Malik, F. & Brown, D. Directional instability of microtubule transport in the presence of kinesin and dynein, two opposite polarity motor proteins. J. Cell Biol. 119, 1589–1596 (1992).

    CAS  PubMed  Google Scholar 

  84. Müller, M. J., Klumpp, S. & Lipowsky, R. Tug-of-war as a cooperative mechanism for bidirectional cargo transport by molecular motors. Proc. Natl Acad. Sci. USA 105, 4609–4614 (2008). Describes the widely used quantitative tug-of-war model.

    PubMed  Google Scholar 

  85. Derr, N. D. et al. Tug-of-war in motor protein ensembles revealed with a programmable DNA origami scaffold. Science 338, 662–665 (2012).

    CAS  PubMed  Google Scholar 

  86. Jamison, D. K., Driver, J. W. & Diehl, M. R. Cooperative responses of multiple kinesins to variable and constant loads. J. Biol. Chem. 287, 3357–3365 (2011).

    PubMed  PubMed Central  Google Scholar 

  87. Jamison, D. K., Driver, J. W., Rogers, A. R., Constantinou, P. E. & Diehl, M. R. Two kinesins transport cargo primarily via the action of one motor: implications for intracellular transport. Biophys. J. 99, 2967–2977 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Klumpp, S. & Lipowsky, R. Cooperative cargo transport by several molecular motors. Proc. Natl Acad. Sci. USA 102, 17284–17289 (2005).

    CAS  PubMed  Google Scholar 

  89. Rogers, A. R., Driver, J. W., Constantinou, P. E., Kenneth Jamison, D. & Diehl, M. R. Negative interference dominates collective transport of kinesin motors in the absence of load. Phys. Chem. Chem. Phys. 11, 4882–4889 (2009).

    CAS  PubMed  Google Scholar 

  90. Soppina, V., Rai, A. K., Ramaiya, A. J., Barak, P. & Mallik, R. Tug-of-war between dissimilar teams of microtubule motors regulates transport and fission of endosomes. Proc. Natl Acad. Sci. USA 106, 19381–19386 (2009). Shows that moving endosomes slow down before switching direction and that during directional switching cargos are elongated, which supports the tug-of-war model.

    CAS  PubMed  Google Scholar 

  91. Müller, M. J., Klumpp, S. & Lipowsky, R. Bidirectional transport by molecular motors: enhanced processivity and response to external forces. Biophys. J. 98, 2610–2618 (2010).

    PubMed  PubMed Central  Google Scholar 

  92. Gennerich, A. & Schild, D. Finite-particle tracking reveals submicroscopic-size changes of mitochondria during transport in mitral cell dendrites. Phys. Biol. 3, 45–53 (2006).

    CAS  PubMed  Google Scholar 

  93. Blehm, B. H., Schroer, T. A., Trybus, K. M., Chemla, Y. R. & Selvin, P. R. In vivo optical trapping indicates kinesin's stall force is reduced by dynein during intracellular transport. Proc. Natl Acad. Sci. USA 110, 3381–3386 (2013).

    CAS  PubMed  Google Scholar 

  94. Bell, G. I. Models for the specific adhesion of cells to cells. Science 200, 618–627 (1978).

    CAS  PubMed  Google Scholar 

  95. Evans, E. Probing the relation between force–lifetime–and chemistry in single molecular bonds. Annu. Rev. Biophys. Biomol. Struct. 30, 105–128 (2001).

    CAS  PubMed  Google Scholar 

  96. Kunwar, A. et al. Mechanical stochastic tug-of-war models cannot explain bidirectional lipid-droplet transport. Proc. Natl Acad. Sci. USA 108, 18960–18965 (2011). Expands many features of the Müller tug-of-war model using experimental and computational modelling data of lipid droplet transport, and finds that the model is unable to account for experimental data.

    CAS  PubMed  Google Scholar 

  97. Rai, A. K., Rai, A., Ramaiya, A. J., Jha, R. & Mallik, R. Molecular adaptations allow dynein to generate large collective forces inside cells. Cell 152, 172–182 (2013).

    CAS  PubMed  Google Scholar 

  98. Schnitzer, M. J. & Block, S. M. Kinesin hydrolyses one ATP per 8-nm step. Nature 388, 386–390 (1997).

    CAS  PubMed  Google Scholar 

  99. Constantinou, P. E. & Diehl, M. R. The mechanochemistry of integrated motor protein complexes. J. Biomech. 43, 31–37 (2010).

    PubMed  Google Scholar 

  100. Driver, J. W. et al. Productive cooperation among processive motors depends inversely on their mechanochemical efficiency. Biophys. J. 101, 386–395 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Driver, J. W. et al. Coupling between motor proteins determines dynamic behaviors of motor protein assemblies. Phys. Chem. Chem. Phys. 12, 10398–10405 (2010).

    CAS  PubMed  Google Scholar 

  102. Kunwar, A. & Mogilner, A. Robust transport by multiple motors with nonlinear force-velocity relations and stochastic load sharing. Phys. Biol. 7, 16012 (2010).

    PubMed  PubMed Central  Google Scholar 

  103. Kunwar, A., Vershinin, M., Xu, J. & Gross, S. P. Stepping, strain gating, and an unexpected force-velocity curve for multiple-motor-based transport. Curr. Biol. 18, 1173–1183 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Mallik, R., Rai, A. K., Barak, P., Rai, A. & Kunwar, A. Teamwork in microtubule motors. Trends Cell Biol. 23, 575–582 (2013).

    CAS  PubMed  Google Scholar 

  105. Reis, G. F. et al. Molecular motor function in axonal transport in vivo probed by genetic and computational analysis in Drosophila. Mol. Biol. Cell 23, 1700–1714 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Moughamian, A. J. & Holzbaur, E. L. Dynactin is required for transport initiation from the distal axon. Neuron 74, 331–343 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Kapitein, L. C. et al. Probing intracellular motor protein activity using an inducible cargo trafficking assay. Biophys. J. 99, 2143–2152 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Caviston, J. P., Zajac, A. L., Tokito, M. & Holzbaur, E. L. Huntingtin coordinates the dynein-mediated dynamic positioning of endosomes and lysosomes. Mol. Biol. Cell 22, 478–492 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Goldberg, D. J. Microinjection into an identified axon to study the mechanism of fast axonal transport. Proc. Natl Acad. Sci. USA 79, 4818–4822 (1982).

    CAS  PubMed  Google Scholar 

  110. Brady, S. T. & Pfister, K. K. Kinesin interactions with membrane bounded organelles in vivo and in vitro. J. Cell Sci. Suppl. 14, 103–108 (1991).

    CAS  PubMed  Google Scholar 

  111. Waterman-Storer, C. M. et al. The interaction between cytoplasmic dynein and dynactin is required for fast axonal transport. Proc. Natl Acad. Sci. USA 94, 12180–12185 (1997).

    CAS  PubMed  Google Scholar 

  112. Martin, M. et al. Cytoplasmic dynein, the dynactin complex, and kinesin are interdependent and essential for fast axonal transport. Mol. Biol. Cell 10, 3717–3728 (1999). Demonstrates that the inhibition of D. melanogaster p150 inhibits both anterograde and retrograde transport, suggesting a paradox of co-dependence.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Daire, V. et al. Kinesin-1 regulates microtubule dynamics via a c-Jun N-terminal kinase-dependent mechanism. J. Biol. Chem. 284, 31992–32001 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Haghnia, M. et al. Dynactin is required for coordinated bidirectional motility, but not for dynein membrane attachment. Mol. Biol. Cell 18, 2081–2089 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Wang, X. & Schwarz, T. L. The mechanism of Ca2+-dependent regulation of kinesin-mediated mitochondrial motility. Cell 136, 163–174 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Uchida, A., Alami, N. H. & Brown, A. Tight functional coupling of kinesin-1A and dynein motors in the bidirectional transport of neurofilaments. Mol. Biol. Cell 20, 4997–5006 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Ling, S. C., Fahrner, P. S., Greenough, W. T. & Gelfand, V. I. Transport of Drosophila fragile X mental retardation protein-containing ribonucleoprotein granules by kinesin-1 and cytoplasmic dynein. Proc. Natl Acad. Sci. USA 101, 17428–17433 (2004).

    CAS  PubMed  Google Scholar 

  118. Platt, J. R. Strong inference: certain systematic methods of scientific thinking may produce much more rapid progress than others. Science 146, 347–353 (1964).

    CAS  PubMed  Google Scholar 

  119. Beard, D. A. & Kushmerick, M. J. Strong inference for systems biology. PLoS Comput. Biol. 5, e1000459 (2009).

    PubMed  PubMed Central  Google Scholar 

  120. Shastry, S. & Hancock, W. O. Neck linker length determines the degree of processivity in Kinesin-1 and Kinesin-2 motors. Curr. Biol. 20, 939–943 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Cooper, J. R., Wagenbach, M., Asbury, C. L. & Wordeman, L. Catalysis of the microtubule on-rate is the major parameter regulating the depolymerase activity of MCAK. Nature Struct. Mol. Biol. 17, 77–82 (2010).

    CAS  Google Scholar 

  122. Cooper, J. R. & Wordeman, L. The diffusive interaction of microtubule binding proteins. Curr. Opin. Cell Biol. 21, 68–73 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Halford, S. E. An end to 40 years of mistakes in DNA-protein association kinetics? Biochem. Soc. Trans. 37, 343–348 (2009).

    CAS  PubMed  Google Scholar 

  124. Okada, Y. & Hirokawa, N. A processive single-headed motor: kinesin superfamily protein KIF1A. Science 283, 1152–1157 (1999).

    CAS  PubMed  Google Scholar 

  125. Okada, Y. & Hirokawa, N. Mechanism of the single-headed processivity: diffusional anchoring between the K-loop of kinesin and the C terminus of tubulin. Proc. Natl Acad. Sci. USA 97, 640–645 (2000).

    CAS  PubMed  Google Scholar 

  126. Klopfenstein, D. R., Tomishige, M., Stuurman, N. & Vale, R. D. Role of phosphatidylinositol(4,5)bisphosphate organization in membrane transport by the Unc104 kinesin motor. Cell 109, 347–358 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Hammond, J. W. et al. Mammalian Kinesin-3 motors are dimeric in vivo and move by processive motility upon release of autoinhibition. PLoS Biol. 7, e72 (2009).

    PubMed  Google Scholar 

  128. Kapitein, L. C. et al. Microtubule cross-linking triggers the directional motility of kinesin-5. J. Cell Biol. 182, 421–428 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Lu, H., Ali, M. Y., Bookwalter, C. S., Warshaw, D. M. & Trybus, K. M. Diffusive movement of processive kinesin-1 on microtubules. Traffic 10, 1429–1438 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Culver-Hanlon, T. L., Lex, S. A., Stephens, A. D., Quintyne, N. J. & King, S. J. A microtubule-binding domain in dynactin increases dynein processivity by skating along microtubules. Nature Cell Biol. 8, 264–270 (2006).

    CAS  PubMed  Google Scholar 

  131. Kawaguchi, K., Uemura, S. & Ishiwata, S. Equilibrium and transition between single- and double-headed binding of kinesin as revealed by single-molecule mechanics. Biophys. J. 84, 1103–1113 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Uemura, S. & Ishiwata, S. Loading direction regulates the affinity of ADP for kinesin. Nature Struct. Biol. 10, 308–311 (2003).

    CAS  PubMed  Google Scholar 

  133. Uemura, S. et al. Kinesin-microtubule binding depends on both nucleotide state and loading direction. Proc. Natl Acad. Sci. USA 99, 5977–5981 (2002).

    CAS  PubMed  Google Scholar 

  134. Coy, D. L., Hancock, W. O., Wagenbach, M. & Howard, J. Kinesin's tail domain is an inhibitory regulator of the motor domain. Nature Cell Biol. 1, 288–292 (1999).

    CAS  PubMed  Google Scholar 

  135. Hackney, D. D., Levitt, J. D. & Suhan, J. Kinesin undergoes a 9 S to 6 S conformational transition. J. Biol. Chem. 267, 8696–8701 (1992).

    CAS  PubMed  Google Scholar 

  136. Hackney, D. D. & Stock, M. F. Kinesin's IAK tail domain inhibits initial microtubule-stimulated ADP release. Nature Cell Biol. 2, 257–260 (2000).

    CAS  PubMed  Google Scholar 

  137. Stock, M. F. et al. Formation of the compact confomer of kinesin requires a COOH-terminal heavy chain domain and inhibits microtubule-stimulated ATPase activity. J. Biol. Chem. 274, 14617–14623 (1999).

    CAS  PubMed  Google Scholar 

  138. Friedman, D. S. & Vale, R. D. Single-molecule analysis of kinesin motility reveals regulation by the cargo-binding tail domain. Nature Cell Biol. 1, 293–297 (1999).

    CAS  PubMed  Google Scholar 

  139. Hammond, J. W., Blasius, T. L., Soppina, V., Cai, D. & Verhey, K. J. Autoinhibition of the kinesin-2 motor KIF17 via dual intramolecular mechanisms. J. Cell Biol. 189, 1013–1025 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Espeut, J. et al. Phosphorylation relieves autoinhibition of the kinetochore motor Cenp-E. Mol. Cell 29, 637–643 (2008).

    CAS  PubMed  Google Scholar 

  141. Kaan, H. Y., Hackney, D. D. & Kozielski, F. The structure of the kinesin-1 motor-tail complex reveals the mechanism of autoinhibition. Science 333, 883–885 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Blasius, T. L., Cai, D., Jih, G. T., Toret, C. P. & Verhey, K. J. Two binding partners cooperate to activate the molecular motor Kinesin-1. J. Cell Biol. 176, 11–17 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Yamada, K. H., Hanada, T. & Chishti, A. H. The effector domain of human Dlg tumor suppressor acts as a switch that relieves autoinhibition of kinesin-3 motor GAKIN/KIF13B. Biochemistry 46, 10039–10045 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Cho, C., Reck-Peterson, S. L. & Vale, R. D. Regulatory ATPase sites of cytoplasmic dynein affect processivity and force generation. J. Biol. Chem. 283, 25839–25845 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Schwarz, T. L. Mitochondrial trafficking in neurons. Cold Spring Harb. Perspect. Biol. 5, a011304 (2013).

    PubMed  PubMed Central  Google Scholar 

  146. Macaskill, A. F. et al. Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron 61, 541–555 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Rodionov, V., Yi, J., Kashina, A., Oladipo, A. & Gross, S. P. Switching between microtubule- and actin-based transport systems in melanophores is controlled by cAMP levels. Curr. Biol. 13, 1837–1847 (2003).

    CAS  PubMed  Google Scholar 

  148. Rodionov, V. I., Hope, A. J., Svitkina, T. M. & Borisy, G. G. Functional coordination of microtubule-based and actin-based motility in melanophores. Curr. Biol. 8, 165–168 (1998).

    CAS  PubMed  Google Scholar 

  149. Zajac, A. L., Goldman, Y. E., Holzbaur, E. L. & Ostap, E. M. Local cytoskeletal and organelle interactions impact molecular-motor-driven early endosomal trafficking. Curr. Biol. 23, 1173–1180 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Ali, M. Y. et al. Myosin Va maneuvers through actin intersections and diffuses along microtubules. Proc. Natl Acad. Sci. USA 104, 4332–4336 (2007).

    CAS  PubMed  Google Scholar 

  151. Ali, M. Y., Lu, H., Bookwalter, C. S., Warshaw, D. M. & Trybus, K. M. Myosin V and Kinesin act as tethers to enhance each others' processivity. Proc. Natl Acad. Sci. USA 105, 4691–4696 (2008).

    CAS  PubMed  Google Scholar 

  152. Ross, J. L., Ali, M. Y. & Warshaw, D. M. Cargo transport: molecular motors navigate a complex cytoskeleton. Curr. Opin. Cell Biol. 20, 41–47 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Caviston, J. P., Ross, J. L., Antony, S. M., Tokito, M. & Holzbaur, E. L. Huntingtin facilitates dynein/dynactin-mediated vesicle transport. Proc. Natl Acad. Sci. USA 104, 10045–10050 (2007).

    CAS  PubMed  Google Scholar 

  154. Colin, E. et al. Huntingtin phosphorylation acts as a molecular switch for anterograde/retrograde transport in neurons. EMBO J. 27, 2124–2134 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Caviston, J. P. & Holzbaur, E. L. Huntingtin as an essential integrator of intracellular vesicular trafficking. Trends Cell Biol. 19, 147–155 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Verhey, K. J. et al. Cargo of kinesin identified as JIP scaffolding proteins and associated signaling molecules. J. Cell Biol. 152, 959–970 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Horiuchi, D., Barkus, R. V., Pilling, A. D., Gassman, A. & Saxton, W. M. APLIP1, a kinesin binding JIP-1/JNK scaffold protein, influences the axonal transport of both vesicles and mitochondria in Drosophila. Curr. Biol. 15, 2137–2141 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Horiuchi, D. et al. Control of a kinesin-cargo linkage mechanism by JNK pathway kinases. Curr. Biol. 17, 1313–1317 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. DeBerg, H. A. et al. Motor domain phosphorylation modulates kinesin-1 transport. J. Biol. Chem. 288, 32612–32621 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Chang, L., Jones, Y., Ellisman, M. H., Goldstein, L. S. & Karin, M. JNK1 is required for maintenance of neuronal microtubules and controls phosphorylation of microtubule-associated proteins. Dev. Cell 4, 521–533 (2003).

    CAS  PubMed  Google Scholar 

  161. Tararuk, T. et al. JNK1 phosphorylation of SCG10 determines microtubule dynamics and axodendritic length. J. Cell Biol. 173, 265–277 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Stone, M. C., Nguyen, M. M., Tao, J., Allender, D. L. & Rolls, M. M. Global up-regulation of microtubule dynamics and polarity reversal during regeneration of an axon from a dendrite. Mol. Biol. Cell 21, 767–777 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Chen, L., Stone, M. C., Tao, J. & Rolls, M. M. Axon injury and stress trigger a microtubule-based neuroprotective pathway. Proc. Natl Acad. Sci. USA 109, 11842–11847 (2012).

    CAS  PubMed  Google Scholar 

  164. Gillespie, D. T. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977).

    CAS  Google Scholar 

Download references

Acknowledgements

The hypothetical models defined here were developed and refined during discussions with J. Fricks, P. Kramer and S. McKinley. D. Arginteanu provided assistance with figures and members of the Hancock laboratory provided helpful comments. W.O.H. is supported by the US National Institutes of Health (NIH) grant R01GM076476.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William O. Hancock.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Glossary

Amyloid-β precursor protein

(APP). A protein that is proteolyzed to generate amyloid β (A4) protein, which forms plaques in Alzheimer's disease.

Prion protein

The protein responsible for transmissible spongiform encephalopathy (including scrapie and mad cow disease).

Myosin V

A processive myosin motor involved in cargo transport along actin filaments.

Optical tweezers

An experimental technique that uses light to trap and manipulate transparent objects, which enables measurements of forces and displacements.

Processivity

The ability of a motor to walk many steps along its filament before detaching.

Sister kinetochores

Regions of duplicated chromosomes that interact with microtubules and regulate chromosome movement during mitosis.

Mean field computational model

A model in which all of the molecular motors of a particular type are assumed to share the mechanical load equally and step in unison.

Run length

The distance a molecular motor moves before detaching from the filament and diffusing away.

Stall force

The force against which a motor cannot walk any further.

Kymograph

A graphical presentation of spatial position over time that uses data from a stack of images or movie. The intensity profile along a line is recorded for every image in the stack, and the lines are assembled to create an image in which the distance is displayed on one axis and time on the other.

Substall

Forces that are less than the stall force of a molecular motor. They enable the forward 'stepping' of motors.

Superstall

Forces that are greater than the stall force of a molecular motor. They cause motors to either remain stationary, walk backwards or detach.

Centroid tracking

A method used to determine the position of an object in a microscope image and to follow its change in position in successive images. The centroid is also known as the centre of mass.

Aplysia spp.

A genus of sea slugs that is used as a model system in neurobiology.

Catch bond

The dissociation rate of this type of bond decreases (the bond strength increases) with increased pulling forces.

Mean-squared displacement

A parameter commonly used to measure diffusion. It is calculated by squaring the displacement of an object from its original position. Its rate of change with time is proportional to the diffusion constant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hancock, W. Bidirectional cargo transport: moving beyond tug of war. Nat Rev Mol Cell Biol 15, 615–628 (2014). https://doi.org/10.1038/nrm3853

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3853

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing