Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Capping protein regulators fine-tune actin assembly dynamics

An Erratum to this article was published on 19 September 2014

This article has been updated

Key Points

  • Capping protein (CP) is a major regulator of actin assembly dynamics via the capping of actin filament barbed ends. The capping activity of CP can be regulated by a number of different proteins and phospholipids in various ways, some direct and others indirect.

  • The capping protein interacting (CPI) motif is a 30-amino acid region necessary and sufficient to bind and inhibit CP. This motif is found in a set of unrelated proteins, many of which are involved in membrane interactions.

  • CARMIL (capping protein, ARP2/3 and myosin I linker) family proteins contain a CPI motif, and they also contain a separate CARMIL-specific interacting (CSI) motif. In CARMIL, the CPI motif is necessary for distinct cellular functions, such as macropinocytosis.

  • The CPI and CSI motifs are unstructured in the unbound state, but they adopt a specific structure when they bind to CP, applying themselves to the surface of CP. The CPI and CSI motifs decrease the actin capping activity of CP via an allosteric mechanism.

  • The complex of a CPI motif-containing protein with CP retains a low level of capping activity, which raises the possibility that CPI motif-containing proteins may target CP to certain cellular locations, in addition to, or as an alternative to, simply decreasing the capping activity.

  • Vertebrates have three distinct conserved CARMIL genes, which seem to have distinct functions in cells. Of note, CARMIL2 localizes with vimentin filaments, representing a potential novel link between the actin and intermediate filament cytoskeleton systems.

Abstract

Capping protein (CP) binds the fast growing barbed end of the actin filament and regulates actin assembly by blocking the addition and loss of actin subunits. Recent studies provide new insights into how CP and barbed-end capping are regulated. Filament elongation factors, such as formins and ENA/VASP (enabled/vasodilator-stimulated phosphoprotein), indirectly regulate CP by competing with CP for binding to the barbed end, whereas other molecules, including V-1 and phospholipids, directly bind to CP and sterically block its interaction with the filament. In addition, a diverse and unrelated group of proteins interact with CP through a conserved 'capping protein interaction' (CPI) motif. These proteins, including CARMIL (capping protein, ARP2/3 and myosin I linker), CD2AP (CD2-associated protein) and the WASH (WASP and SCAR homologue) complex subunit FAM21, recruit CP to specific subcellular locations and modulate its actin-capping activity via allosteric effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Capping protein regulates actin filament dynamics during several cellular processes.
Figure 2: Modes of capping protein inhibition.
Figure 3: CPI motif-containing proteins.
Figure 4: Cellular functions of CPI motif-containing proteins.

Similar content being viewed by others

Change history

  • 19 September 2014

    On page 684 of the above article, there was a mistake in Figure 3b: the PH domain of CARMIL preferentially binds to monophosphorylated membrane lipids rather than to PtdIns(3)P, PtdIns(3,4)P2 or PtdIns(3,4,5)P3. This has been corrected online. We apologize for any confusion caused to readers.

References

  1. Pollard, T. D. & Cooper, J. A. Actin, a central player in cell shape and movement. Science 326, 1208–1212 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Blanchoin, L., Boujemaa-Paterski, R., Sykes, C. & Plastino, J. Actin dynamics, architecture, and mechanics in cell motility. Physiol. Rev. 94, 235–263 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Xue, B. & Robinson, R. C. Guardians of the actin monomer. Eur. J. Cell Biol. 92, 316–332 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Suetsugu, S. & Gautreau, A. Synergistic BAR–NPF interactions in actin-driven membrane remodeling. Trends Cell Biol. 22, 141–150 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Hall, A. Rho family GTPases. Biochem. Soc. Trans. 40, 1378–1382 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Dominguez, R. Structural insights into de novo actin polymerization. Curr. Opin. Struct. Biol. 20, 217–225 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chesarone, M., Gould, C. J., Moseley, J. B. & Goode, B. L. Displacement of formins from growing barbed ends by bud14 is critical for actin cable architecture and function. Dev. Cell 16, 292–302 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dominguez, R. & Namgoong, S. in Comprehensive Biophysics (ed. Egelman, E. H. ) 31–47 (Elsevier, 2012).

  9. Bernstein, B. W. & Bamburg, J. R. ADF/cofilin: a functional node in cell biology. Trends Cell Biol. 20, 187–195 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Poukkula, M., Kremneva, E., Serlachius, M. & Lappalainen, P. Actin-depolymerizing factor homology domain: a conserved fold performing diverse roles in cytoskeletal dynamics. Cytoskeleton 68, 471–490 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Cooper, J. A. & Sept, D. New insights into mechanism and regulation of actin capping protein. Int. Rev. Cell. Mol. Biol. 267, 183–206 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mejillano, M. R. et al. Lamellipodial versus filopodial mode of the actin nanomachinery: pivotal role of the filament barbed end. Cell 118, 363–373 (2004). Shows that loss of CP in migrating cultured cells leads to loss of ARP2/3-based lamellipodia and increased numbers of filopodia.

    Article  CAS  PubMed  Google Scholar 

  13. Isenberg, G., Aebi, U. & Pollard, T. D. An actin-binding protein from Acanthamoeba regulates actin filament polymerization and interactions. Nature 288, 455–459 (1980). Discovers CP by biochemical purification from A. castellanii.

    Article  CAS  PubMed  Google Scholar 

  14. Casella, J. F., Craig, S. W., Maack, D. J. & Brown, A. E. Cap Z(36/32), a barbed end actin-capping protein, is a component of the Z-line of skeletal muscle. J. Cell Biol. 105, 371–379 (1987).

    Article  CAS  PubMed  Google Scholar 

  15. Maruyama, K. et al. β-actinin is equivalent to Cap Z protein. J. Biol. Chem. 265, 8712–8715 (1990).

    CAS  PubMed  Google Scholar 

  16. Schleicher, M., Gerisch, G. & Isenberg, G. New actin-binding proteins from Dictyostelium discoideum. EMBO J. 3, 2095–2100 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nag, S., Larsson, M., Robinson, R. C. & Burtnick, L. D. Gelsolin: the tail of a molecular gymnast. Cytoskeleton 70, 360–384 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Li, G. H., Arora, P. D., Chen, Y., McCulloch, C. A. & Liu, P. Multifunctional roles of gelsolin in health and diseases. Med. Res. Rev. 32, 999–1025 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Fowler, V. M. The human erythrocyte plasma membrane: a Rosetta Stone for decoding membrane-cytoskeleton structure. Curr. Top. Membr. 72, 39–88 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Higgs, H. N. There goes the neighbourhood: Eps8 joins the barbed-end crowd. Nature Cell Biol. 6, 1147–1149 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Bisi, S. et al. Membrane and actin dynamics interplay at lamellipodia leading edge. Curr. Opin. Cell Biol. 25, 565–573 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Bruck, S. et al. Identification of a novel inhibitory actin-capping protein binding motif in CD2-associated protein. J. Biol. Chem. 281, 19196–19203 (2006). Identifies the CPI motif by analysis of CD2AP.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hernandez-Valladares, M. et al. Structural characterization of a capping protein interaction motif defines a family of actin filament regulators. Nature Struct. Mol. Biol. 17, 497–503 (2010). The structural and biochemical analysis of complexes of CPI and CSI motifs with CP.

    Article  CAS  Google Scholar 

  24. Hart, M. C. & Cooper, J. A. Vertebrate isoforms of actin capping protein β have distinct functions In vivo. J. Cell Biol. 147, 1287–1298 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schafer, D. A. Inhibition of CapZ during myofibrillogenesis alters assembly of actin filaments. J. Cell Biol. 128, 61–70 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Schafer, D. A., Korshunova, Y. O., Schroer, T. A. & Cooper, J. A. Differential localization and sequence analysis of capping protein β-subunit isoforms of vertebrates. J. Cell Biol. 127, 453–465 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Ydenberg, C. A., Smith, B. A., Breitsprecher, D., Gelles, J. & Goode, B. L. Cease-fire at the leading edge: new perspectives on actin filament branching, debranching, and cross-linking. Cytoskeleton 68, 596–602 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Miyoshi, T. et al. Actin turnover-dependent fast dissociation of capping protein in the dendritic nucleation actin network: evidence of frequent filament severing. J. Cell Biol. 175, 947–955 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Iwasa, J. H. & Mullins, R. D. Spatial and temporal relationships between actin-filament nucleation, capping, and disassembly. Curr. Biol. 17, 395–406 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Akin, O. & Mullins, R. D. Capping protein increases the rate of actin-based motility by promoting filament nucleation by the Arp2/3 complex. Cell 133, 841–851 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pollard, T. D. & Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Schaub, S., Meister, J. J. & Verkhovsky, A. B. Analysis of actin filament network organization in lamellipodia by comparing experimental and simulated images. J. Cell Sci. 120, 1491–1500 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Vinzenz, M. et al. Actin branching in the initiation and maintenance of lamellipodia. J. Cell Sci. 125, 2775–2785 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Bugyi, B. & Carlier, M. F. Control of actin filament treadmilling in cell motility. Annu. Rev. Biophys. 39, 449–470 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Lai, F. P. et al. Arp2/3 complex interactions and actin network turnover in lamellipodia. EMBO J. 27, 982–992 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yamashita, A., Maeda, K. & Maeda, Y. Crystal structure of CapZ: structural basis for actin filament barbed end capping. EMBO J. 22, 1529–1538 (2003). Reveals the crystal structure of CP and proposes a model for barbed-end capping.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sizonenko, G. I., Karpova, T. S., Gattermeir, D. J. & Cooper, J. A. Mutational analysis of capping protein function in Saccharomyces cerevisiae. Mol. Biol. Cell 7, 1–15 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schafer, D. A., Jennings, P. B. & Cooper, J. A. Dynamics of capping protein and actin assembly in vitro: uncapping barbed ends by polyphosphoinositides. J. Cell Biol. 135, 169–179 (1996). Reports dynamic uncapping of CP by polyphosphoinositides.

    Article  CAS  PubMed  Google Scholar 

  39. Kim, T., Cooper, J. A. & Sept, D. The interaction of capping protein with the barbed end of the actin filament. J. Mol. Biol. 404, 794–802 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wear, M. A., Yamashita, A., Kim, K., Maeda, Y. & Cooper, J. A. How capping protein binds the barbed end of the actin filament. Curr. Biol. 13, 1531–1537 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Narita, A. & Maeda, Y. Molecular determination by electron microscopy of the actin filament end structure. J. Mol. Biol. 365, 480–501 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Narita, A., Takeda, S., Yamashita, A. & Maeda, Y. Structural basis of actin filament capping at the barbed-end: a cryo-electron microscopy study. EMBO J. 25, 5626–5633 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Breitsprecher, D. & Goode, B. L. Formins at a glance. J. Cell Sci. 126, 1–7 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zigmond, S. H. et al. Formin leaky cap allows elongation in the presence of tight capping proteins. Curr. Biol. 13, 1820–1823 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Ramalingam, N. et al. Phospholipids regulate localization and activity of mDia1 formin. Eur. J. Cell Biol. 89, 723–732 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Gorelik, R., Yang, C., Kameswaran, V., Dominguez, R. & Svitkina, T. Mechanisms of plasma membrane targeting of formin mDia2 through its amino terminal domains. Mol. Biol. Cell 22, 189–201 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Watanabe, N. et al. p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin. EMBO J. 16, 3044–3056 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Evangelista, M. et al. Bni1p, a yeast formin linking cdc42p and the actin cytoskeleton during polarized morphogenesis. Science 276, 118–122 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Li, F. & Higgs, H. N. The mouse formin mDia1 is a potent actin nucleation factor regulated by autoinhibition. Curr. Biol. 13, 1335–1340 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Chesarone, M. A., Dupage, A. G. & Goode, B. L. Unleashing formins to remodel the actin and microtubule cytoskeletons. Nature Rev. Mol. Cell Biol. 11, 62–74 (2010).

    Article  CAS  Google Scholar 

  51. Bartolini, F., Ramalingam, N. & Gundersen, G. G. Actin-capping protein promotes microtubule stability by antagonizing the actin activity of mDia1. Mol. Biol. Cell 23, 4032–4040 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Paul, A. S. & Pollard, T. D. Review of the mechanism of processive actin filament elongation by formins. Cell. Motil. Cytoskeleton 66, 606–617 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Goode, B. L. & Eck, M. J. Mechanism and function of formins in the control of actin assembly. Annu. Rev. Biochem. 76, 593–627 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Drees, F. & Gertler, F. B. Ena/VASP: proteins at the tip of the nervous system. Curr. Opin. Neurobiol. 18, 53–59 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Walders-Harbeck, B., Khaitlina, S. Y., Hinssen, H., Jockusch, B. M. & Illenberger, S. The vasodilator-stimulated phosphoprotein promotes actin polymerisation through direct binding to monomeric actin. FEBS Lett. 529, 275–280 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Chereau, D. & Dominguez, R. Understanding the role of the G-actin-binding domain of Ena/VASP in actin assembly. J. Struct. Biol. 155, 195–201 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Bear, J. E. et al. Antagonism between Ena/VASP proteins and actin filament capping regulates fibroblast motility. Cell 109, 509–521 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Barzik, M. et al. Ena/VASP proteins enhance actin polymerization in the presence of barbed end capping proteins. J. Biol. Chem. 280, 28653–28662 (2005). Shows that ENA/VASP proteins promote elongation in the presence of CP.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Breitsprecher, D. et al. Clustering of VASP actively drives processive, WH2 domain-mediated actin filament elongation. EMBO J. 27, 2943–2954 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Breitsprecher, D. et al. Molecular mechanism of Ena/VASP-mediated actin-filament elongation. EMBO J. 30, 456–467 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hansen, S. D. & Mullins, R. D. VASP is a processive actin polymerase that requires monomeric actin for barbed end association. J. Cell Biol. 191, 571–584 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Winkelman, J. D., Bilancia, C. G., Peifer, M. & Kovar, D. R. Ena/VASP Enabled is a highly processive actin polymerase tailored to self-assemble parallel-bundled F-actin networks with Fascin. Proc. Natl Acad. Sci. USA 111, 4121–4126 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Mahoney, N. M., Janmey, P. A. & Almo, S. C. Structure of the profilin–poly-l-proline complex involved in morphogenesis and cytoskeletal regulation. Nature Struct. Biol. 4, 953–960 (1997).

    Article  CAS  PubMed  Google Scholar 

  64. Ferron, F., Rebowski, G., Lee, S. H. & Dominguez, R. Structural basis for the recruitment of profilin–actin complexes during filament elongation by Ena/VASP. EMBO J. 26, 4597–4606 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pasic, L., Kotova, T. & Schafer, D. A. Ena/VASP proteins capture actin filament barbed ends. J. Biol. Chem. 283, 9814–9819 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yang, Y., Nanduri, S., Sen, S. & Qin, J. The structural basis of ankyrin-like repeat function as revealed by the solution structure of myotrophin. Structure 6, 619–626 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Taoka, M. et al. V-1, a protein expressed transiently during murine cerebellar development, regulates actin polymerization via interaction with capping protein. J. Biol. Chem. 278, 5864–5870 (2003). Reports that V-1 interacts with CP.

    Article  CAS  PubMed  Google Scholar 

  68. Taoka, M. et al. Murine cerebellar neurons express a novel gene encoding a protein related to cell cycle control and cell fate determination proteins. J. Biol. Chem. 269, 9946–9951 (1994).

    CAS  PubMed  Google Scholar 

  69. Sen, S. et al. Myotrophin: purification of a novel peptide from spontaneously hypertensive rat heart that influences myocardial growth. J. Biol. Chem. 265, 16635–16643 (1990).

    CAS  PubMed  Google Scholar 

  70. Sil, P., Misono, K. & Sen, S. Myotrophin in human cardiomyopathic heart. Circ. Res. 73, 98–108 (1993).

    Article  CAS  PubMed  Google Scholar 

  71. Sil, P., Mukherjee, D. & Sen, S. Quantification of myotrophin from spontaneously hypertensive and normal rat hearts. Circ. Res. 76, 1020–1027 (1995).

    Article  CAS  PubMed  Google Scholar 

  72. Gupta, S., Purcell, N. H., Lin, A. & Sen, S. Activation of nuclear factor-κB is necessary for myotrophin-induced cardiac hypertrophy. J. Cell Biol. 159, 1019–1028 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Das, B. et al. Nuclear co-translocation of myotrophin and p65 stimulates myocyte growth. Regulation by myotrophin hairpin loops. J. Biol. Chem. 283, 27947–27956 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gupta, S., Maitra, R., Young, D., Gupta, A. & Sen, S. Silencing the myotrophin gene by RNA interference leads to the regression of cardiac hypertrophy. Am. J. Physiol. Heart Circ. Physiol. 297, H627–H636 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bhattacharya, N., Ghosh, S., Sept, D. & Cooper, J. A. Binding of myotrophin/V-1 to actin-capping protein: implications for how capping protein binds to the filament barbed end. J. Biol. Chem. 281, 31021–31030 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zwolak, A., Fujiwara, I., Hammer, J. A. & Tjandra, N. Structural basis for capping protein sequestration by myotrophin (V-1). J. Biol. Chem. 285, 25767–25781 (2010). Reveals the mechanism of V-1 interaction with CP.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Takeda, S. et al. Two distinct mechanisms for actin capping protein regulation — steric and allosteric inhibition. PLoS Biol. 8, e1000416 (2010). Identified contrasting steric and allosteric mechanisms to regulate CP.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yin, H. L. & Janmey, P. A. Phosphoinositide regulation of the actin cytoskeleton. Annu. Rev. Physiol. 65, 761–789 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Saarikangas, J., Zhao, H. & Lappalainen, P. Regulation of the actin cytoskeleton-plasma membrane interplay by phosphoinositides. Physiol. Rev. 90, 259–289 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Heiss, S. G. & Cooper, J. A. Regulation of CapZ, an actin capping protein of chicken muscle, by anionic phospholipids. Biochemistry 30, 8753–8758 (1991).

    Article  CAS  PubMed  Google Scholar 

  81. Kim, K. et al. Structure/function analysis of the interaction of phosphatidylinositol 4,5-bisphosphate with actin-capping protein: implications for how capping protein binds the actin filament. J. Biol. Chem. 282, 5871–5879 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Kuhn, J. R. & Pollard, T. D. Single molecule kinetic analysis of actin filament capping. Polyphosphoinositides do not dissociate capping proteins. J. Biol. Chem. 282, 28014–28024 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Li, J. et al. Capping protein modulates the dynamic behavior of actin filaments in response to phosphatidic acid in Arabidopsis. Plant Cell 24, 3742–3754 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Xu, P., Zot, A. S. & Zot, H. G. Identification of Acan125 as a myosin-I-binding protein present with myosin-I on cellular organelles of Acanthamoeba. J. Biol. Chem. 270, 25316–25319 (1995). Discovers Acan125, the first CARMIL, in A. castellanii.

    Article  CAS  PubMed  Google Scholar 

  85. Jung, G., Remmert, K., Wu, X., Volosky, J. M. & Hammer, J. A. The Dictyostelium CARMIL protein links capping protein and the Arp2/3 complex to type I myosins through their SH3 domains. J. Cell Biol. 153, 1479–1497 (2001). Characterizes D. discoideum CARMIL interactions and mutant phenotypes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yang, C. et al. Mammalian CARMIL inhibits actin filament capping by capping protein. Dev. Cell 9, 209–221 (2005). Shows that mammalian CARMIL inhibits CP and causes uncapping. Also shows that the CARMIL1–CP complex retains capping activity, which suggests an allosteric mechanism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Liang, Y., Niederstrasser, H., Edwards, M., Jackson, C. E. & Cooper, J. A. Distinct roles for CARMIL isoforms in cell migration. Mol. Biol. Cell 20, 5290–5305 (2009). Reports that CARMIL1 and CARMIL2 have distinct functions in vertebrate cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Fujiwara, I., Remmert, K., Piszczek, G. & Hammer, J. A. Capping protein regulatory cycle driven by CARMIL and V-1 may promote actin network assembly at protruding edges. Proc. Natl Acad. Sci. USA 111, E1970–E1979 (2014).

    Article  CAS  PubMed  Google Scholar 

  89. Edwards, M., Liang, Y., Kim, T. & Cooper, J. A. Physiological role of the interaction between CARMIL1 and capping protein. Mol. Biol. Cell 24, 3047–3055 (2013). Shows the physiological relevance of the CARMIL1–CP interaction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Brzeska, H., Guag, J., Remmert, K., Chacko, S. & Korn, E. D. An experimentally based computer search identifies unstructured membrane-binding sites in proteins: application to class I myosins, PAKS, and CARMIL. J. Biol. Chem. 285, 5738–5747 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Helfand, B. T. et al. Vimentin organization modulates the formation of lamellipodia. Mol. Biol. Cell 22, 1274–1289 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Cote, J. F. & Vuori, K. GEF what? Dock180 and related proteins help Rac to polarize cells in new ways. Trends Cell Biol. 17, 383–393 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hsu, C. C. et al. Identifying LRRC16B as an oncofetal gene with transforming enhancing capability using a combined bioinformatics and experimental approach. Oncogene 30, 654–667 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Zwolak, A. et al. CARMIL leading edge localization depends on a non-canonical PH domain and dimerization. Nature Commun. 4, 2523 (2013). Determines the structure of a large N-terminal fragment of CARMIL, and identifies and characterizes the PH and HD domains.

    Article  CAS  Google Scholar 

  95. Kobe, B. & Kajava, A. V. The leucine-rich repeat as a protein recognition motif. Curr. Opin. Struct. Biol. 11, 725–732 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Bella, J., Hindle, K. L., McEwan, P. A. & Lovell, S. C. The leucine-rich repeat structure. Cell. Mol. Life Sci. 65, 2307–2333 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Lee, W. L., Ostap, E. M., Zot, H. G. & Pollard, T. D. Organization and ligand binding properties of the tail of Acanthamoeba myosin-IA. Identification of an actin-binding site in the basic (tail homology-1) domain. J. Biol. Chem. 274, 35159–35171 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Zot, H. G., Bhaskara, V. & Liu, L. Acan125 binding to the SH3 domain of acanthamoeba myosin-IC. Arch. Biochem. Biophys. 375, 161–164 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Bosc, D. G. et al. Identification and characterization of CKIP-1, a novel pleckstrin homology domain-containing protein that interacts with protein kinase CK2. J. Biol. Chem. 275, 14295–14306 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Canton, D. A. et al. The pleckstrin homology domain-containing protein CKIP-1 is involved in regulation of cell morphology and the actin cytoskeleton and interaction with actin capping protein. Mol. Cell. Biol. 25, 3519–3534 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Canton, D. A., Olsten, M. E., Niederstrasser, H., Cooper, J. A. & Litchfield, D. W. The role of CKIP-1 in cell morphology depends on its interaction with actin-capping protein. J. Biol. Chem. 281, 36347–36359 (2006). Reports that the interaction of CKIP1 with CP is physiologically relevant in cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Nie, J. et al. CKIP-1: a scaffold protein and potential therapeutic target integrating multiple signaling pathways and physiological functions. Ageing Res. Rev. 12, 276–281 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Olsten, M. E., Canton, D. A., Zhang, C., Walton, P. A. & Litchfield, D. W. The Pleckstrin homology domain of CK2 interacting protein-1 is required for interactions and recruitment of protein kinase CK2 to the plasma membrane. J. Biol. Chem. 279, 42114–42127 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Zhang, L. et al. Role for the pleckstrin homology domain-containing protein CKIP-1 in AP-1 regulation and apoptosis. EMBO J. 24, 766–778 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Tokuda, E. et al. Casein kinase 2-interacting protein-1, a novel Akt pleckstrin homology domain-interacting protein, down-regulates PI3K/Akt signaling and suppresses tumor growth in vivo. Cancer Res. 67, 9666–9676 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Zhang, L. et al. CKIP-1 recruits nuclear ATM partially to the plasma membrane through interaction with ATM. Cell. Signal. 18, 1386–1395 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Zhang, L. et al. The PH domain containing protein CKIP-1 binds to IFP35 and Nmi and is involved in cytokine signaling. Cell. Signal. 19, 932–944 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Lu, K. et al. Targeting WW domains linker of HECT-type ubiquitin ligase Smurf1 for activation by CKIP-1. Nature Cell Biol. 10, 994–1002 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Nie, J. et al. CKIP-1 acts as a colonic tumor suppressor by repressing oncogenic Smurf1 synthesis and promoting Smurf1 autodegradation. Oncogene 33, 3677–3687 (2013).

    Article  CAS  PubMed  Google Scholar 

  110. Derivery, E. et al. The Arp2/3 activator WASH controls the fission of endosomes through a large multiprotein complex. Dev. Cell 17, 712–723 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Duleh, S. N. & Welch, M. D. WASH and the Arp2/3 complex regulate endosome shape and trafficking. Cytoskeleton 67, 193–206 (2010).

    CAS  PubMed  Google Scholar 

  112. Gomez, T. S. & Billadeau, D. D. A FAM21-containing WASH complex regulates retromer-dependent sorting. Dev. Cell 17, 699–711 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Gomez, T. S., Gorman, J. A., de Narvajas, A. A., Koenig, A. O. & Billadeau, D. D. Trafficking defects in WASH-knockout fibroblasts originate from collapsed endosomal and lysosomal networks. Mol. Biol. Cell 23, 3215–3228 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zech, T. et al. The Arp2/3 activator WASH regulates α5β1-integrin-mediated invasive migration. J. Cell Sci. 124, 3753–3759 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Jia, D. et al. WASH and WAVE actin regulators of the Wiskott–Aldrich syndrome protein (WASP) family are controlled by analogous structurally related complexes. Proc. Natl Acad. Sci. USA 107, 10442–10447 (2010). Shows that FAM21 interacts with CP in the WASH complex.

    Article  CAS  PubMed  Google Scholar 

  116. Harbour, M. E., Breusegem, S. Y. & Seaman, M. N. Recruitment of the endosomal WASH complex is mediated by the extended 'tail' of Fam21 binding to the retromer protein Vps35. Biochem. J. 442, 209–220 (2012).

    Article  CAS  PubMed  Google Scholar 

  117. Jia, D., Gomez, T. S., Billadeau, D. D. & Rosen, M. K. Multiple repeat elements within the FAM21 tail link the WASH actin regulatory complex to the retromer. Mol. Biol. Cell 23, 2352–2361 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Park, L. et al. Cyclical action of the WASH complex: FAM21 and capping protein drive WASH recycling, not initial recruitment. Dev. Cell 24, 169–181 (2013). Identifies the trafficking function of FAM21 and CP in the WASH complex.

    Article  CAS  PubMed  Google Scholar 

  119. Dustin, M. L. et al. A novel adaptor protein orchestrates receptor patterning and cytoskeletal polarity in T-cell contacts. Cell 94, 667–677 (1998).

    Article  CAS  PubMed  Google Scholar 

  120. Shih, N. Congenital nephrotic syndrome in mice lacking CD2-associated protein. Science 286, 312–315 (1999).

    Article  CAS  PubMed  Google Scholar 

  121. Yaddanapudi, S. et al. CD2AP in mouse and human podocytes controls a proteolytic program that regulates cytoskeletal structure and cellular survival. J. Clin. Invest. 121, 3965–3980 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kirsch, K. H., Georgescu, M.-M., Ishimaru, S. & Hanafusa, H. CMS: An adapter molecule involved in cytoskeletal rearrangements. Proc. Natl Acad. Sci. USA 96, 6211–6216 (1999).

    Article  CAS  PubMed  Google Scholar 

  123. Gaidos, G., Soni, S., Oswald, D. J., Toselli, P. A. & Kirsch, K. H. Structure and function analysis of the CMS/CIN85 protein family identifies actin-bundling properties and heterotypic-complex formation. J. Cell Sci. 120, 2366–2377 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Kirsch, K. H. et al. The adapter type protein CMS/CD2AP binds to the proto-oncogenic protein c-Cbl through a tyrosine phosphorylation-regulated Src homology 3 domain interaction. J. Biol. Chem. 276, 4957–4963 (2001).

    Article  CAS  PubMed  Google Scholar 

  125. Roldan, J. L., Blackledge, M., van Nuland, N. A. & Azuaga, A. I. Solution structure, dynamics and thermodynamics of the three SH3 domains of CD2AP. J. Biomol. NMR 50, 103–117 (2011).

    Article  CAS  PubMed  Google Scholar 

  126. Zhao, J. et al. CD2AP links cortactin and capping protein at the cell periphery to facilitate formation of lamellipodia. Mol. Cell. Biol. 33, 38–47 (2013). Reports that CD2AP recruits CP and cortactin to the plasma membrane.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Eyers, C. E. et al. The phosphorylation of CapZ-interacting protein (CapZIP) by stress-activated protein kinases triggers its dissociation from CapZ. Biochem. J. 389, 127–135 (2005). Shows that phosphorylation of CapZIP inhibits its interaction with CP.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Palmgren, S., Vartiainen, M. & Lappalainen, P. Twinfilin, a molecular mailman for actin monomers. J. Cell Sci. 115, 881–886 (2002).

    CAS  PubMed  Google Scholar 

  129. Helfer, E. et al. Mammalian twinfilin sequesters ADP-G-actin and caps filament barbed ends: implications in motility. EMBO J. 25, 1184–1195 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Palmgren, S., Ojala, P. J., Wear, M. A., Cooper, J. A. & Lappalainen, P. Interactions with PIP2, ADP-actin monomers, and capping protein regulate the activity and localization of yeast twinfilin. J. Cell Biol. 155, 251–260 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Vartiainen, M. K., Sarkkinen, E. M., Matilainen, T., Salminen, M. & Lappalainen, P. Mammals have two twinfilin isoforms whose subcellular localizations and tissue distributions are differentially regulated. J. Biol. Chem. 278, 34347–34355 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. Falck, S. et al. Biological role and structural mechanism of twinfilin-capping protein interaction. EMBO J. 23, 3010–3019 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Nevalainen, E. M., Skwarek-Maruszewska, A., Braun, A., Moser, M. & Lappalainen, P. Two biochemically distinct and tissue-specific twinfilin isoforms are generated from the mouse Twf2 gene by alternative promoter usage. Biochem. J. 417, 593–600 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. Ojala, P. J. et al. The two ADF-H domains of twinfilin play functionally distinct roles in interactions with actin monomers. Mol. Biol. Cell 13, 3811–3821 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Goode, B. L., Drubin, D. G. & Lappalainen, P. Regulation of the cortical actin cytoskeleton in budding yeast by twinfilin, a ubiquitous actin monomer-sequestering protein. J. Cell Biol. 142, 723–733 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Wahlstrom, G. et al. Twinfilin is required for actin-dependent developmental processes in Drosophila. J. Cell Biol. 155, 787–796 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Uruno, T., Remmert, K. & Hammer, J. A. CARMIL is a potent capping protein antagonist: identification of a conserved CARMIL domain that inhibits the activity of capping protein and uncaps capped actin filaments. J. Biol. Chem. 281, 10635–10650 (2006). Shows that CARMIL inhibits CP and uncaps actin filaments, and that full-length CARMIL is autoinhibited.

    Article  CAS  PubMed  Google Scholar 

  138. Zwolak, A., Uruno, T., Piszczek, G., Hammer, J. A. & Tjandra, N. Molecular basis for barbed end uncapping by CARMIL homology domain 3 of mouse CARMIL-1. J. Biol. Chem. 285, 29014–29026 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kim, T., Ravilious, G. E., Sept, D. & Cooper, J. A. Mechanism for CARMIL protein inhibition of heterodimeric actin-capping protein. J. Biol. Chem. 287, 15251–15262 (2012). Reports the allosteric mechanism for CARMIL-mediated inhibition of CP.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Takeda, S. et al. Actin capping protein and its inhibitor CARMIL: how intrinsically disordered regions function. Phys. Biol. 8, 035005 (2011).

    Article  CAS  PubMed  Google Scholar 

  141. Fujiwara, I., Remmert, K. & Hammer, J. A. Direct observation of the uncapping of capping protein-capped actin filaments by CARMIL homology domain 3. J. Biol. Chem. 285, 2707–2720 (2010). Uses single-molecule imaging to show uncapping by CARMIL.

    Article  CAS  PubMed  Google Scholar 

  142. Abbasi, A. A. Piecemeal or big bangs: correlating the vertebrate evolution with proposed models of gene expansion events. Nature Rev. Genet. 11, 166 (2010).

    Article  CAS  PubMed  Google Scholar 

  143. Sinnar, S. A., Antoku, S., Saffin, J. M., Cooper, J. A. & Halpain, S. Capping protein is essential for cell migration in vivo and for filopodial morphology and dynamics. Mol. Biol. Cell 25, 2152–2160 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Svitkina, T. M. et al. Mechanism of filopodia initiation by reorganization of a dendritic network. J. Cell Biol. 160, 409–421 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Avenarius, M. R. et al. Correlation of actin crosslinker and capper expression levels with stereocilia growth phases. Mol. Cell Proteom. 13, 606–620 (2014).

    Article  CAS  Google Scholar 

  146. Tang, V. W. & Brieher, W. M. FSGS3/CD2AP is a barbed-end capping protein that stabilizes actin and strengthens adherens junctions. J. Cell Biol. 203, 815–833 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Cassimeris, L., Safer, D., Nachmias, V. T. & Zigmond, S. H. Thymosin β4 sequesters the majority of G-actin in resting human polymorphonuclear leukoctyes. J. Cell Biol. 119, 1261–1270 (1992).

    Article  CAS  PubMed  Google Scholar 

  148. Remmert, K. et al. CARMIL is a bona fide capping protein interactant. J. Biol. Chem. 279, 3068–3077 (2004). Shows that CARMIL purified from cells contains CP and that it exists as a dimer.

    Article  CAS  PubMed  Google Scholar 

  149. Cao, L. G. Mechanism of the formation of contractile ring in dividing cultured animal cells. I. Recruitment of preexisting actin filaments into the cleavage furrow. J. Cell Biol. 110, 1089–1095 (1990).

    Article  CAS  PubMed  Google Scholar 

  150. Liang, Y. et al. The lymphoid lineage-specific actin-uncapping protein Rltpr is essential for costimulation via CD28 and the development of regulatory T cells. Nature Immunol. 14, 858–866 (2013).

    Article  CAS  Google Scholar 

  151. Shih, N. Y. et al. CD2AP localizes to the slit diaphragm and binds to nephrin via a novel C-terminal domain. Am. J. Pathol. 159, 2303–2308 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Eichinger, L., Noegel, A. A. & Schleicher, M. Domain structure in actin-binding proteins: expression and functional characterization of truncated severin. J. Cell Biol. 112, 665–676 (1991).

    Article  CAS  PubMed  Google Scholar 

  153. Lehtonen, S. et al. In vivo interaction of the adapter protein CD2-associated protein with the type 2 polycystic kidney disease protein, polycystin-2. J. Biol. Chem. 275, 32888–32893 (2000).

    Article  CAS  PubMed  Google Scholar 

  154. Drenckhahn, D. et al. Three different actin filament assemblies occur in every hair cell: each contains a specific actin crosslinking protein. J. Cell Biol. 112, 641–651 (1991).

    Article  CAS  PubMed  Google Scholar 

  155. Cormont, M. et al. CD2AP/CMS regulates endosome morphology and traffic to the degradative pathway through its interaction with Rab4 and c-Cbl. Traffic 4, 97–112 (2003).

    Article  CAS  PubMed  Google Scholar 

  156. Take, H. et al. Cloning and characterization of a novel adaptor protein, CIN85, that interacts with c-Cbl. Biochem. Biophys. Res. Commun. 268, 321–328 (2000).

    Article  CAS  PubMed  Google Scholar 

  157. Gout, I. et al. Negative regulation of PI 3-kinase by Ruk, a novel adaptor protein. EMBO J. 19, 4015–4025 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Lynch, D. K. et al. A Cortactin-CD2-associated protein (CD2AP) complex provides a novel link between epidermal growth factor receptor endocytosis and the actin cytoskeleton. J. Biol. Chem. 278, 21805–21813 (2003).

    Article  CAS  PubMed  Google Scholar 

  159. Schwarz, K. et al. Podocin, a raft-associated component of the glomerular slit diaphragm, interacts with CD2AP and nephrin. J. Clin. Invest. 108, 1621–1629 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Brett, T. J., Traub, L. M. & Fremont, D. H. Accessory protein recruitment motifs in clathrin-mediated endocytosis. Structure 10, 797–809 (2002).

    Article  CAS  PubMed  Google Scholar 

  161. Huber, T. B. et al. Nephrin and CD2AP associate with phosphoinositide 3-OH kinase and stimulate AKT-dependent signaling. Mol. Cell. Biol. 23, 4917–4928 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Asanuma, K., Campbell, K. N., Kim, K., Faul, C. & Mundel, P. Nuclear relocation of the nephrin and CD2AP-binding protein dendrin promotes apoptosis of podocytes. Proc. Natl Acad. Sci. USA 104, 10134–10139 (2007).

    Article  CAS  PubMed  Google Scholar 

  163. Kowanetz, K. et al. CIN85 associates with multiple effectors controlling intracellular trafficking of epidermal growth factor receptors. Mol. Biol. Cell 15, 3155–3166 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Liu, Y., Yerushalmi, G. M., Grigera, P. R. & Parsons, J. T. Mislocalization or reduced expression of Arf GTPase-activating protein ASAP1 inhibits cell spreading and migration by influencing Arf1 GTPase cycling. J. Biol. Chem. 280, 8884–8892 (2005).

    Article  CAS  PubMed  Google Scholar 

  165. Dominguez, R. Actin-binding proteins — a unifying hypothesis. Trends Biochem. Sci. 29, 572–578 (2004).

    Article  CAS  PubMed  Google Scholar 

  166. Frost, A., De Camilli, P. & Unger, V. M. F-BAR proteins join the BAR family fold. Structure 15, 751–753 (2007).

    Article  CAS  PubMed  Google Scholar 

  167. Safi, A. et al. Role for the pleckstrin homology domain-containing protein CKIP-1 in phosphatidylinositol 3-kinase-regulated muscle differentiation. Mol. Cell. Biol. 24, 1245–1255 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Baas, D. et al. CKIP-1 regulates mammalian and zebrafish myoblast fusion. J. Cell Sci. 125, 3790–3800 (2012).

    Article  CAS  PubMed  Google Scholar 

  169. Franck, Z. Microinjection of villin into cultured cells induces rapid and long- lasting changes in cell morphology but does not inhibit cytokinesis, cell motility, or membrane ruffling. J. Cell Biol. 111, 2475–2485 (1990).

    Article  CAS  PubMed  Google Scholar 

  170. Sakamoto, T. et al. CKIP-1 is an intrinsic negative regulator of T-cell activation through an interaction with CARMA1. PLoS ONE 9, e85762 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Ling, S. et al. CKIP-1 inhibits cardiac hypertrophy by regulating class II histone deacetylase phosphorylation through recruiting PP2A. Circulation 126, 3028–3040 (2012).

    Article  CAS  PubMed  Google Scholar 

  172. van Duijn, T. J., Anthony, E. C., Hensbergen, P. J., Deelder, A. M. & Hordijk, P. L. Rac1 recruits the adapter protein CMS/CD2AP to cell-cell contacts. J. Biol. Chem. 285, 20137–20146 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Fukui, Y. Structure and function of the cytoskeleton of a Dictyostelium myosin- defective mutant. J. Cell Biol. 110, 367–378 (1990).

    Article  CAS  PubMed  Google Scholar 

  174. de Arruda, M. V., Watson, S., Lin, C. S., Leavitt, J. & Matsudaira, P. Fimbrin is a homologue of the cytoplasmic phosphoprotein plastin and has domains homologous with calmodulin and actin gelation proteins. J. Cell Biol. 111, 1069–1079 (1990).

    Article  CAS  PubMed  Google Scholar 

  175. Helfer, E. et al. Endosomal recruitment of the WASH complex: active sequences and mutations impairing interaction with the retromer. Biol. Cell 105, 191–207 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank members of their laboratories for comments on the manuscript and contributions to the work discussed in this article. They also thank R. Cheney and R. Insall for comments on the manuscript. Work in the authors' laboratories and the writing of this manuscript was supported by National Institutes of Health (NIH) grants GM038542 and GM095509 (to J.A.C.) and GM073791 and MH087950 (to R.D.). M.E. was supported by NIH training grant 5T90DA02287104.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roberto Dominguez or John A. Cooper.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Sarcomere Z-disks

The sarcomere is the basic unit of the contractile apparatus of striated muscle. The Z-disk is the structure at each end of the sarcomere to which the barbed ends of the actin-based thin filaments are anchored.

BAR-domain proteins

BAR (Bin–amphiphysin–Rvs) domains of proteins bind to membranes, sensing and inducing curvature. They have roles in membrane trafficking.

Thin filaments

The sarcomere contains thin filaments composed of actin and thick filaments composed of myosin. Their interaction and sliding causes contraction of the sarcomere and hence the muscle.

Cortical actin

Actin filaments that are located close to the plasma membrane. These filaments control the shape and movement of the plasma membrane, and they are often highly dynamic.

Macropinocytosis

Engulfment of extracellular fluid by ruffling and folding back of the plasma membrane. Highly dependent on dynamic actin assembly.

Vimentin

A protein that forms intermediate filaments in cells. Found in a wide range of cell types.

Retromer

A protein complex of endosomes that is involved in membrane receptor recycling.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edwards, M., Zwolak, A., Schafer, D. et al. Capping protein regulators fine-tune actin assembly dynamics. Nat Rev Mol Cell Biol 15, 677–689 (2014). https://doi.org/10.1038/nrm3869

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3869

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing