Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mammalian iron–sulphur proteins: novel insights into biogenesis and function

Key Points

  • Iron–sulphur (Fe–S) clusters are flexible cofactors composed of iron and inorganic sulphur that are often ligated to proteins through cysteinyl ligands.

  • Unusual chemical features of the Fe–S cluster enable it to facilitate reduction–oxidation reactions and to carry out numerous complex chemical reactions and sensing activities.

  • Fe–S proteins are known to be pervasive in bacteria, and recent evidence suggests that they are also common in mammalian cells, in which they have often been missed because of their inherent instability and non-coloured appearance.

  • Fe–S clusters are synthesized by a complex series of reactions involving numerous proteins.

  • Many Fe–S cluster recipient proteins contain a Leu-Tyr-Arg motif to which a co-chaperone of the assembly apparatus binds, facilitating transfer of nascent clusters from a scaffold carrier to a final recipient protein.

  • De novo synthesis of Fe–S clusters does not require a mitochondrial precursor in bacteria and may not depend on export of a mitochondrial molecule in mammalian cytosolic and nuclear proteins.

  • Ten human diseases are now attributed to defective Fe–S cluster assembly, but differences in the severity and affected tissues of these diseases are not yet well explained.

Abstract

Iron–sulphur (Fe–S) clusters are inorganic cofactors that are found in nearly all species and are composed of various combinations of iron and sulphur atoms. Fe–S clusters can accept or donate single electrons to carry out oxidation and reduction reactions and to facilitate electron transport. Many details of how these complex modular structures are assembled and ligated to cellular proteins in the mitochondrial, nuclear and cytosolic compartments of mammalian cells remain unclear. Recent evidence indicates that a Leu-Tyr-Arg (LYR) tripeptide motif found in some Fe–S recipient proteins may facilitate the direct and shielded transfer of Fe–S clusters from a scaffold to client proteins. Fe–S clusters are probably an unrecognized and elusive cofactor of many known proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examples of various Fe–S clusters.
Figure 2: Initial Fe–S cluster assembly in bacteria.
Figure 3: The initial Fe–S cluster assembly complex in eukaryotic cells.
Figure 4: A model to explain how Fe–S clusters can be correctly positioned deep within proteins.

Similar content being viewed by others

References

  1. Johnson, D. C., Dean, D. R., Smith, A. D. & Johnson, M. K. Structure, function, and formation of biological iron–sulfur clusters. Annu. Rev. Biochem. 74, 247–281 (2005). This review summarizes how Fe–S cluster biogenesis proteins were initially discovered and how their various roles were revealed in bacteria.

    CAS  PubMed  Google Scholar 

  2. Beinert, H., Holm, R. H. & Munck, E. Iron–sulfur clusters: nature's modular, multipurpose structures. Science 277, 653–659 (1997). This review emphasizes the unique qualities of Fe–S clusters, using knowledge acquired from studies of Fe–S proteins and chemical syntheses.

    CAS  PubMed  Google Scholar 

  3. Hu, Y. & Ribbe, M. W. A journey into the active center of nitrogenase. J. Biol. Inorg. Chem. 19, 731–736 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Gari, K. et al. MMS19 links cytoplasmic iron–sulfur cluster assembly to DNA metabolism. Science 337, 243–245 (2012).

    CAS  PubMed  Google Scholar 

  5. Stehling, O. et al. MMS19 assembles iron–sulfur proteins required for DNA metabolism and genomic integrity. Science 337, 195–199 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Tong, W. H. & Rouault, T. A. Functions of mitochondrial ISCU and cytosolic ISCU in mammalian iron–sulfur cluster biogenesis and iron homeostasis. Cell. Metab. 3, 199–210 (2006).

    CAS  PubMed  Google Scholar 

  7. Rouault, T. A. Biogenesis of iron–sulfur clusters in mammalian cells: new insights and relevance to human disease. Dis. Model. Mech. 5, 155–164 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Lill, R. et al. The role of mitochondria in cellular iron–sulfur protein biogenesis and iron metabolism. Biochim. Biophys. Acta. 1823, 1491–1508 (2012).

    CAS  PubMed  Google Scholar 

  9. Netz, D. J., Mascarenhas, J., Stehling, O., Pierik, A. J. & Lill, R. Maturation of cytosolic and nuclear iron–sulfur proteins. Trends Cell Biol. 24, 303–312 (2014).

    CAS  PubMed  Google Scholar 

  10. Shi, R. et al. Structural basis for Fe–S cluster assembly and tRNA thiolation mediated by IscS protein–protein interactions. PLoS Biol. 8, e1000354 (2010). This paper structurally characterizes the initial Fe–S cluster synthetic complex.

    PubMed  PubMed Central  Google Scholar 

  11. Marinoni, E. N. et al. (IscS–IscU)2 complex structures provide insights into Fe2S2 biogenesis and transfer. Angew. Chem. Int. Ed. Engl. 51, 5439–5442 (2012). This paper shows that a [2Fe–2S] cluster is initially ligated by residues of IscU and a Cys residue of IscS.

    CAS  PubMed  Google Scholar 

  12. Kim, J. H., Frederick, R. O., Reinen, N. M., Troupis, A. T. & Markley, J. L. [2Fe-2S]-ferredoxin binds directly to cysteine desulfurase and supplies an electron for iron–sulfur cluster assembly but is displaced by the scaffold protein or bacterial frataxin. J. Am. Chem. Soc. 135, 8117–8120 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Cai, K. et al. Human mitochondrial chaperone (mtHSP70) and cysteine desulfurase (NFS1) bind preferentially to the disordered conformation, whereas co-chaperone (HSC20) binds to the structured conformation of the iron–sulfur cluster scaffold protein (ISCU). J. Biol. Chem. 288, 28755–28770 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim, J. H., Bothe, J. R., Frederick, R. O., Holder, J. C. & Markley, J. L. Role of IscX in iron–sulfur cluster biogenesis in Escherichia coli. J. Am. Chem. Soc. 136, 7933–7942 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Prischi, F. et al. Structural bases for the interaction of frataxin with the central components of iron–sulphur cluster assembly. Nature Commun. 1, 95 (2010).

    Google Scholar 

  16. Schmucker, S. et al. Mammalian frataxin: an essential function for cellular viability through an interaction with a preformed ISCU/NFS1/ISD11 iron–sulfur assembly complex. PLoS ONE 6, e16199 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bridwell-Rabb, J., Fox, N. G., Tsai, C. L., Winn, A. M. & Barondeau, D. P. Human frataxin activates Fe–S cluster biosynthesis by facilitating sulfur transfer chemistry. Biochemistry 53, 4904–4913 (2014).

    CAS  PubMed  Google Scholar 

  18. Vickery, L. E. & Cupp-Vickery, J. R. Molecular chaperones HscA/Ssq1 and HscB/Jac1 and their roles in iron–sulfur protein maturation. Crit. Rev. Biochem. Mol. Biol. 42, 95–111 (2007).

    CAS  PubMed  Google Scholar 

  19. Maio, N. et al. Cochaperone binding to LYR motifs confers specificity of iron sulfur cluster delivery. Cell. Metab. 19, 445–457 (2014). This paper identifies SDHB as a binding partner of HSC20 and as a direct recipient of Fe–S clusters from ISCU.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Beinert, H. A tribute to sulfur. Eur. J. Biochem. 267, 5657–5664 (2000).

    CAS  PubMed  Google Scholar 

  21. Beinert, H. Iron-sulfur proteins: ancient structures, still full of surprises. J. Biol. Inorg. Chem. 5, 2–15 (2000). This review emphasizes the many roles of Fe–S proteins.

    CAS  PubMed  Google Scholar 

  22. Marcus, R. A. Electron transfer reactions in chemistry: theory and experiment (Nobel lecture). Angew. Chem. Int. Ed. Engl. 32, 1111–1121 (1993).

    Google Scholar 

  23. Noodleman, L., Lovell, T., Liu, T., Himo, F. & Torres, R. A. Insights into properties and energetics of iron–sulfur proteins from simple clusters to nitrogenase. Curr. Opin. Chem. Biol. 6, 259–273 (2002).

    CAS  PubMed  Google Scholar 

  24. Horsefield, R., Iwata, S. & Byrne, B. Complex II from a structural perspective. Curr. Protein Pept. Sci. 5, 107–118 (2004).

    CAS  PubMed  Google Scholar 

  25. Hirst, J. Mitochondrial complex I. Annu. Rev. Biochem. 82, 551–575 (2013).

    CAS  PubMed  Google Scholar 

  26. Venkateswara Rao, P. & Holm, R. H. Synthetic analogues of the active sites of iron–sulfur proteins. Chem. Rev. 104, 527–559 (2004). This review summarizes the extensive role of chemical modelling of Fe–S clusters in understanding that basic properties derive from the Fe–S cluster, without the need for peptide ligation.

    CAS  PubMed  Google Scholar 

  27. Kiley, P. J. & Beinert, H. The role of Fe–S proteins in sensing and regulation in bacteria. Curr. Opin. Microbiol. 6, 181–185 (2003).

    CAS  PubMed  Google Scholar 

  28. Zheng, L., Cash, V. L., Flint, D. H. & Dean, D. R. Assembly of iron–sulfur clusters. Identification of an iscSUA-hscBA-fdx gene cluster from Azotobacter vinelandii. J. Biol. Chem. 273, 13264–13272 (1998).

    CAS  PubMed  Google Scholar 

  29. Mueller, E. G. Trafficking in persulfides: delivering sulfur in biosynthetic pathways. Nature Chem. Biol. 2, 185–194 (2006).

    CAS  Google Scholar 

  30. Zheng, L., White, R. H., Cash, V. L., Jack, R. F. & Dean, D. R. Cysteine desulfurase activity indicates a role for NIFS in metallocluster biosynthesis. Proc. Natl Acad. Sci. USA 90, 2754–2758 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Outten, F. W., Wood, M. J., Munoz, F. M. & Storz, G. The SufE protein and the SufBCD complex enhance SufS cysteine desulfurase activity as part of a sulfur transfer pathway for Fe–S cluster assembly in Escherichia coli. J. Biol. Chem. 278, 45713–45719 (2003).

    CAS  PubMed  Google Scholar 

  32. Muhlenhoff, U. et al. Functional characterization of the eukaryotic cysteine desulfurase Nfs1p from Saccharomyces cerevisiae. J. Biol. Chem. 279, 36906–36915 (2004).

    PubMed  Google Scholar 

  33. Land, T. & Rouault, T. A. Targeting of a human iron–sulfur cluster assembly enzyme, Nifs, to different subcellular compartments is regulated through alternative AUG utilization. Mol. Cell 2, 807–815 (1998).

    CAS  PubMed  Google Scholar 

  34. Pastore, A. & Puccio, H. Frataxin: a protein in search for a function. J. Neurochem. 126 (Suppl. 1), 43–52 (2013).

    CAS  PubMed  Google Scholar 

  35. Urbina, H. D., Silberg, J. J., Hoff, K. G. & Vickery, L. E. Transfer of sulfur from IscS to IscU during Fe/S cluster assembly. J. Biol. Chem. 276, 44521–44526 (2001).

    CAS  PubMed  Google Scholar 

  36. Smith, A. D. et al. Sulfur transfer from IscS to IscU: the first step in iron–sulfur cluster biosynthesis. J. Am. Chem. Soc. 123, 11103–11104 (2001).

    CAS  PubMed  Google Scholar 

  37. Bridwell-Rabb, J., Winn, A. M. & Barondeau, D. P. Structure–function analysis of Friedreich's ataxia mutants reveals determinants for frataxin binding and activation of the Fe–S assembly complex. Biochemistry 50, 7265–7274 (2011).

    CAS  PubMed  Google Scholar 

  38. Pandey, A., Golla, R., Yoon, H., Dancis, A. & Pain, D. Persulfide formation on mitochondrial cysteine desulfurase: enzyme activation by a eukaryote-specific interacting protein and Fe–S cluster synthesis. Biochem. J. 448, 171–187 (2012).

    CAS  PubMed  Google Scholar 

  39. Tsai, C. L. & Barondeau, D. P. Human frataxin is an allosteric switch that activates the Fe–S cluster biosynthetic complex. Biochemistry 49, 9132–9139 (2010).

    CAS  PubMed  Google Scholar 

  40. Yoon, H. et al. Frataxin-bypassing Isu1: characterization of the bypass activity in cells and mitochondria. Biochem. J. 459, 71–81 (2014).

    CAS  PubMed  Google Scholar 

  41. Kampinga, H. H. & Craig, E. A. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nature Rev. Mol. Cell Biol. 11, 579–592 (2010).

    CAS  Google Scholar 

  42. Andrew, A. J., Dutkiewicz, R., Knieszner, H., Craig, E. A. & Marszalek, J. Characterization of the interaction between the J-protein Jac1p and the scaffold for Fe–S cluster biogenesis, Isu1p. J. Biol. Chem. 281, 14580–14587 (2006).

    CAS  PubMed  Google Scholar 

  43. Uhrigshardt, H., Singh, A., Kovtunovych, G., Ghosh, M. & Rouault, T. A. Characterization of the human HSC20, an unusual DnaJ type III protein, involved in iron–sulfur cluster biogenesis. Hum. Mol. Genet. 19, 3816–3834 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Majewska, J. et al. Binding of the chaperone Jac1 protein and cysteine desulfurase Nfs1 to the iron–sulfur cluster scaffold Isu protein is mutually exclusive. J. Biol. Chem. 288, 29134–29142 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Dutkiewicz, R. et al. Sequence-specific interaction between mitochondrial Fe–S scaffold protein Isu and Hsp70 Ssq1 is essential for their in vivo function. J. Biol. Chem. 279, 29167–29174 (2004).

    CAS  PubMed  Google Scholar 

  46. Lanz, N. D. et al. Evidence for a catalytically and kinetically competent enzyme–substrate cross-linked intermediate in catalysis by lipoyl synthase. Biochemistry 53, 4557–4572 (2014).

    CAS  PubMed  Google Scholar 

  47. Ghezzi, D. et al. SDHAF1, encoding a LYR complex-II specific assembly factor, is mutated in SDH-defective infantile leukoencephalopathy. Nature Genet. 41, 654–656 (2009).

    CAS  PubMed  Google Scholar 

  48. Angerer, H. The superfamily of mitochondrial Complex1_LYR motif-containing (LYRM) proteins. Biochem. Soc. Trans. 41, 1335–1341 (2013).

    CAS  PubMed  Google Scholar 

  49. Zhang, B. et al. Monothiol glutaredoxins can bind linear [Fe3S4]+ and [Fe4S4]2+ clusters in addition to [Fe2S2]2+ clusters: spectroscopic characterization and functional implications. J. Am. Chem. Soc. 135, 15153–15164 (2013).

    CAS  PubMed  Google Scholar 

  50. Roche, B. et al. Iron/sulfur proteins biogenesis in prokaryotes: formation, regulation and diversity. Biochim. Biophys. Acta 1827, 923–937 (2013).

    CAS  PubMed  Google Scholar 

  51. Sheftel, A. D. et al. The human mitochondrial ISCA1, ISCA2, and IBA57 proteins are required for [4Fe-4S] protein maturation. Mol. Biol. Cell 23, 1157–1166 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ajit Bolar, N. et al. Mutation of the iron–sulfur cluster assembly gene IBA57 causes severe myopathy and encephalopathy. Hum. Mol. Genet. 22, 2590–2602 (2013).

    CAS  PubMed  Google Scholar 

  53. Cameron, J. M. et al. Mutations in iron–sulfur cluster scaffold genes NFU1 and BOLA3 cause a fatal deficiency of multiple respiratory chain and 2-oxoacid dehydrogenase enzymes. Am. J. Hum. Genet. 89, 486–495 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Navarro-Sastre, A. et al. A fatal mitochondrial disease is associated with defective NFU1 function in the maturation of a subset of mitochondrial Fe–S proteins. Am. J. Hum. Genet. 89, 656–667 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Haack, T. B. et al. Homozygous missense mutation in BOLA3 causes multiple mitochondrial dysfunctions syndrome in two siblings. J. Inherit. Metab. Dis. 36, 55–62 (2013).

    CAS  PubMed  Google Scholar 

  56. Baker, P. R. et al. Variant non ketotic hyperglycinemia is caused by mutations in LIAS, BOLA3 and the novel gene GLRX5. Brain 137, 366–379 (2014).

    PubMed  Google Scholar 

  57. Bych, K. et al. The iron–sulphur protein Ind1 is required for effective complex I assembly. EMBO J. 27, 1736–1746 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Sheftel, A. D. et al. Human Ind1, an iron–sulfur cluster assembly factor for respiratory complex I. Mol. Cell. Biol. 29, 6059–6073 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Wydro, M. M. et al. The evolutionarily conserved iron–sulfur protein INDH is required for complex I assembly and mitochondrial translation in Arabidopsis [corrected]. Plant Cell. 25, 4014–4027 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Li, P. M., Reichert, J., Freyd, G., Horvitz, H. R. & Walsh, C. T. The LIM region of a presumptive Caenorhabditis elegans transcription factor is an iron–sulfur- and zinc-containing metallodomain. Proc. Natl Acad. Sci. USA 88, 9210–9213 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Imlay, J. A. Iron-sulphur clusters and the problem with oxygen. Mol. Microbiol. 59, 1073–1082 (2006).

    PubMed  Google Scholar 

  62. Qi, W. et al. Glutathione complexed Fe–S centers. J. Am. Chem. Soc. 134, 10745–10748 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Qi, W., Li, J. & Cowan, J. A. A structural model for glutathione-complexed iron–sulfur cluster as a substrate for ABCB7-type transporters. Chem. Commun. 50, 3795–3798 (2014).

    CAS  Google Scholar 

  64. Netz, D. J. et al. A bridging [4Fe–4S] cluster and nucleotide binding are essential for function of the Cfd1–Nbp35 complex as a scaffold in iron–sulfur protein maturation. J. Biol. Chem. 287, 12365–12378 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Stehling, O. et al. Human Nbp35 is essential for both cytosolic iron–sulfur protein assembly and iron homeostasis. Mol. Cell. Biol. 28, 5517–5528 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Netz, D. J. et al. Tah18 transfers electrons to Dre2 in cytosolic iron–sulfur protein biogenesis. Nature Chem. Biol. 6, 758–765 (2010).

    CAS  Google Scholar 

  67. Song, D. & Lee, F. S. Mouse knock-out of IOP1 protein reveals its essential role in mammalian cytosolic iron–sulfur protein biogenesis. J. Biol. Chem. 286, 15797–15805 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Stehling, O. et al. Human CIA2A–FAM96A and CIA2B–FAM96B integrate iron homeostasis and maturation of different subsets of cytosolic-nuclear iron–sulfur proteins. Cell. Metab. 18, 187–198 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Rouault, T. A. The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nature Chem. Biol. 2, 406–414 (2006).

    CAS  Google Scholar 

  70. Nakai, Y., Nakai, M., Hayashi, H. & Kagamiyama, H. Nuclear localization of yeast Nfs1p is required for cell survival. J. Biol. Chem. 276, 8314–8320 (2001).

    CAS  PubMed  Google Scholar 

  71. Nakai, Y., Nakai, M., Lill, R., Suzuki, T. & Hayashi, H. Thio modification of yeast cytosolic tRNA is an iron–sulfur protein-dependent pathway. Mol. Cell. Biol. 27, 2841–2847 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Marelja, Z. et al. The l-cysteine desulfurase NFS1 is localized in the cytosol where it provides the sulfur for molybdenum cofactor biosynthesis in humans. PLoS ONE. 8, e60869 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Tong, W. H. & Rouault, T. Distinct iron–sulfur cluster assembly complexes exist in the cytosol and mitochondria of human cells. EMBO J. 19, 5692–5700 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Shi, Y., Ghosh, M. C., Tong, W. H. & Rouault, T. A. Human ISD11 is essential for both iron–sulfur cluster assembly and maintenance of normal cellular iron homeostasis. Hum. Mol. Genet. 18, 3014–3025 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Ando, K. et al. Mortalin is a prognostic factor of gastric cancer with normal p53 function. Gastr. Cancer 17, 255–262 (2014).

    CAS  Google Scholar 

  76. Grodick, M. A., Segal, H. M., Zwang, T. J. & Barton, J. K. DNA-mediated signaling by proteins with 4Fe–4S clusters is necessary for genomic integrity. J. Am. Chem. Soc. 136, 6470–6478 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Campuzano, V. et al. Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271, 1423–1427 (1996).

    CAS  PubMed  Google Scholar 

  78. Crooks, D. R. et al. Tissue specificity of a human mitochondrial disease: differentiation-enhanced mis-splicing of the Fe–S scaffold gene ISCU renders patient cells more sensitive to oxidative stress in ISCU myopathy. J. Biol. Chem. 287, 40119–40130 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Camaschella, C. et al. The human counterpart of zebrafish shiraz shows sideroblastic-like microcytic anemia and iron overload. Blood 110, 1353–1358 (2007).

    CAS  PubMed  Google Scholar 

  80. Tong, W. H., Jameson, G. N., Huynh, B. H. & Rouault, T. A. Subcellular compartmentalization of human Nfu, an iron–sulfur cluster scaffold protein, and its ability to assemble a [4Fe–4S] cluster. Proc. Natl Acad. Sci. USA 100, 9762–9767 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Stehling, O., Wilbrecht, C. & Lill, R. Mitochondrial iron–sulfur protein biogenesis and human disease. Biochimie 100, 61–77 (2014).

    CAS  PubMed  Google Scholar 

  82. Muller, J. J., Lapko, A., Bourenkov, G., Ruckpaul, K. & Heinemann, U. Adrenodoxin reductase-adrenodoxin complex structure suggests electron transfer path in steroid biosynthesis. J. Biol. Chem. 276, 2786–2789 (2001).

    CAS  PubMed  Google Scholar 

  83. Anderson, R. F. et al. Electron-transfer pathways in the heme and quinone-binding domain of complex II (succinate dehydrogenase). Biochemistry 53, 1637–1646 (2014).

    CAS  PubMed  Google Scholar 

  84. Hille, R. Molybdenum-containing hydroxylases. Arch. Biochem. Biophys. 433, 107–116 (2005).

    CAS  PubMed  Google Scholar 

  85. Booker, S. J. Radical SAM enzymes and radical enzymology. Biochim. Biophys. Acta 1824, 1151–1153 (2012).

    CAS  PubMed  Google Scholar 

  86. Lanz, N. & Booker, S. J. in Iron–Sulfur Clusters in Chemistry and Biology (ed. Rouault, T. A.) 211–238 (De Gruyter, 2014).

    Google Scholar 

  87. Rouault, T. A. in Iron–Sulfur Clusters in Chemistry and Biology (ed. Rouault, T. A.) 437–454 (De Gruyter, 2014).

    Google Scholar 

  88. Beinert, H. & Sands, R. H. Studies on succinic and DPNH dehydrogenase preparations by paramagnetic resonance (EPR) spectroscopy. Biochem. Biophys. Res. Commun. 3, 41–46 (1960).

    CAS  Google Scholar 

  89. Beinert, H. Spectroscopy of succinate dehydrogenases, a historical perspective. Biochim. Biophys. Acta 1553, 7–22 (2002).

    CAS  PubMed  Google Scholar 

  90. Hünefeld, F. L. in Die Chemismus in der thierischen Organization 158–163 (Brockhaus, 1840).

    Google Scholar 

  91. Perutz, M. F. et al. Structure of haemoglobin: a three-dimensional Fourier synthesis at 5.5-Å. resolution, obtained by X-ray analysis. Nature 185, 416–422 (1960).

    CAS  PubMed  Google Scholar 

  92. Holmberg, C. G. On the presence of a laccase-like enzyme in serum and its relation to the copper in serum. Acta Physiol. Scand. 8, 227–229 (1944).

    CAS  Google Scholar 

  93. Gray, H. B., Malmstrom, B. G. & Williams, R. J. Copper coordination in blue proteins. J. Biol. Inorg. Chem. 5, 551–559 (2000).

    CAS  PubMed  Google Scholar 

  94. Mossbauer, R. L. Recoilless nuclear resonance absorption of gamma radiation: a new principle yields gamma lines of extreme narrowness for measurements of unprecedented accuracy. Science. 137, 731–738 (1962).

    CAS  PubMed  Google Scholar 

  95. Munck, E., Surerus, K. K. & Hendrich, M. P. Combining Mossbauer spectroscopy with integer spin electron paramagnetic resonance. Methods Enzymol. 227, 463–479 (1993).

    CAS  PubMed  Google Scholar 

  96. Lindahl, P. A. & Holmes-Hampton, G. P. Biophysical probes of iron metabolism in cells and organelles. Curr. Opin. Chem. Biol. 15, 342–346 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Kispal, G., Csere, P., Prohl, C. & Lill, R. The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins. EMBO J. 18, 3981–3989 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Bedekovics, T., Li, H., Gajdos, G. B. & Isaya, G. Leucine biosynthesis regulates cytoplasmic iron–sulfur enzyme biogenesis in an Atm1p-independent manner. J. Biol. Chem. 286, 40878–40888 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Srinivasan, V., Pierik, A. J. & Lill, R. Crystal structures of nucleotide-free and glutathione-bound mitochondrial ABC transporter Atm1. Science 343, 1137–1140 (2014).

    CAS  PubMed  Google Scholar 

  100. Lee, J. Y., Yang, J. G., Zhitnitsky, D., Lewinson, O. & Rees, D. C. Structural basis for heavy metal detoxification by an Atm1-type ABC exporter. Science 343, 1133–1136 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Banci, L. et al. [2Fe–2S] cluster transfer in iron–sulfur protein biogenesis. Proc. Natl Acad. Sci. USA 111, 6203–6208 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Puccio, H., Anheim, M. & Tranchant, C. Pathophysiogical and therapeutic progress in Friedreich ataxia. Rev. Neurol. 170, 355–365 (2014).

    CAS  PubMed  Google Scholar 

  103. Perdomini, M. et al. Prevention and reversal of severe mitochondrial cardiomyopathy by gene therapy in a mouse model of Friedreich's ataxia. Nature Med. 20, 542–547 (2014).

    CAS  PubMed  Google Scholar 

  104. Parkinson, M. H., Boesch, S., Nachbauer, W., Mariotti, C. & Giunti, P. Clinical features of Friedreich's ataxia: classical and atypical phenotypes. J. Neurochem. 126 (Suppl. 1), 103–117 (2013).

    CAS  PubMed  Google Scholar 

  105. Mochel, F. et al. Splice mutation in the iron–sulfur cluster scaffold protein ISCU causes myopathy with exercise intolerance. Am. J. Hum. Genet. 82, 652–660 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Olsson, A., Lind, L., Thornell, L. E. & Holmberg, M. Myopathy with lactic acidosis is linked to chromosome 12q23.3-24.11 and caused by an intron mutation in the ISCU gene resulting in a splicing defect. Hum. Mol. Genet. 17, 1666–1672 (2008).

    CAS  PubMed  Google Scholar 

  107. Kollberg, G. et al. Clinical manifestation and a new ISCU mutation in iron–sulphur cluster deficiency myopathy. Brain 132, 2170–2179 (2009).

    PubMed  Google Scholar 

  108. Lim, S. C. et al. Mutations in LYRM4, encoding iron–sulfur cluster biogenesis factor ISD11, cause deficiency of multiple respiratory chain complexes. Hum. Mol. Genet. 22, 4460–4473 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Spiegel, R. et al. Deleterious mutation in FDX1L gene is associated with a novel mitochondrial muscle myopathy. Eur. J. Hum. Genet. 22, 902–906 (2014).

    CAS  PubMed  Google Scholar 

  110. Allikmets, R. et al. Mutation of a putative mitochondrial iron transporter gene (ABC7) in X-linked sideroblastic anemia and ataxia (XLSA/A). Hum. Mol. Genet. 8, 743–749 (1999).

    CAS  PubMed  Google Scholar 

  111. D'Hooghe, M. et al. X-linked sideroblastic anemia and ataxia: a new family with identification of a fourth ABCB7 gene mutation. Eur. J. Paediatr. Neurol. 16, 730–735 (2012).

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the intramural programme of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, USA. The author thanks members of the Rouault group, particularly N. Maio, G. Holmes-Hampton and W. Hang-Tong for their help with the figures and narrative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tracey A. Rouault.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Glossary

Cofactors

Non-protein chemical compounds that are required for the biological activity of some proteins.

d orbitals

There are five atomic d orbitals, each of which can accommodate two electrons. In the case of transition metals, d orbitals are incompletely filled, allowing them to accept or donate single electrons (reduction or oxidation, respectively). Iron typically contains five electrons (ferric iron) or six electrons (ferrous iron) in its d orbitals.

Electron paramagnetic resonance

(EPR). A technique used to study chemical species with unpaired electrons. EPR spectroscopy has an important role in the understanding of organic and inorganic radicals, transition metal complexes and some biomolecules.

Mössbauer spectroscopy

A technique that uses a source that emits γ-rays to excite a sample to examine its oxidation state and bound ligands.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rouault, T. Mammalian iron–sulphur proteins: novel insights into biogenesis and function. Nat Rev Mol Cell Biol 16, 45–55 (2015). https://doi.org/10.1038/nrm3909

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3909

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing