Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Essay
  • Published:

The unravelling of the ubiquitin system

Abstract

Today, many scientific discoveries are made using a top-down experimental approach. The ubiquitin system was discovered using a 'classic' bottom-up approach to tackle the question: 'how are cellular proteins selectively degraded?' A simple proteolytic assay, which used a crude cell-extract, was all that was required to address this question; it was followed by fractionation and reconstitution experiments to decipher the role of the components in this multi-step process. This 'biochemistry at its best' approach, which was published in a periodical that today would not be regarded as highly visible, provided magnificent findings.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The title and abstract of the first manuscript that prompted additional studies and resulted in the discovery of the ubiquitin proteolytic system.
Figure 2: APF1 is covalently conjugated to proteolytic substrates, presumably marking them for degradation by a downstream protease.
Figure 3: Model of the APF1 (ubiquitin)-mediated proteolytic pathway as proposed in 1980.

References

  1. Schoenheimer, R. The Dynamic State of Body Constituents. (Harvard University Press, 1942).

    Google Scholar 

  2. de Duve, C. & Wattiaux, R. Functions of lysosomes. Annu. Rev. Physiol. 28, 435–492 (1966).

    Article  CAS  Google Scholar 

  3. Simpson, M. V. The release of labeled amino acids from proteins in liver slices. J. Biol. Chem. 201, 143–154 (1953).

    CAS  PubMed  Google Scholar 

  4. Schneider, D. L. ATP-dependent acidification of intact and disrupted lysosomes: evidence for an ATP-driven proton pump. J. Biol. Chem. 256, 3858–3864 (1981).

    CAS  PubMed  Google Scholar 

  5. Mandelstam, J. Turnover of protein in growing and non-growing populations of Escherichia coli. Biochem. J. 69, 110–119 (1958).

    Article  CAS  Google Scholar 

  6. Poole, B., Ohkuma, S. & Warburton, M. J. Protein Turnover and Lysosome Function (eds. Segal, H. L. & Doyle, D. J.) 43–58 (Academic, 1978).

    Book  Google Scholar 

  7. Rabinovitz, M. & Fisher, J. M. Characteristics of the inhibition of hemoglobin synthesis in rabbit reticulocytes by threo-α-amino-β-chlorobutyric acid. Biochim. Biophys. Acta. 91, 313–322 (1964).

    CAS  PubMed  Google Scholar 

  8. Etlinger, J. D., & Goldberg, A. L. A soluble ATP-dependent proteolytic system responsible for the degradation of abnormal proteins in reticulocytes. Proc. Natl Acad. Sci. USA 74, 54–58 (1977).

    Article  CAS  Google Scholar 

  9. Ciechanover, A., Hod, Y. & Hershko, A. A heat-stable polypeptide component of an ATP-dependent proteolytic system from reticulocytes. Biochem. Biophys. Res. Commun. 81, 1100–1105 (1978).

    Article  Google Scholar 

  10. Ciechanover, A., Heller, H., Elias, S., Haas, A. L. & Hershko, A. ATP-dependent conjugation of reticulocyte proteins with the polypeptide required for protein degradation. Proc. Natl Acad. Sci. USA 77, 1365–1368 (1980).

    Article  CAS  Google Scholar 

  11. Hershko, A., Ciechanover, A., Heller, H., Haas, A. L. & Rose, I. A. Proposed role of ATP in protein breakdown: conjugation of proteins with multiple chains of the polypeptide of ATP-dependent proteolysis. Proc. Natl Acad. Sci. USA 77, 1783–1786 (1980).

    Article  CAS  Google Scholar 

  12. Ciechanover, A., Elias, S., Heller, H., Ferber, S. & Hershko, A. Characterization of the heat-stable polypeptide of the ATP-dependent proteolytic system from reticulocytes. J. Biol. Chem. 255, 7525–7528 (1980).

    CAS  PubMed  Google Scholar 

  13. Wilkinson, D., Urban, M. K. & Haas, A. L. Ubiquitin is the ATP-dependent proteolysis factor I of rabbit reticulocytes. J. Biol. Chem. 255, 7529–7532 (1980).

    CAS  PubMed  Google Scholar 

  14. Goldknopf, I. L. & Busch, H. Isopeptide linkage between nonhistone and histone 2A polypeptides of chromosomal conjugate-protein A24. Proc. Natl Acad. Sci. USA 74, 864–868 (1977).

    Article  CAS  Google Scholar 

  15. de Napoles, M. et al. Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev. Cell 7, 663–676 (2004).

    Article  CAS  Google Scholar 

  16. Hershko, A., Eytan, E., Ciechanover, A. & Haas, A. L. Immunochemical analysis of the turnover of ubiquitin-protein conjugates in intact cells. Relationship to the breakdown of abnormal proteins. J. Biol. Chem. 257, 13964–13970 (1982).

    CAS  PubMed  Google Scholar 

  17. Hershko, A., Heller, H., Elias, S. & Ciechanover, A. Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J. Biol. Chem. 258, 8206–8214 (1983).

    CAS  PubMed  Google Scholar 

  18. Hough, R., Pratt, G. & Rechsteiner, M. Ubiquitin-lysozyme conjugates. Identification and characterization of an ATP-dependent protease from rabbit reticulocyte lysates. J. Biol. Chem. 261, 2400–2408 (1986).

    CAS  PubMed  Google Scholar 

  19. Waxman, L., Fagan, J. M. & Goldberg, A. L. Demonstration of two distinct high molecular weight proteases in rabbit reticulocytes, one of which degrades ubiquitin conjugates. J. Biol. Chem. 262, 2451–2457 (1987).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research in the author's laboratory is supported by grants from the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation (AMRF), the Israel Science Foundation (ISF), the Israeli Centers for Research Excellence (I-CORE) Program of the Israeli Planning and Budgeting Committee and the Israel Science Foundation (ISF) (Grant1775/12), the EU Treat PolyQ Network, and the Deutsch-Israelische Projektkooperation (DIP). The author is an Israel Cancer Research Fund (ICRF) USA professor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron Ciechanover.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciechanover, A. The unravelling of the ubiquitin system. Nat Rev Mol Cell Biol 16, 322–324 (2015). https://doi.org/10.1038/nrm3982

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3982

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing