Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Essay
  • Published:

Discovering centromere proteins: from cold white hands to the A, B, C of CENPs

Abstract

The kinetochore is a complex molecular machine that directs chromosome segregation during mitosis. It is one of the most elaborate subcellular protein structures in eukaryotes, comprising more than 100 different proteins. Inner kinetochore proteins associate with specialized centromeric chromatin containing the histone H3 variant centromere protein A (CENP-A) in place of H3. Outer kinetochore proteins bind to microtubules and signal to delay anaphase onset when microtubules are absent. Since the first kinetochore proteins were discovered and cloned 30 years ago using autoimmune sera from patients with scleroderma-spectrum disease, much has been learnt about the composition, functions and regulation of this remarkable structure.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Timeline showing key events in the discovery of the vertebrate centromere proteins.
Figure 2: Localization of CENP-A, CENP-B and CENP-C on chromosomes.

References

  1. Fukagawa, T. & Earnshaw, W. C. The centromere: chromatin foundation for the kinetochore machinery. Dev. Cell 30, 496–508 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shang, W. H. et al. Chickens possess centromeres with both extended tandem repeats and short non- tandem-repetitive sequences. Genome Res. 20, 1219–1228 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Earnshaw, W. C. et al. Esperanto for histones: CENP-A, not CenH3, is the centromeric histone H3 variant. Chromosome Res. 21, 101–106 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. De Rop, V., Padeganeh, A. & Maddox, P. S. CENP-A: the key player behind centromere identity, propagation, and kinetochore assembly. Chromosoma 121, 527–538 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Skene, P. J. & Henikoff, S. Histone variants in pluripotency and disease. Development 140, 2513–2524 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Bloom, K. S. Centromeric heterochromatin: the primordial segregation machine. Annu. Rev. Genet. 48, 457–484 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Blower, M. D., Sullivan, B. A. & Karpen, G. H. Conserved organization of centromeric chromatin in flies and humans. Dev. Cell 2, 319–330 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Carroll, C. W., Silva, M. C., Godek, K. M., Jansen, L. E. & Straight, A. F. Centromere assembly requires the direct recognition of CENP-A nucleosomes by CENP-N. Nature Cell Biol. 11, 896–902 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Carroll, C. W., Milks, K. J. & Straight, A. F. Dual recognition of CENP-A nucleosomes is required for centromere assembly. J. Cell Biol. 189, 1143–1155 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fachinetti, D. et al. A two-step mechanism for epigenetic specification of centromere identity and function. Nature Cell Biol. 15, 1056–1066 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Hudson, D. et al. Centromere protein B null mice are mitotically and meiotically normal but have lower body and testis weights. J. Cell Biol. 141, 309–319 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Perez-Castro, A. V. et al. Centromeric protein B null mice are viable with no apparent abnormalities. Dev. Biol. 201, 135–143 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Kapoor, M. et al. The cenpB gene is not essential in mice. Chromosoma 107, 570–576 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Moroi, Y., Peebles, C., Fritzler, M. J., Steigerwald, J. & Tan, E. M. Autoantibody to centromere (kinetochore) in scleroderma sera. Proc. Natl Acad. Sci. USA 77, 1627–1631 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moroi, Y., Hartman, A. L., Nakane, P. K. & Tan, E. M. Distribution of kinetochore (centromere) antigen in mammalian cell nuclei. J. Cell Biol. 90, 254–259 (1981).

    Article  CAS  PubMed  Google Scholar 

  16. Brenner, S., Pepper, D., Berns, M. W., Tan, E. & Brinkley, B. R. Kinetochore structure, duplication and distribution in mammalian cells: analysis by human autoantibodies from scleroderma patients. J. Cell Biol. 91, 95–102 (1981).

    Article  CAS  PubMed  Google Scholar 

  17. Brinkley, B. R., Valdivia, M. M., Tousson, A. & Brenner, S. L. Compound kinetochores of the Indian muntjac: evolution by linear fusion of unit kinetochores. Chromosoma 91, 1–11 (1984).

    Article  CAS  PubMed  Google Scholar 

  18. Earnshaw, W. C., Halligan, N., Cooke, C. & Rothfield, N. The kinetochore is part of the chromosome scaffold. J. Cell Biol. 98, 352–357 (1984).

    Article  CAS  PubMed  Google Scholar 

  19. Earnshaw, W. C. & Rothfield, N. Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma 91, 313–321 (1985).

    Article  CAS  PubMed  Google Scholar 

  20. Guldner, H. H., Lakomek, H.-J. & Bautz, F. A. Human anti-centromere sera recognise a 19.5 kD non-histone chromosomal protein from HeLa cells. Clin. Exp. Immunol. 58, 13–20 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Young, R. A. & Davis, R. B. Yeast polymerase II genes: isolation with antibody probes. Science 222, 778–782 (1983).

    Article  CAS  PubMed  Google Scholar 

  22. Earnshaw, W. C. et al. Molecular cloning of cDNA for CENP-B, the major human centromere autoantigen. J. Cell Biol. 104, 817–829 (1987).

    Article  CAS  PubMed  Google Scholar 

  23. Saitoh, H. et al. CENP-C, an autoantigen in scleroderma, is a component of the human inner kinetochore plate. Cell 70, 115–125 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Palmer, D. K. & Margolis, R. L. A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histones. J. Cell. Biol. 104, 805–815 (1987).

    Article  CAS  PubMed  Google Scholar 

  25. Sullivan, K. F., Hechenberger, M. & Masri, K. Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere. J. Cell Biol. 127, 581–192 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Ando, S., Yang, H., Nozaki, N., Okazaki, T. & Yoda, K. CENP-A, -B, and -C chromatin complex that contains the I-type α-satellite array constitutes the prekinetochore in HeLa cells. Mol. Cell. Biol. 22, 2229–2241 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Foltz, D. R. et al. The human CENP-A centromeric nucleosome-associated complex. Nature Cell Biol. 8, 458–469 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Hori, T., Okada, M., Maenaka, K. & Fukagawa, T. CENP-O class proteins form a stable complex and are required for proper kinetochore function. Mol. Biol. Cell 19, 843–854 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Santaguida, S. & Musacchio, A. The life and miracles of kinetochores. EMBO J. 28, 2511–2531 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Perpelescu, M. & Fukagawa, T. The ABCs of CENPs. Chromosoma 120, 425–446 (2011).

    Article  PubMed  Google Scholar 

  31. Biggins, S. The composition, functions, and regulation of the budding yeast kinetochore. Genetics 194, 817–846 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Westhorpe, F. G. & Straight, A. F. Functions of the centromere and kinetochore in chromosome segregation. Curr. Opin. Cell Biol. 25, 334–340 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cheerambathur, D. K. & Desai, A. Linked in: formation and regulation of microtubule attachments during chromosome segregation. Curr. Opin. Cell Biol. 26, 113–122 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Stoler, S., Keith, K. C., Curnick, K. E. & Fitzgerald-Hayes, M. A mutation in CSE4, an essential gene encoding a novel chromatin-associated protein in yeast, causes chromosome nondisjunction and cell cycle arrest at mitosis. Genes Dev. 9, 573–586 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Takahashi, K., Chen, E. S. & Yanagida, M. Requirement of Mis6 centromere connector for localizing a CENP-A-like protein in fission yeast. Science 288, 2215–2219 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Henikoff, S. & Furuyama, T. The unconventional structure of centromeric nucleosomes. Chromosoma 121, 341–352 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kurumizaka, H., Horikoshi, N., Tachiwana, H. & Kagawa, W. Current progress on structural studies of nucleosomes containing histone H3 variants. Curr. Opin. Struct. Biol. 23, 109–115 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Padeganeh, A., De Rop, V. & Maddox, P. S. Nucleosomal composition at the centromere: a numbers game. Chromosome Res. 21, 27–36 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Catania, S. & Allshire, R. C. Anarchic centromeres: deciphering order from apparent chaos. Curr. Opin. Cell Biol. 26, 41–50 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Foltz, D. R. et al. Centromere-specific assembly of CENP-A nucleosomes is mediated by HJURP. Cell 137, 472–484 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dunleavy, E. M. et al. HJURP is a cell-cycle- dependent maintenance and deposition factor of CENP-A at centromeres. Cell 137, 485–497 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Jansen, L. E., Black, B. E., Foltz, D. R. & Cleveland, D. W. Propagation of centromeric chromatin requires exit from mitosis. J. Cell Biol. 176, 795–805 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Howman, E. V. et al. Early disruption of centromeric chromatin organization in centromere protein A (Cenpa) null mice. Proc. Natl Acad. Sci. USA 97, 1148–1153 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Oegema, K., Desai, A., Rybina, S., Kirkham, M. & Hyman, A. A. Functional analysis of kinetochore assembly in Caenorhabditis elegans. J. Cell Biol. 153, 1209–1226 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Heun, P. et al. Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores. Dev. Cell 10, 303–315 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Barnhart, M. C. et al. HJURP is a CENP-A chromatin assembly factor sufficient to form a functional de novo kinetochore. J. Cell Biol. 194, 229–243 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tudor, M., Lobocka, M., Goodell, M., Pettitt, J. & O'Hare, K. The pogo transposable element family of Drosophila melanogaster. Mol. Gen. Genet. 232, 126–134 (1992).

    Article  CAS  PubMed  Google Scholar 

  48. Casola, C., Hucks, D. & Feschotte, C. Convergent domestication of pogo-like transposases into centromere-binding proteins in fission yeast and mammals. Mol. Biol. Evol. 25, 29–41 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Cooke, C. A., Bernat, R. L. & Earnshaw, W. C. CENP-B: a major human centromere protein located beneath the kinetochore. J. Cell Biol. 110, 1475–1488 (1990).

    Article  CAS  PubMed  Google Scholar 

  50. Masumoto, H., Masukata, H., Muro, Y., Nozaki, N. & Okazaki, T. A human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human centromeric satellite. J. Cell Biol. 109, 1963–1973 (1989).

    Article  CAS  PubMed  Google Scholar 

  51. Okada, T. et al. CENP-B controls centromere formation depending on the chromatin context. Cell 131, 1287–1300 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Liu, S. T., Rattner, J. B., Jablonski, S. A. & Yen, T. J. Mapping the assembly pathways that specify formation of the trilaminar kinetochore plates in human cells. J. Cell Biol. 175, 41–53 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Erhardt, S. et al. Genome-wide analysis reveals a cell cycle-dependent mechanism controlling centromere propagation. J. Cell Biol. 183, 805–818 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Brown, M. T. Sequence similarities between the yeast chromosome segregation protein Mif2 and the human centromere protein CENP-C. Gene 160, 111–116 (1995).

    Article  CAS  PubMed  Google Scholar 

  55. Meluh, P. B. & Koshland, D. Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C. Mol. Biol. Cell 6, 793–807 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sugimoto, K., Yata, H., Muro, Y. & Himeno, M. Human centromere protein C (CENP-C) is a DNA-binding protein which possesses a novel DNA-binding motif. J. Biochem. 116, 877–881 (1994).

    Article  CAS  PubMed  Google Scholar 

  57. Yang, C. H., Tomkiel, J., Saitoh, H., Johnson, D. H. & Earnshaw, W. C. Identification of overlapping DNA-binding and centromere-targeting domains in the human kinetochore protein CENP-C. Mol. Cell. Biol. 16, 3576–3586 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kato, H. et al. A conserved mechanism for centromeric nucleosome recognition by centromere protein CENP-C. Science 340, 1110–1113 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Moree, B., Meyer, C. B., Fuller, C. J. & Straight, A. F. CENP-C recruits M18BP1 to centromeres to promote CENP-A chromatin assembly. J. Cell Biol. 194, 855–871 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cheeseman, I. M., Chappie, J. S., Wilson-Kubalek, E. M. & Desai, A. The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 127, 983–997 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Przewloka, M. R. et al. CENP-C is a structural platform for kinetochore assembly. Curr. Biol. 21, 399–405 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Screpanti, E. et al. Direct binding of Cenp-C to the Mis12 complex joins the inner and outer kinetochore. Curr. Biol. 21, 391–398 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wigge, P. A. & Kilmartin, J. V. The Ndc80p complex from Saccharomyces cerevisiae contains conserved centromere components and has a function in chromosome segregation. J. Cell Biol. 152, 349–360 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. He, X., Rines, D. R., Espelin, C. W. & Sorger, P. K. Molecular analysis of kinetochore-microtubule attachment in budding yeast. Cell 106, 195–206 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. De Wulf, P., McAinsh, A. D. & Sorger, P. K. Hierarchical assembly of the budding yeast kinetochore from multiple subcomplexes. Genes Dev. 17, 2902–2921 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cheeseman, I. M. et al. A conserved protein network controls assembly of the outer kinetochore and its ability to sustain tension. Genes Dev. 18, 2255–2268 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. DeLuca, J. et al. Hec1 and nuf2 are core components of the kinetochore outer plate essential for organizing microtubule attachment sites. Mol. Biol. Cell. 16, 519–531 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wiener, E. S. et al. Clinical associations of anticentromere antibodies and antibodies to topoisomerase I: a study of 355 patients. Arthritis Rheum. 31, 378–385 (1988).

    Article  Google Scholar 

  69. Wiener, E. S. et al. Prognostic significance of anticentromere antibodies and topoisomerase I antibodies in Raynaud's disease: a prospective study. Arthritis Rheum. 34, 68–77 (1989).

    Article  Google Scholar 

  70. Earnshaw, W. C., Machlin, P. S., Bordwell, B., Rothfield, N. F. & Cleveland, D. W. Analysis of anti-centromere autoantibodies using cloned autoantigen CENP-B. Proc. Natl Acad. Sci. USA 84, 4979–4983 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Warburton, P. E. et al. Immunolocalization of CENP-A suggests a distinct nucleosome structure at the inner kinetochore plate of active centromeres. Curr. Biol. 7, 901–904 (1997).

    Article  CAS  PubMed  Google Scholar 

  72. Metzner, R. Beiträge zur Granulalehre. I. Kern und kerntheilung. Arch. Anat. Physiol. 309–348 (in German) (1894).

  73. Darlington, C. D. The external mechanics of the chromosomes. I — the scope of enquiry. Proc. R. Soc. Lond. B 121, 264–273 (1936).

    Article  Google Scholar 

  74. Luykx, P. The structure of the kinetochore in meiosis and mitosis in Urechis eggs. Exp. Cell Res. 39, 643–657 (1965).

    Article  CAS  PubMed  Google Scholar 

  75. Brinkley, B. R. & Stubblefield, E. The fine structure of the kinetochore of a mammalian cell in vitro. Chromosoma 19, 28–43 (1966).

    Article  CAS  PubMed  Google Scholar 

  76. Jokelainen, P. T. The ultrastructure and spatial organization of the metaphase kinetochore in mitotic rat cells. J. Ultrastruct. Res. 19, 19–44 (1967).

    Article  CAS  PubMed  Google Scholar 

  77. Earnshaw, W. C. & Migeon, B. A family of centromere proteins is absent from the latent centromere of a stable isodicentric chromosome. Chromosoma 92, 290–296 (1985).

    Article  CAS  PubMed  Google Scholar 

  78. Voullaire, L. E., Slater, H. R., Petrovic, V. & Choo, K. H. A functional marker centromere with no detectible α-satellite, satellite III, or CENP-B protein: activation of a latent centromere? Am. J. Hum. Genet. 52, 1153–1163 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Sullivan, B. A. & Karpen, G. H. Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nature Struct. Mol. Biol. 11, 1076–1083 (2004).

    Article  CAS  Google Scholar 

  80. Cheeseman, I. M. & Desai, A. Molecular architecture of the kinetochore-microtubule interface. Nature Rev. Mol. Cell. Biol. 9, 33–46 (2008).

    Article  CAS  Google Scholar 

  81. Nakano, M. et al. Inactivation of a human kinetochore by specific targeting of chromatin modifiers. Dev. Cell 14, 507–522 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tachiwana, H. et al. Crystal structure of the human centromeric nucleosome containing CENP-A. Nature 476, 232–235 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Hori, T., Shang, W. H., Takeuchi, K. & Fukagawa, T. The CCAN recruits CENP-A to the centromere and forms the structural core for kinetochore assembly. J. Cell Biol. 200, 45–60 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The studies described here are testimony to the power of scientific collaborations. This story would not have developed without N. Rothfield, D. Cleveland, K. Sullivan and T. Pollard, who provided inspiration, reagents, expertise, criticism and passion. Of course, nothing could have been done without the brave patients who donated their sera — some of them more than once — so that this story could be pursued. The author also thanks the members of his team whose images have been reproduced here. The original work was funded by the US National Institutes of Health (NIH). The writing of this manuscript was supported by The Wellcome Trust, of which the author is a Principal Research Fellow (grant number 073915). The Wellcome Trust Centre for Cell Biology is supported by core grant numbers 077707 and 092076.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William C. Earnshaw.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Earnshaw, W. Discovering centromere proteins: from cold white hands to the A, B, C of CENPs. Nat Rev Mol Cell Biol 16, 443–449 (2015). https://doi.org/10.1038/nrm4001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm4001

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing