Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Treponema pallidum, the syphilis spirochete: making a living as a stealth pathogen

Key Points

  • Pathogenic treponemes are clonal, unculturable, highly invasive bacteria that cause venereal syphilis, yaws, endemic syphilis and pinta — multi-stage infections that have many similarities, but can be differentiated based on clinical, epidemiological, geographical and, most recently, genomic criteria. Only Treponema pallidum subsp. pallidum is transmitted through sexual activity.

  • Key to the capacity of the syphilis spirochete for immune evasion and thus 'stealth pathogenicity' is its unusual outer membrane, which lacks lipopolysaccharide and contains an extremely low density of integral membrane proteins and a paucity of surface-exposed lipoproteins. The production of opsonic antibodies against low-abundance surface antigenic targets is believed to be essential for control of syphilitic infection.

  • In recent years, considerable progress has been made in defining the repertoire of β-barrel-forming rare outer membrane proteins of the syphilis spirochete and the mechanisms by which the bacterium seems to limit the exposure of surface molecules to the antibody-mediated defences of the host.

  • During the course of genomic reduction, T. pallidum has undergone adaptations that enable it to acquire all of its required nutrients from its obligate human host and optimize their usage in various niches, while coping with exogenous and endogenous stresses.

  • The genome of T. pallidum encodes several alternative sigma factors and other regulatory molecules or pathways that collectively point to a previously unsuspected capacity to intricately regulate gene expression in diverse microenvironments.

  • Comparative genomics has enabled investigators to identify 'hotspots' for sequence variation that probably explain differences in virulence potential and tissue tropisms among the pathogenic treponemes; many of these hotspots are located in proteins that are known or predicted to reside at the host–pathogen interface.

Abstract

The past two decades have seen a worldwide resurgence in infections caused by Treponema pallidum subsp. pallidum, the syphilis spirochete. The well-recognized capacity of the syphilis spirochete for early dissemination and immune evasion has earned it the designation 'the stealth pathogen'. Despite the many hurdles to studying syphilis pathogenesis, most notably the inability to culture and to genetically manipulate T. pallidum, in recent years, considerable progress has been made in elucidating the structural, physiological, and regulatory facets of T. pallidum pathogenicity. In this Review, we integrate this eclectic body of information to garner fresh insights into the highly successful parasitic lifestyles of the syphilis spirochete and related pathogenic treponemes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Morphology and cell envelope architecture of T. pallidum.
Figure 2: Energy generation, amino acid biosynthesis and regeneration of NAD+ in T. pallidum.
Figure 3: Proposed pathways for the control of alternative sigma factors in T. pallidum.
Figure 4: Domain architecture of the Tpr family of proteins in T. pertenue and T. pallidum strains.

Similar content being viewed by others

References

  1. Giacani, L. & Lukehart, S. A. The endemic treponematoses. Clin. Microbiol. Rev. 27, 89–115 (2014). A contemporary review of the origins, global epidemiology and clinical features of the non-venereal treponematoses and their continuing threat to worldwide health.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sena, A. C., Pillay, A., Cox, D. L. & Radolf, J. D. in Manual of Clinical Microbiology (eds Jorgensen, J. H. et al.) 1055–1081 (ASM Press, 2015).

    Book  Google Scholar 

  3. Miao, R. & Fieldsteel, A. H. Genetics of Treponema: relationship between Treponema pallidum and five cultivable treponemes. J. Bacteriol. 133, 101–107 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Miao, R. M. & Fieldsteel, A. H. Genetic relationship between Treponema pallidum and Treponema pertenue, two noncultivable human pathogens. J. Bacteriol. 141, 427–429 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Smajs, D., Norris, S. J. & Weinstock, G. M. Genetic diversity in Treponema pallidum: implications for pathogenesis, evolution and molecular diagnostics of syphilis and yaws. Infect. Genet. Evol. 12, 191–202 (2012). A comprehensive review of the genetic and evolutionary relationships among pathogenic treponemes that is based on genomic sequencing data.

    Article  PubMed  Google Scholar 

  6. Lumeij, J. T., Mikalova, L. & Smajs, D. Is there a difference between hare syphilis and rabbit syphilis? Cross infection experiments between rabbits and hares. Vet. Microbiol. 164, 190–194 (2013).

    Article  PubMed  Google Scholar 

  7. Smajs, D. et al. Complete genome sequence of Treponema paraluiscuniculi, strain Cuniculi A: the loss of infectivity to humans is associated with genome decay. PLoS ONE 6, e20415 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mitja, O. et al. Global epidemiology of yaws: a systematic review. Lancet Glob. Health 3, e324–e331 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  9. WHO. Global Incidence and Prevalence of Selected Curable Sexually Transmitted Infections —2008 (World Health Organization, 2012).

  10. Klausner, J. D. The sound of silence: missing the opportunity to save lives at birth. Bull. World Health Organ. 91, 158–158A (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Radolf, J. D., Tramont, E. C. & Salazar, J. C. in Mandell, Douglas and Bennett's Principles and Practice of Infectious Diseases (eds Bennett, J. E., Dolin, R. & Blaser, M. J.) 2684–2709 (Elsevier Saunders, 2014).

    Google Scholar 

  12. Radolf, J. D., Hazlett, K. R. O. & Lukehart, S. A. in Pathogenic Treponema: Molecular and Cellular Biology (eds Radolf, J. D. & Lukehart, S. A.) 197–236 (Caister Academic Press, 2006).

    Google Scholar 

  13. Cameron, C. E. in Pathogenic Treponema: Molecular and Cellular Biology (eds Radolf, J. D. & Lukehart, S. A.) 237–266 (Caister Academic Press, 2006).

    Google Scholar 

  14. Lafond, R. E. & Lukehart, S. A. Biological basis for syphilis. Clin. Microbiol. Rev. 19, 29–49 (2006). A complete balanced review of the immunology, molecular biology and pathogenesis of syphilis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Izard, J. et al. Cryo-electron tomography elucidates the molecular architecture of Treponema pallidum, the syphilis spirochete. J. Bacteriol. 191, 7566–7580 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Thomas, D. D. et al. Treponema pallidum invades intercellular junctions of endothelial cell monolayers. Proc. Natl Acad. Sci. USA 85, 3608–3612 (1988).

    Article  CAS  PubMed  Google Scholar 

  17. Wolgemuth, C. W. Flagellar motility of the pathogenic spirochetes. Semin. Cell Dev. Biol. 46, 104–112 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fraser, C. M. et al. Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science 281, 375–388 (1998). This landmark paper is an insightful, beautifully written presentation of the T. pallidum genome, which was one of the first bacterial genomes to be sequenced.

    Article  CAS  PubMed  Google Scholar 

  19. Radolf, J. D. & Lukehart, S. A. in Pathogenic Treponema: Molecular and Cellular Biology (eds Radolf, J. D. & Lukehart, S. A.) 285–322 (Caister Academic Press, 2006).

    Google Scholar 

  20. Moore, M. W. et al. Phagocytosis of Borrelia burgdorferi and Treponema pallidum potentiates innate immune activation and induces gamma interferon production. Infect. Immun. 75, 2046–2062 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lukehart, S. A. Scientific monogamy: thirty years dancing with the same bug: 2007 Thomas Parran Award Lecture. Sex. Transm. Dis. 35, 2–7 (2008).

    Article  PubMed  Google Scholar 

  22. Abell, E., Marks, R. & Jones, E. W. Secondary syphilis: a clinico-pathological review. Br. J. Dermatol. 93, 53–61 (1975).

    Article  CAS  PubMed  Google Scholar 

  23. van Voorhis, W. C., Barrett, L. K., Nasio, J. M., Plummer, F. A. & Lukehart, S. A. Lesions of primary and secondary syphilis contain activated cytolytic T cells. Infect. Immun. 64, 1048–1050 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Salazar, J. C. et al. Treponema pallidum elicits innate and adaptive cellular immune responses in skin and blood during secondary syphilis: a flow-cytometric analysis. J. Infect. Dis. 195, 879–887 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stary, G. et al. Host defense mechanisms in secondary syphilitic lesions: a role for IFN-γ/IL-17-producing CD8+ T cells? Am. J. Pathol. 177, 2421–2432 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cruz, A. R. et al. Immune evasion and recognition of the syphilis spirochete in blood and skin of secondary syphilis patients: two immunologically distinct compartments. PLoS Negl Trop. Dis. 6, e1717 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cruz, A. R. et al. Secondary syphilis in Cali, Colombia: new concepts in disease pathogenesis. PLoS Negl Trop. Dis. 4, e690 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shafii, T., Radolf, J. D., Sanchez, P. J., Schulz, K. F. & Murphy, F. K. in Sexually Transmitted Diseases (eds Holmes, K. K. et al.) 1577–1612 (McGraw Hill, 2008).

    Google Scholar 

  29. Bishop, N. H. & Miller, J. N. Humoral immunity in experimental syphilis. I. The demonstration of resistance conferred by passive immunization. J. Immunol. 117, 191–196 (1976).

    CAS  PubMed  Google Scholar 

  30. Perine, P. L., Weiser, R. S. & Klebanoff, S. J. Immunity to syphilis. I. Passive transfer in rabbits with hyperimmune serum. Infect. Immun. 8, 787–790 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Sell, S. & Norris, S. J. The biology, pathology and immunology of syphilis. Int. Rev. Exp. Pathol. 24, 203–276 (1983).

    CAS  PubMed  Google Scholar 

  32. Sell, S., Salman, J. & Norris, S. J. Reinfection of chancre-immune rabbits with Treponema pallidum. I. Light and immunofluorescence studies. Am. J. Pathol. 118, 248–255 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Salazar, J. C., Hazlett, K. R. & Radolf, J. D. The immune response to infection with Treponema pallidum, the stealth pathogen. Microbes Infect. 4, 1133–1140 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Ho, E. L. & Lukehart, S. A. Syphilis: using modern approaches to understand an old disease. J. Clin. Invest. 121, 4584–4592 (2011). This article presents a state-of-the-art summary of the global molecular epidemiology and pathogenesis of syphilis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Norris, S. J., Cox, D. L. & Weinstock, G. M. Biology of Treponema pallidum: correlation of functional activities with genome sequence data. J. Mol. Microbiol. Biotechnol. 3, 37–62 (2001).

    CAS  PubMed  Google Scholar 

  36. Nelson, R. A. Jr. Factors affecting the survival of Treponema pallidum in vitro. Am. J. Hyg. 48, 120–132 (1948).

    PubMed  Google Scholar 

  37. Fieldsteel, A. H., Cox, D. L. & Moeckli, R. A. Cultivation of virulent Treponema pallidum in tissue culture. Infect. Immun. 32, 908–915 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Norris, S. J. In vitro cultivation of Treponema pallidum: independent confirmation. Infect. Immun. 36, 437–439 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Norris, S. J. & Edmondson, D. G. Factors affecting the multiplication and subculture of Treponema pallidum subsp. pallidum in a tissue culture system. Infect. Immun. 53, 534–539 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Naqvi, A. A., Shahbaaz, M., Ahmad, F. & Hassan, M. I. Identification of functional candidates amongst hypothetical proteins of Treponema pallidum ssp. pallidum. PLoS ONE 10, e0124177 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Deka, R. K., Brautigam, C. A., Biddy, B. A., Liu, W. Z. & Norgard, M. V. Evidence for an ABC-type riboflavin transporter system in pathogenic spirochetes. mBio 4, e00615-12 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Deka, R. K., Brautigam, C. A., Liu, W. Z., Tomchick, D. R. & Norgard, M. V. Evidence for posttranslational protein flavinylation in the syphilis spirochete Treponema pallidum: structural and biochemical insights from the catalytic core of a periplasmic flavin-trafficking protein. mBio 6, e00519–15 (2015). This report presents a biochemical and molecular analysis of a unique periplasmic flavin utilization pathway in T. pallidum and describes the Rnf system of the spirochete for the generation of an electrochemical gradient across the cytoplasmic membrane.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lukehart, S. A. & Marra, C. M. Isolation and laboratory maintenance of Treponema pallidum. Curr. Protoc. Microbiol. Chapter 12, Unit 12A.1 (2007).

    PubMed  Google Scholar 

  44. Alderete, J. F. & Baseman, J. B. Surface-associated host proteins on virulent Treponema pallidum. Infect. Immun. 26, 1048–1056 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Radolf, J. D. Treponema pallidum and the quest for outer membrane proteins. Mol. Microbiol. 16, 1067–1073 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Silver, A. C. et al. MyD88 deficiency markedly worsens tissue inflammation and bacterial clearance in mice infected with Treponema pallidum, the agent of syphilis. PLoS ONE 8, e71388 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cameron, C. E. & Lukehart, S. A. Current status of syphilis vaccine development: need, challenges, prospects. Vaccine 32, 1602–1609 (2014).

    Article  PubMed  Google Scholar 

  48. Norris, S. J. & Weinstock, G. M. in Pathogenic Treponema: Molecular and Cellular Biology (eds Radolf, J. D. & Lukehart, S. A.) 19–38 (Caister Academic Press, 2006).

    Google Scholar 

  49. Radolf, J. D., Norgard, M. V. & Schulz, W. W. Outer membrane ultrastructure explains the limited antigenicity of virulent Treponema pallidum. Proc. Natl Acad. Sci. USA 86, 2051–2055 (1989). This report describes the discovery of rare outer membrane proteins in T. pallidum by freeze-fracture electron microscopy.

    Article  CAS  PubMed  Google Scholar 

  50. Walker, E. M., Zampighi, G. A., Blanco, D. R., Miller, J. N. & Lovett, M. A. Demonstration of rare protein in the outer membrane of Treponema pallidum subsp. pallidum by freeze-fracture analysis. J. Bacteriol. 171, 5005–5011 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Magnuson, H. J., Eagle, H. & Fleischman, R. The minimal infectious inoculum of Spirochaeta pallida (Nichols strain) and a consideration of its rate of multiplication in vivo. Am. J. Syph. Gonorrhea Vener. Dis. 32, 1–18 (1948).

    CAS  PubMed  Google Scholar 

  52. Centurion-Lara, A. et al. Treponema pallidum major sheath protein homologue TprK is a target of opsonic antibody and the protective immune response. J. Exp. Med. 189, 647–656 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gray, R. R. et al. Molecular evolution of the tprC. D, I, K, G, and J genes in the pathogenic genus Treponema. Mol. Biol. Evol. 23, 2220–2233 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Ellen, R. P. in Pathogenic Treponema: Molecular and Cellular Biology (eds Radolf, J. D. & Lukehart, S. A.) 357–386 (Caister Academic Press, 2006).

    Google Scholar 

  55. Deitsch, K. W., Lukehart, S. A. & Stringer, J. R. Common strategies for antigenic variation by bacterial, fungal and protozoan pathogens. Nat. Rev. Microbiol. 7, 493–503 (2009). This review describes antigenic variation by T. pallidum in the context of well-characterized mechanisms for the variation of surface antigenicity in other pathogens.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hazlett, K. R. et al. The TprK protein of Treponema pallidum is periplasmic and is not a target of opsonic antibody or protective immunity. J. Exp. Med. 193, 1015–1026 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cox, D. L. et al. Surface immunolabeling and consensus computational framework to identify candidate rare outer membrane proteins of Treponema pallidum. Infect. Immun. 78, 5178–5194 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cameron, C. E. et al. Opsonic potential, protective capacity, and sequence conservation of the Treponema pallidum subspecies pallidum Tp92. J. Infect. Dis. 181, 1401–1413 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Anand, A. et al. Bipartite topology of Treponema pallidum repeat proteins C/D and I: outer membrane insertion, trimerization, and porin function require a C-terminal β-barrel domain. J. Biol. Chem. 290, 12313–12331 (2015). This report describes the use of molecular, biophysical and immunological methods to establish the bipartite topology of Tpr outer membrane proteins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Anand, A. et al. TprC/D (Tp0117/131), a trimeric, pore-forming rare outer membrane protein of Treponema pallidum, has a bipartite domain structure. J. Bacteriol. 194, 2321–2333 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Anand, A. et al. The major outer sheath protein (Msp) of Treponema denticola has a bipartite domain architecture and exists as periplasmic and outer membrane-spanning conformers. J. Bacteriol. 195, 2060–2071 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nikaido, H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67, 593–656 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Centurion-Lara, A. et al. Fine analysis of genetic diversity of the tpr gene family among treponemal species, subspecies and strains. PLoS Negl Trop. Dis. 7, e2222 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Desrosiers, D. C. et al. TP0326, a Treponema pallidum β-barrel assembly machinery A (BamA) orthologue and rare outer membrane protein. Mol. Microbiol. 80, 1496–1515 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Luthra, A. et al. A homology model reveals novel structural features and an immunodominant surface loop/opsonic target in the Treponema pallidum BamA ortholog TP_0326. J. Bacteriol. 197, 1906–1920 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Selkrig, J., Leyton, D. L., Webb, C. T. & Lithgow, T. Assembly of β-barrel proteins into bacterial outer membranes. Biochim. Biophys. Acta 1843, 1542–1550 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Noinaj, N. et al. Structural insight into the biogenesis of β-barrel membrane proteins. Nature 501, 385–390 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fitzgerald, T. J., Johnson, R. C., Miller, J. N. & Sykes, J. A. Characterization of the attachment of Treponema pallidum (Nichols strain) to cultured mammalian cells and the potential relationship of attachment to pathogenicity. Infect. Immun. 18, 467–478 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Hayes, N. S., Muse, K. E., Collier, A. M. & Baseman, J. B. Parasitism by virulent Treponema pallidum of host cell surfaces. Infect. Immun. 17, 174–186 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Fitzgerald, T. J., Repesh, L. A., Blanco, D. R. & Miller, J. N. Attachment of Treponema pallidum to fibronectin, laminin, collagen IV, and collagen I, and blockage of attachment by immune rabbit IgG. Br. J. Vener. Dis. 60, 357–363 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Cameron, C. E., Brown, E. L., Kuroiwa, J. M., Schnapp, L. M. & Brouwer, N. L. Treponema pallidum fibronectin-binding proteins. J. Bacteriol. 186, 7019–7022 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cameron, C. E. Identification of a Treponema pallidum laminin-binding protein. Infect. Immun. 71, 2525–2533 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cameron, C. E., Brouwer, N. L., Tisch, L. M. & Kuroiwa, J. M. Defining the interaction of the Treponema pallidum adhesin Tp0751 with laminin. Infect. Immun. 73, 7485–7494 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Houston, S., Hof, R., Honeyman, L., Hassler, J. & Cameron, C. E. Activation and proteolytic activity of the Treponema pallidum metalloprotease, pallilysin. PLoS Pathog. 8, e1002822 (2012). This report describes a biochemical and molecular characterization of TP0751 (pallilysin) as a zinc-dependent proteinase that is capable of degrading fibrin clots in addition to its role as a laminin-binding adhesin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Houston, S. et al. The multifunctional role of the pallilysin-associated Treponema pallidum protein, Tp0750, in promoting fibrinolysis and extracellular matrix component degradation. Mol. Microbiol. 91, 618–634 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Brinkman, M. B. et al. A novel Treponema pallidum antigen, TP0136, is an outer membrane protein that binds human fibronectin. Infect. Immun. 76, 1848–1857 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ke, W., Molini, B. J., Lukehart, S. A. & Giacani, L. Treponema pallidum subsp. pallidum TP0136 protein is heterogeneous among isolates and binds cellular and plasma fibronectin via its NH2-terminal end. PLoS Negl Trop. Dis. 9, e0003662 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chan, K. et al. Treponema pallidum lipoprotein TP0435 expressed in Borrelia burgdorferi produces multiple surface/periplasmic isoforms and mediates adherence. Sci. Rep. 6, 25593 (2016). A ground-breaking report in its use of B. burgdorferi as a genetic surrogate for T. pallidum to characterize potential adhesins and surface antigenic targets.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Penn, C. W., Cockayne, A. & Bailey, M. J. The outer membrane of Treponema pallidum: biological significance and biochemical properties. J. Gen. Microbiol. 131, 2349–2357 (1985).

    CAS  PubMed  Google Scholar 

  80. Cox, D. L., Chang, P., McDowall, A. W. & Radolf, J. D. The outer membrane, not a coat of host proteins, limits antigenicity of virulent Treponema pallidum. Infect. Immun. 60, 1076–1083 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Lukehart, S. A., Shaffer, J. M. & Baker-Zander, S. A. A subpopulation of Treponema pallidum is resistant to phagocytosis: possible mechanism of persistence. J. Infect. Dis. 166, 1449–1453 (1992).

    Article  CAS  PubMed  Google Scholar 

  82. Centurion-Lara, A. et al. Gene conversion: a mechanism for generation of heterogeneity in the tprK gene of Treponema pallidum during infection. Mol. Microbiol. 52, 1579–1596 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. LaFond, R. E., Molini, B. J., Van Voorhis, W. C. & Lukehart, S. A. Antigenic variation of TprK V regions abrogates specific antibody binding in syphilis. Infect. Immun. 74, 6244–6251 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Giacani, L. et al. Antigenic variation in Treponema pallidum: TprK sequence diversity accumulates in response to immune pressure during experimental syphilis. J. Immunol. 184, 3822–3829 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Reid, T. B., Molini, B. J., Fernandez, M. C. & Lukehart, S. A. Antigenic variation of TprK facilitates development of secondary syphilis. Infect. Immun. 82, 4959–4967 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Giacani, L. et al. Comparative investigation of the genomic regions involved in antigenic variation of the TprK antigen among treponemal species, subspecies, and strains. J. Bacteriol. 194, 4208–4225 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Petrosova, H. et al. Resequencing of Treponema pallidum ssp. pallidum strains Nichols and SS14: correction of sequencing errors resulted in increased separation of syphilis treponeme subclusters. PLoS ONE 8, e74319 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Giacani, L., Lukehart, S. & Centurion-Lara, A. Length of guanosine homopolymeric repeats modulates promoter activity of subfamily II tpr genes of Treponema pallidum ssp. pallidum. FEMS Immunol. Med. Microbiol. 51, 289–301 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Silhavy, T. J., Kahne, D. & Walker, S. The bacterial cell envelope. Cold Spring Harb. Perspect. Biol. 2, a000414 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hovind-Hougen, K. in Pathogenesis and Immunology of Treponemal Infection ( eds Schell, R. F. & Musher, D. M. ) 3–28 (Marcel Dekker, 1983).

  91. Liu, J. et al. Cellular architecture of Treponema pallidum: novel flagellum, periplasmic cone, and cell envelope as revealed by cryo electron tomography. J. Mol. Biol. 403, 546–561 (2010). The study details the masterful use of cryo-electron tomography and scanning probe microscopy to describe the native ultrastructure of T. pallidum.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Briegel, A. et al. New insights into bacterial chemoreceptor array structure and assembly from electron cryotomography. Biochemistry 53, 1575–1585 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Deka, R. K., Goldberg, M. S., Hagman, K. E. & Norgard, M. V. The Tp38 (TpMglB-2) lipoprotein binds glucose in a manner consistent with receptor function in Treponema pallidum. J. Bacteriol. 186, 2303–2308 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Deka, R. K. et al. Structural evidence that the 32-kilodalton lipoprotein (Tp32) of Treponema pallidum is an l-methionine-binding protein. J. Biol. Chem. 279, 55644–55650 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Bian, J., Tu, Y., Wang, S. M., Wang, X. Y. & Li, C. Evidence that TP_0144 of Treponema pallidum is a thiamine-binding protein. J. Bacteriol. 197, 1164–1172 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Jaehme, M. & Slotboom, D. J. Diversity of membrane transport proteins for vitamins in bacteria and archaea. Biochim. Biophys. Acta 1850, 565–576 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Lee, Y. H., Deka, R. K., Norgard, M. V., Radolf, J. D. & Hasemann, C. A. Treponema pallidum TroA is a periplasmic zinc-binding protein with a helical backbone. Nat. Struct. Biol. 6, 628–633 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Deka, R. K. et al. The PnrA (Tp0319; TmpC) lipoprotein represents a new family of bacterial purine nucleoside receptor encoded within an ATP-binding cassette (ABC)-like operon in Treponema pallidum. J. Biol. Chem. 281, 8072–8081 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Machius, M. et al. Structural and biochemical basis for polyamine binding to the Tp0655 lipoprotein of Treponema pallidum: putative role for Tp0655 (TpPotD) as a polyamine receptor. J. Mol. Biol. 373, 681–694 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Deka, R. K., Brautigam, C. A., Liu, W. Z., Tomchick, D. R. & Norgard, M. V. The TP0796 lipoprotein of Treponema pallidum is a bimetal-dependent FAD pyrophosphatase with a potential role in flavin homeostasis. J. Biol. Chem. 288, 11106–11121 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Brautigam, C. A., Deka, R. K., Schuck, P., Tomchick, D. R. & Norgard, M. V. Structural and thermodynamic characterization of the interaction between two periplasmic Treponema pallidum lipoproteins that are components of a TPR-protein-associated TRAP transporter (TPAT). J. Mol. Biol. 420, 70–86 (2012). An extraordinary biochemical and structural analysis of a unique transporter in T. pallidum.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Deka, R. K. et al. Structural, bioinformatic, and in vivo analyses of two Treponema pallidum lipoproteins reveal a unique TRAP transporter. J. Mol. Biol. 416, 678–696 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Austin, F. E. & Cox, C. D. Lactate oxidation by Treponema pallidum. Curr. Microbiol. 13, 123–128 (1986).

    Article  CAS  Google Scholar 

  104. Fraser, C. M. et al. Genomic sequence of a Lyme disease spirochaete. Borrelia burgdorferi. Nature 390, 580–586 (1997).

    Article  CAS  PubMed  Google Scholar 

  105. Gorke, B. & Stulke, J. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat. Rev. Microbiol. 6, 613–624 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Norris, S. J., Fraser, C. M. & Weinstock, G. M. Illuminating the agent of syphilis: the Treponema pallidum genome project. Electrophoresis 19, 551–553 (1998).

    Article  CAS  PubMed  Google Scholar 

  107. Roberson, R. S., Ronimus, R. S., Gephard, S. & Morgan, H. W. Biochemical characterization of an active pyrophosphate-dependent phosphofructokinase from Treponema pallidum. FEMS Microbiol. Lett. 194, 257–260 (2001).

    Article  CAS  PubMed  Google Scholar 

  108. Moore, S. A., Ronimus, R. S., Roberson, R. S. & Morgan, H. W. The structure of a pyrophosphate-dependent phosphofructokinase from the Lyme disease spirochete Borrelia burgdorferi. Structure 10, 659–671 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Fothergill-Gilmore, L. A. & Michels, P. A. Evolution of glycolysis. Prog. Biophys. Mol. Biol. 59, 105–235 (1993).

    Article  CAS  PubMed  Google Scholar 

  110. Mertens, E. ATP versus pyrophosphate: glycolysis revisited in parasitic protists. Parasitol. Today 9, 122–126 (1993).

    Article  CAS  PubMed  Google Scholar 

  111. Higuchi, M., Yamamoto, Y. & Kamio, Y. Molecular biology of oxygen tolerance in lactic acid bacteria: functions of NADH oxidases and Dpr in oxidative stress. J. Biosci. Bioeng. 90, 484–493 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Baker, J. L., Derr, A. D., Faustoferri, R. C. & Quivey, R. G. Jr. Loss of NADH oxidase activity in Streptococcus mutans leads to Rex-mediated overcompensation of NAD+ regeneration by lactate dehydrogenase. J. Bacteriol. 197, 3645–3657 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Cox, D. L. et al. Effects of molecular oxygen, oxidation–reduction potential, and antioxidants upon in vitro replication of Treponema pallidum subsp. pallidum. Appl. Environ. Microbiol. 56, 3063–3072 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Meyron-Holtz, E. G., Ghosh, M. C. & Rouault, T. A. Mammalian tissue oxygen levels modulate iron-regulatory protein activities in vivo. Science 306, 2087–2090 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Mayer, F. & Muller, V. Adaptations of anaerobic archaea to life under extreme energy limitation. FEMS Microbiol. Rev. 38, 449–472 (2014).

    Article  CAS  PubMed  Google Scholar 

  116. Hazlett, K. R. et al. The Treponema pallidum tro operon encodes a multiple metal transporter, a zinc-dependent transcriptional repressor, and a semi-autonomously expressed phosphoglycerate mutase. J. Biol. Chem. 278, 20687–20694 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Gherardini, F. C., Boylan, J. A. & Brett, P. J. in Pathogenic Treponema: Molecular and Cellular Biology (eds Radolf, J. D. & Lukehart, S. A.) 101–126 (Caister Academic Press, 2006).

    Google Scholar 

  118. Alderete, J. F., Peterson, K. M. & Baseman, J. B. Affinities of Treponema pallidum for human lactoferrin and transferrin. Genitourin. Med. 64, 359–363 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Deka, R. K. et al. Crystal structure of the Tp34 (TP0971) lipoprotein of Treponema pallidum: implications of its metal-bound state and affinity for human lactoferrin. J. Biol. Chem. 282, 5944–5958 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Noinaj, N. et al. Structural basis for iron piracy by pathogenic Neisseria. Nature 483, 53–58 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ward, D. M. & Kaplan, J. Ferroportin-mediated iron transport: expression and regulation. Biochim. Biophys. Acta 1823, 1426–1433 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Desrosiers, D. C. et al. The general transition metal (Tro) and Zn2+ (Znu) transporters in Treponema pallidum: analysis of metal specificities and expression profiles. Mol. Microbiol. 65, 137–152 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. Brautigam, C. A. et al. Biophysical and bioinformatic analyses implicate the Treponema pallidum Tp34 lipoprotein (Tp0971) in transition metal homeostasis. J. Bacteriol. 194, 6771–6781 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Koch, D. et al. Characterization of a dipartite iron uptake system from uropathogenic Escherichia coli strain F11. J. Biol. Chem. 286, 25317–25330 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Posey, J. E., Hardham, J. M., Norris, S. J. & Gherardini, F. C. Characterization of a manganese-dependent regulatory protein, TroR, from Treponema pallidum. Proc. Natl Acad. Sci. USA 96, 10887–10892 (1999). This report describes the first molecular analysis of a transcriptional factor in T. pallidum.

    Article  CAS  PubMed  Google Scholar 

  126. Hazlett, K. R. et al. Contribution of neelaredoxin to oxygen tolerance by Treponema pallidum. Methods Enzymol. 353, 140–156 (2002).

    Article  CAS  PubMed  Google Scholar 

  127. Jenney, F. E. Jr., Verhagen, M. F., Cui, X. & Adams, M. W. Anaerobic microbes: oxygen detoxification without superoxide dismutase. Science 286, 306–309 (1999).

    Article  CAS  PubMed  Google Scholar 

  128. Imlay, J. A. Cellular defenses against superoxide and hydrogen peroxide. Annu. Rev. Biochem. 77, 755–776 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Thumiger, A. et al. Crystal structure of antigen TpF1 from Treponema pallidum. Proteins 62, 827–830 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Parsonage, D. et al. Broad specificity AhpC-like peroxiredoxin and its thioredoxin reductant in the sparse antioxidant defense system of Treponema pallidum. Proc. Natl Acad. Sci. USA 107, 6240–6245 (2010). This report presents a detailed biochemical analysis of the unique, robust enzymatic defence of T. pallidum against peroxide stress.

    Article  CAS  PubMed  Google Scholar 

  131. Radolf, J. D., Borenstein, L. A., Kim, J. Y., Fehniger, T. E. & Lovett, M. A. Role of disulfide bonds in the oligomeric structure and protease resistance of recombinant and native Treponema pallidum surface antigen 4D. J. Bacteriol. 169, 1365–1371 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Brautigam, C. A., Deka, R. K., Liu, W. Z. & Norgard, M. V. Insights into the potential function and membrane organization of the TP0435 (Tp17) lipoprotein from Treponema pallidum derived from structural and biophysical analyses. Protein Sci. 24, 11–19 (2015).

    Article  CAS  PubMed  Google Scholar 

  133. Casino, P., Rubio, V. & Marina, A. The mechanism of signal transduction by two-component systems. Curr. Opin. Struct. Biol. 20, 763–771 (2010).

    Article  CAS  PubMed  Google Scholar 

  134. Anderson, J. K., Smith, T. G. & Hoover, T. R. Sense and sensibility: flagellum-mediated gene regulation. Trends Microbiol. 18, 30–37 (2010).

    Article  CAS  PubMed  Google Scholar 

  135. Stamm, L. V., Gherardini, F. C., Parrish, E. A. & Moomaw, C. R. Heat shock response of spirochetes. Infect. Immun. 59, 1572–1575 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Romling, U., Galperin, M. Y. & Gomelsky, M. Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol. Mol. Biol. Rev. 77, 1–52 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Guo, M. S. & Gross, C. A. Stress-induced remodeling of the bacterial proteome. Curr. Biol. 24, R424–R434 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Giacani, L., Denisenko, O., Tompa, M. & Centurion-Lara, A. Identification of the Treponema pallidum subsp. pallidum TP0092 (RpoE) regulon and its implications for pathogen persistence in the host and syphilis pathogenesis. J. Bacteriol. 195, 896–907 (2013). This is the only report to use chromatin immunoprecipitation to define the cohort of genes that are controlled by an alternative sigma factor in T. pallidum.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Studholme, D. J. & Buck, M. The biology of enhancer-dependent transcriptional regulation in bacteria: insights from genome sequences. FEMS Microbiol. Lett. 186, 1–9 (2000).

    Article  CAS  PubMed  Google Scholar 

  140. Bush, M. & Dixon, R. The role of bacterial enhancer binding proteins as specialized activators of σ54-dependent transcription. Microbiol. Mol. Biol. Rev. 76, 497–529 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Hubner, A. et al. Expression of Borrelia burgdorferi OspC and DbpA is controlled by a RpoN–RpoS regulatory pathway. Proc. Natl Acad. Sci. USA 98, 12724–12729 (2001).

    Article  CAS  PubMed  Google Scholar 

  142. Yang, X. F., Alani, S. M. & Norgard, M. V. The response regulator Rrp2 is essential for the expression of major membrane lipoproteins in Borrelia burgdorferi. Proc. Natl Acad. Sci. USA 100, 11001–11006 (2003).

    Article  CAS  PubMed  Google Scholar 

  143. Cejkova, D. et al. Whole genome sequences of three Treponema pallidum ssp. pertenue strains: yaws and syphilis treponemes differ in less than 0.2% of the genome sequence. PLoS Negl Trop. Dis. 6, e1471 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Staudova, B. et al. Whole genome sequence of the Treponema pallidum subsp. endemicum strain Bosnia A: the genome is related to yaws treponemes but contains few loci similar to syphilis treponemes. PLoS Negl Trop. Dis. 8, e3261 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Giacani, L. et al. Complete genome sequence of the Treponema pallidum subsp. pallidum Sea81-4 strain. Genome Announc. 2, e00333-14 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Petrosova, H. et al. Whole genome sequence of Treponema pallidum ssp. pallidum, strain Mexico A, suggests recombination between yaws and syphilis strains. PLoS Negl Trop. Dis. 6, e1832 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Peterkofsky, A., Wang, G. & Seok, Y. J. Parallel PTS systems. Arch. Biochem. Biophys. 453, 101–107 (2006).

    Article  CAS  PubMed  Google Scholar 

  148. Pfluger-Grau, K. & Gorke, B. Regulatory roles of the bacterial nitrogen-related phosphotransferase system. Trends Microbiol. 18, 205–214 (2010).

    Article  CAS  PubMed  Google Scholar 

  149. Reizer, J., Novotny, M. J., Hengstenberg, W. & Saier, M. H. Jr. Properties of ATP-dependent protein kinase from Streptococcus pyogenes that phosphorylates a seryl residue in HPr, a phosphocarrier protein of the phosphotransferase system. J. Bacteriol. 160, 333–340 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Deutscher, J., Kessler, U. & Hengstenberg, W. Streptococcal phosphoenolpyruvate: sugar phosphotransferase system: purification and characterization of a phosphoprotein phosphatase which hydrolyzes the phosphoryl bond in seryl-phosphorylated histidine-containing protein. J. Bacteriol. 163, 1203–1209 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Gonzalez, C. F., Stonestrom, A. J., Lorca, G. L. & Saier, M. H. Jr. Biochemical characterization of phosphoryl transfer involving HPr of the phosphoenolpyruvate-dependent phosphotransferase system in Treponema denticola, an organism that lacks PTS permeases. Biochemistry 44, 598–608 (2005).

    Article  CAS  PubMed  Google Scholar 

  152. Lee, C. R., Cho, S. H., Yoon, M. J., Peterkofsky, A. & Seok, Y. J. Escherichia coli enzyme IIANtr regulates the K+ transporter TrkA. Proc. Natl Acad. Sci. USA 104, 4124–4129 (2007).

    Article  CAS  PubMed  Google Scholar 

  153. Deutscher, J. et al. The bacterial phosphoenolpyruvate: carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein–protein interactions. Microbiol. Mol. Biol. Rev. 78, 231–256 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. McDonough, K. A. & Rodriguez, A. The myriad roles of cyclic AMP in microbial pathogens: from signal to sword. Nat. Rev. Microbiol. 10, 27–38 (2012).

    Article  CAS  Google Scholar 

  155. Radolf, J. D., Bourell, K. W., Akins, D. R., Brusca, J. S. & Norgard, M. V. Analysis of Borrelia burgdorferi membrane architecture by freeze-fracture electron microscopy. J. Bacteriol. 176, 21–31 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Luthra, A. et al. The transition from closed to open conformation of Treponema pallidum outer membrane-associated lipoprotein TP0453 involves membrane sensing and integration by two amphipathic helices. J. Biol. Chem. 286, 41656–41668 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. McKevitt, M. et al. Genome scale identification of Treponema pallidum antigens. Infect. Immun. 73, 4445–4450 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Brinkman, M. B. et al. Reactivity of antibodies from syphilis patients to a protein array representing the Treponema pallidum proteome. J. Clin. Microbiol. 44, 888–891 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from the US National Institutes of Health (NIH) and the US National Institute of Allergy and Infectious Diseases (NIAID; grants AI26756 (to J.D.R.), AI56305 (to M.V.N.) and AI83640 (to X.F.Y.)); from the Connecticut Children's Medical Center (to J.D.R.), from the Ministry of Health of the Czech Republic (grant NT11159-5/2010 to D.S.); from the Grant Agency of the Czech Republic (grant P302/12/0574 to D.S.); and from the National Science Foundation of China (grant 81428015 to X.F.Y.). The authors also thank C. Brautigam and M. Saier for helpful discussions in relation to this manuscript; M. Caimano for many insightful comments and careful proofreading and editing; M. Ledoyt and C. Karanian for assistance with figures; and A. Cruz, J. Salazar and K. Dieckhaus for providing images of syphilitic lesions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin D. Radolf.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

DATABASES

Transport DB

PowerPoint slides

Glossary

Toll-like receptor 2

(TLR2). A pattern recognition receptor that recognizes various pathogen-associated molecular patterns, including bacterial lipoproteins.

Opsonic antibodies

Antibodies that are directed against the surface-exposed epitopes of a pathogen that bind to Fc receptors on a phagocytic cell, which triggers internalization through phagocytosis.

Permeases

Polytopic integral membrane proteins that mediate energy-dependent uptake of small molecules across the plasma membrane of Gram-positive bacteria and the cytoplasmic membrane of Gram-negative bacteria.

ATP-binding cassette transporters

(ABC transporters). Transporters that couple the hydrolysis of ATP to the transport (usually import) of a substrate across the cytoplasmic membrane of Gram-negative bacteria and the plasma membrane of Gram-positive bacteria. Classical bacterial ABC transporters have a modular composition that consists of a substrate-binding protein, a dimeric membrane-bound permease and a dimeric nucleotide-binding protein that has ATPase activity.

Symporters

Transporter proteins that use the sodium or electrochemical gradient across the cytoplasmic membrane to drive the co-directional import of substrates to the cytosolic compartment.

Auxotroph

An organism that has lost the ability to synthesize molecules that are required for growth. Treponema pallidum subsp. pallidum is considered an extreme auxotroph because of its very limited biosynthetic capacity.

Two-component systems

Systems that typically consist of a membrane-bound histidine kinase that senses a specific environmental stimulus and a cognate response regulator that mediates a cellular response, usually through the activation and/or repression of differentially expressed genes.

Housekeeping sigma factor

A sigma factor that binds to the catalytic core of RNA polymerase and recognizes promoters of genes that are required for core functions in bacterial cells, such as maintenance and metabolism.

Alternative sigma factors

Sigma factors that bind to the catalytic core of RNA polymerase, which displaces the housekeeping sigma factor, and re-direct transcription towards genes that are required to respond to a particular environmental stimulus, condition or stress.

Heat shock response

The response of a bacterial cell to a sudden increase in temperature, which involves differential gene expression regulated through the alternative sigma factor σ32.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radolf, J., Deka, R., Anand, A. et al. Treponema pallidum, the syphilis spirochete: making a living as a stealth pathogen. Nat Rev Microbiol 14, 744–759 (2016). https://doi.org/10.1038/nrmicro.2016.141

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro.2016.141

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing