Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Legionella and Coxiella effectors: strength in diversity and activity

Key Points

  • Legionella pneumophila and Coxiella burnetii are two evolutionarily related intracellular bacterial pathogens that reside in distinct compartments in host cells during infection. Successful infection by both pathogens requires a functionally exchangeable type IV secretion system called Dot/Icm, which translocates hundreds of virulence factors, termed effectors, into host cells.

  • The majority of Legionella spp. and Coxiella spp. effectors are unique to these pathogens, and functional redundancy exists among many of them. Functional domains that are associated with most of these effectors are enigmatic and cannot be readily predicted by currently available bioinformatics tools.

  • Legionella spp. and Coxiella spp. promote intracellular bacterial replication by interfering with host gene expression through effectors that impose epigenetic modifications on host chromatin by different mechanisms.

  • L. pneumophila extensively manipulates the early phases of the secretory branch of the host vesicle trafficking pathway by hijacking the activity of key regulatory proteins such as RAB small GTPases via multiple effectors.

  • L. pneumophila effectors function coordinately to alter the composition of lipids, such as phosphoinositides, on the vacuole that contains the bacterium and other organelles to facilitate its intracellular growth.

  • L. pneumophila co-opts the ubiquitin network of host cells by effectors that function through diverse biochemical mechanisms, including the SidE family effectors, which catalyse ubiquitylation by an E1 enzyme and E2 enzyme-independent mechanism, which represents a paradigm shift in our understanding of this important post-translational modification.

Abstract

Legionella pneumophila and Coxiella burnetii are two evolutionarily related intracellular pathogens that use the Dot/Icm type IV secretion system to translocate effectors into host cells. These effectors are essential for the establishment of membrane-bound compartments known as replication vacuoles, which enable the survival and replication of bacteria inside host cells. The effectors interfere with diverse signalling pathways to co-opt host processes, such as vesicle trafficking, ubiquitylation, gene expression and lipid metabolism, to promote pathogen survival. In this Review, we explore Dot/Icm effectors from L. pneumophila and C. burnetii as key virulence factors, and we examine the biochemical and cell biological functions of these effectors and their roles in our understanding of bacterial virulence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The trafficking routes of Legionella pneumophila and Coxiella burnetii in phagocytes.
Figure 2: Modulation of host vesicle trafficking by Dot/Icm effectors of Legionella pneumophila.
Figure 3: Host cellular processes that are targeted by Coxiella burnetii effectors.
Figure 4: The mechanisms of ubiquitin activation and ligation by ATP and NAD.
Figure 5: Multiple pathways contribute to the enrichment of phosphatidylinositol 4-phosphate on the LCV.

Similar content being viewed by others

References

  1. Newton, H. J., Ang, D. K., van Driel, I. R. & Hartland, E. L. Molecular pathogenesis of infections caused by Legionella pneumophila. Clin. Microbiol. Rev. 23, 274–298 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Correia, A. M. et al. Probable person-to-person transmission of Legionnaires' disease. N. Engl. J. Med. 374, 497–498 (2016).

    Article  PubMed  Google Scholar 

  3. Isberg, R. R., O'Connor, T. J. & Heidtman, M. The Legionella pneumophila replication vacuole: making a cosy niche inside host cells. Nat. Rev. Microbiol. 7, 13–24 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Swanson, M. S. & Isberg, R. R. Association of Legionella pneumophila with the macrophage endoplasmic reticulum. Infect. Immun. 63, 3609–3620 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Tilney, L. G., Harb, O. S., Connelly, P. S., Robinson, C. G. & Roy, C. R. How the parasitic bacterium Legionella pneumophila modifies its phagosome and transforms it into rough ER: implications for conversion of plasma membrane to the ER membrane. J. Cell Sci. 114, 4637–4650 (2001).

    CAS  PubMed  Google Scholar 

  6. Kagan, J. C. & Roy, C. R. Legionella phagosomes intercept vesicular traffic from endoplasmic reticulum exit sites. Nat. Cell Biol. 4, 945–954 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Omsland, A. et al. Host cell-free growth of the Q fever bacterium Coxiella burnetii. Proc. Natl Acad. Sci. USA 106, 4430–4434 (2009). This paper establishes, for the first time, a method for axenic culturing of C. burnetii , making later genetic manipulation of this pathogen possible.

    Article  PubMed  Google Scholar 

  8. Moffatt, J. H., Newton, P. & Newton, H. J. Coxiella burnetii: turning hostility into a home. Cell. Microbiol. 17, 621–631 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Pan, X., Luhrmann, A., Satoh, A., Laskowski-Arce, M. A. & Roy, C. R. Ankyrin repeat proteins comprise a diverse family of bacterial type IV effectors. Science 320, 1651–1654 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen, C. et al. Large-scale identification and translocation of type IV secretion substrates by Coxiella burnetii. Proc. Natl Acad. Sci. USA 107, 21755–21760 (2010). In addition to identifying numerous effectors, this paper first expressed exogenous proteins in C. burnetii and demonstrated protein translocation by its Dot/Icm system.

    Article  PubMed  Google Scholar 

  11. Kubori, T. & Nagai, H. The type IVB secretion system: an enigmatic chimera. Curr. Opin. Microbiol. 29, 22–29 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Beare, P. A. et al. Dot/Icm type IVB secretion system requirements for Coxiella burnetii growth in human macrophages. mBio 2, e00175-11 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. van Schaik, E. J., Chen, C., Mertens, K., Weber, M. M. & Samuel, J. E. Molecular pathogenesis of the obligate intracellular bacterium Coxiella burnetii. Nat. Rev. Microbiol. 11, 561–573 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ensminger, A. W. Legionella pneumophila, armed to the hilt: justifying the largest arsenal of effectors in the bacterial world. Curr. Opin. Microbiol. 29, 74–80 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Burstein, D. et al. Genomic analysis of 38 Legionella species identifies large and diverse effector repertoires. Nat. Genet. 48, 167–175 (2016). This paper reveals the extremely diverse Dot/Icm effectors in different Legionella species from different environmental niches.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Luo, Z. Q. & Isberg, R. R. Multiple substrates of the Legionella pneumophila Dot/Icm system identified by interbacterial protein transfer. Proc. Natl Acad. Sci. USA 101, 841–846 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Kubori, T., Shinzawa, N., Kanuka, H. & Nagai, H. Legionella metaeffector exploits host proteasome to temporally regulate cognate effector. PLoS Pathog. 6, e1001216 (2010). This paper is the first to reveal the regulation of effector activity by another effector (meta-effector).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Urbanus, M. L. et al. Diverse mechanisms of metaeffector activity in an intracellular bacterial pathogen, Legionella pneumophila. Mol. Syst. Biol. 12, 893 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Weber, M. M. et al. Identification of Coxiella burnetii type IV secretion substrates required for intracellular replication and Coxiella-containing vacuole formation. J. Bacteriol. 195, 3914–3924 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Martinez, E. et al. Coxiella burnetii effector CvpB modulates phosphoinositide metabolism for optimal vacuole development. Proc. Natl Acad. Sci. USA 113, E3260–E3269 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Mizuno-Yamasaki, E., Rivera-Molina, F. & Novick, P. GTPase networks in membrane traffic. Annu. Rev. Biochem. 81, 637–659 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Elkin, S. R., Lakoduk, A. M. & Schmid, S. L. Endocytic pathways and endosomal trafficking: a primer. Wien. Med. Wochenschr. 166, 196–204 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bhuin, T. & Roy, J. K. Rab proteins: the key regulators of intracellular vesicle transport. Exp. Cell Res. 328, 1–19 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Hardiman, C. A., McDonough, J. A., Newton, H. J. & Roy, C. R. The role of Rab GTPases in the transport of vacuoles containing Legionella pneumophila and Coxiella burnetii. Biochem. Soc. Trans. 40, 1353–1359 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Brombacher, E. et al. Rab1 guanine nucleotide exchange factor SidM is a major phosphatidylinositol 4-phosphate-binding effector protein of Legionella pneumophila. J. Biol. Chem. 284, 4846–4856 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Murata, T. et al. The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor. Nat. Cell Biol. 8, 971–977 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Machner, M. P. & Isberg, R. R. Targeting of host Rab GTPase function by the intravacuolar pathogen Legionella pneumophila. Dev. Cell 11, 47–56 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Machner, M. P. & Isberg, R. R. A bifunctional bacterial protein links GDI displacement to Rab1 activation. Science 318, 974–977 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Schoebel, S., Oesterlin, L. K., Blankenfeldt, W., Goody, R. S. & Itzen, A. RabGDI displacement by DrrA from Legionella is a consequence of its guanine nucleotide exchange activity. Mol. Cell 36, 1060–1072 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Nagai, H., Kagan, J. C., Zhu, X., Kahn, R. A. & Roy, C. R. A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes. Science 295, 679–682 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Muller, M. P. et al. The Legionella effector protein DrrA AMPylates the membrane traffic regulator Rab1b. Science 329, 946–949 (2010). This paper demonstrates the usefulness of structural analysis in revealing cryptic biochemical functions associated with L. pneumophila effectors.

    Article  PubMed  Google Scholar 

  32. Neunuebel, M. R. et al. De-AMPylation of the small GTPase Rab1 by the pathogen Legionella pneumophila. Science 333, 453–456 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tan, Y. & Luo, Z. Q. Legionella pneumophila SidD0 is a deAMPylase that modifies Rab1. Nature 475, 506–509 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ingmundson, A., Delprato, A., Lambright, D. G. & Roy, C. R. Legionella pneumophila proteins that regulate Rab1 membrane cycling. Nature 450, 365–369 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Preissler, S., Rato, C., Perera, L. A., Saudek, V. & Ron, D. FICD acts bifunctionally to AMPylate and de-AMPylate the endoplasmic reticulum chaperone BiP. Nat. Struct. Mol. Biol. 24, 23–29 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Arasaki, K., Toomre, D. K. & Roy, C. R. The Legionella pneumophila effector DrrA is sufficient to stimulate SNARE-dependent membrane fusion. Cell Host Microbe 11, 46–57 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mukherjee, S. et al. Modulation of Rab GTPase function by a protein phosphocholine transferase. Nature 477, 103–106 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tan, Y., Arnold, R. J. & Luo, Z. Q. Legionella pneumophila regulates the small GTPase Rab1 activity by reversible phosphorylcholination. Proc. Natl Acad. Sci. USA 108, 21212–21217 (2011).

    Article  PubMed  Google Scholar 

  39. Oesterlin, L. K., Goody, R. S. & Itzen, A. Posttranslational modifications of Rab proteins cause effective displacement of GDP dissociation inhibitor. Proc. Natl Acad. Sci. USA 109, 5621–5626 (2012).

    Article  PubMed  Google Scholar 

  40. Yarbrough, M. L. et al. AMPylation of Rho GTPases by Vibrio VopS disrupts effector binding and downstream signaling. Science 323, 269–272 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Worby, C. A. et al. The fic domain: regulation of cell signaling by adenylylation. Mol. Cell 34, 93–103 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Feng, F. et al. A Xanthomonas uridine 5′-monophosphate transferase inhibits plant immune kinases. Nature 485, 114–118 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Castro-Roa, D. et al. The Fic protein Doc uses an inverted substrate to phosphorylate and inactivate EF-Tu. Nat. Chem. Biol. 9, 811–817 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Ham, H. et al. Unfolded protein response-regulated Drosophila Fic (dFic) protein reversibly AMPylates BiP chaperone during endoplasmic reticulum homeostasis. J. Biol. Chem. 289, 36059–36069 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sanyal, A. et al. A novel link between Fic (filamentation induced by cAMP)-mediated adenylylation/AMPylation and the unfolded protein response. J. Biol. Chem. 290, 8482–8499 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Harms, A. et al. Adenylylation of gyrase and topo IV by FicT toxins disrupts bacterial DNA topology. Cell Rep. 12, 1497–1507 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Lu, C., Nakayasu, E. S., Zhang, L. Q. & Luo, Z. Q. Identification of Fic-1 as an enzyme that inhibits bacterial DNA replication by AMPylating GyrB, promoting filament formation. Sci. Signal. 9, ra11 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Horenkamp, F. A. et al. Legionella pneumophila subversion of host vesicular transport by SidC effector proteins. Traffic 15, 488–499 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hsu, F. et al. The Legionella effector SidC defines a unique family of ubiquitin ligases important for bacterial phagosomal remodeling. Proc. Natl Acad. Sci. USA 111, 10538–10543 (2014). This paper demonstrates that a Cys-His-Asp catalytic triad known to be involved in protease activity can catalyse the ubiquitin ligation reaction.

    Article  CAS  PubMed  Google Scholar 

  50. Qiu, J. et al. Ubiquitination independent of E1 and E2 enzymes by bacterial effectors. Nature 533, 120–124 (2016). This paper demonstrates, for the first time, that ubiquitylation can be catalysed by a single protein without the need for the E1 and E2 enzymes and ATP in a process in which ubiquitin is activated by ADP-ribosylation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kouranti, I., Sachse, M., Arouche, N., Goud, B. & Echard, A. Rab35 regulates an endocytic recycling pathway essential for the terminal steps of cytokinesis. Curr. Biol. 16, 1719–1725 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Gaspar, A. H. & Machner, M. P. VipD is a Rab5-activated phospholipase A1 that protects Legionella pneumophila from endosomal fusion. Proc. Natl Acad. Sci. USA 111, 4560–4565 (2014). This paper reveals a mechanism for organelle-specific elimination of a lipid important for phagosome maturation by a bacterial effector.

    Article  CAS  PubMed  Google Scholar 

  53. Toulabi, L., Wu, X., Cheng, Y. & Mao, Y. Identification and structural characterization of a Legionella phosphoinositide phosphatase. J. Biol. Chem. 288, 24518–24527 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Finsel, I. et al. The Legionella effector RidL inhibits retrograde trafficking to promote intracellular replication. Cell Host Microbe 14, 38–50 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Simon, S., Wagner, M. A., Rothmeier, E., Muller-Taubenberger, A. & Hilbi, H. Icm/Dot-dependent inhibition of phagocyte migration by Legionella is antagonized by a translocated Ran GTPase activator. Cell. Microbiol. 16, 977–992 (2014).

    CAS  PubMed  Google Scholar 

  56. Rothmeier, E. et al. Activation of Ran GTPase by a Legionella effector promotes microtubule polymerization, pathogen vacuole motility and infection. PLoS Pathog. 9, e1003598 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Xu, L. et al. Inhibition of host vacuolar H+-ATPase activity by a Legionella pneumophila effector. PLoS Pathog. 6, e1000822 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sohn, Y. S. et al. Lpg0393 of Legionella pneumophila is a guanine-nucleotide exchange factor for Rab5, Rab21 and Rab22. PLoS ONE 10, e0118683 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Urwyler, S. et al. Proteome analysis of Legionella vacuoles purified by magnetic immunoseparation reveals secretory and endosomal GTPases. Traffic 10, 76–87 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Heidtman, M., Chen, E. J., Moy, M. Y. & Isberg, R. R. Large-scale identification of Legionella pneumophila Dot/Icm substrates that modulate host cell vesicle trafficking pathways. Cell. Microbiol. 11, 230–248 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Franco, I. S., Shohdy, N. & Shuman, H. A. The Legionella pneumophila effector VipA is an actin nucleator that alters host cell organelle trafficking. PLoS Pathog. 8, e1002546 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Michard, C. et al. The Legionella kinase LegK2 targets the ARP2/3 complex to inhibit actin nucleation on phagosomes and allow bacterial evasion of the late endocytic pathway. mBio 6, e00354-15 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Liu, Y. et al. A Legionella effector disrupts host cytoskeletal structure by cleaving actin. PLoS Pathog. 13, e1006186 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Guo, Z., Stephenson, R., Qiu, J., Zheng, S. & Luo, Z. Q. A Legionella effector modulates host cytoskeletal structure by inhibiting actin polymerization. Microbes Infect. 16, 225–236 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Lanzetti, L. Actin in membrane trafficking. Curr. Opin. Cell Biol. 19, 453–458 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Latomanski, E. A., Newton, P., Khoo, C. A. & Newton, H. J. The effector Cig57 hijacks FCHO-mediated vesicular trafficking to facilitate intracellular replication of Coxiella burnetii. PLoS Pathog. 12, e1006101 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Larson, C. L., Beare, P. A., Howe, D. & Heinzen, R. A. Coxiella burnetii effector protein subverts clathrin-mediated vesicular trafficking for pathogen vacuole biogenesis. Proc. Natl Acad. Sci. USA 110, E4770–E4779 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Yau, R. & Rape, M. The increasing complexity of the ubiquitin code. Nat. Cell Biol. 18, 579–586 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Maculins, T., Fiskin, E., Bhogaraju, S. & Dikic, I. Bacteria–host relationship: ubiquitin ligases as weapons of invasion. Cell Res. 26, 499–510 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hubber, A., Kubori, T. & Nagai, H. Modulation of the ubiquitination machinery by Legionella. Curr. Top. Microbiol. Immunol. 376, 227–247 (2013).

    PubMed  Google Scholar 

  71. Dorer, M. S., Kirton, D., Bader, J. S. & Isberg, R. R. RNA interference analysis of Legionella in Drosophila cells: exploitation of early secretory apparatus dynamics. PLoS Pathog. 2, e34 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ensminger, A. W. & Isberg, R. R. E3 ubiquitin ligase activity and targeting of BAT3 by multiple Legionella pneumophila translocated substrates. Infect. Immun. 78, 3905–3919 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lin, Y. H. et al. Host cell-catalyzed S-palmitoylation mediates Golgi targeting of the Legionella ubiquitin ligase GobX. J. Biol. Chem. 290, 25766–25781 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shao, F., Merritt, P. M., Bao, Z., Innes, R. W. & Dixon, J. E. A. Yersinia effector and a Pseudomonas avirulence protein define a family of cysteine proteases functioning in bacterial pathogenesis. Cell 109, 575–588 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Price, C. T., Al-Quadan, T., Santic, M., Rosenshine, I. & Abu Kwaik, Y. Host proteasomal degradation generates amino acids essential for intracellular bacterial growth. Science 334, 1553–1557 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Lomma, M. et al. The Legionella pneumophila F-box protein Lpp2082 (AnkB) modulates ubiquitination of the host protein parvin B and promotes intracellular replication. Cell. Microbiol. 12, 1272–1291 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Ivanov, S. S., Charron, G., Hang, H. C. & Roy, C. R. Lipidation by the host prenyltransferase machinery facilitates membrane localization of Legionella pneumophila effector proteins. J. Biol. Chem. 285, 34686–34698 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Price, C. T., Al-Quadan, T., Santic, M., Jones, S. C. & Abu Kwaik, Y. Exploitation of conserved eukaryotic host cell farnesylation machinery by an F-box effector of Legionella pneumophila. J. Exp. Med. 207, 1713–1726 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Cazalet, C. et al. Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity. Nat. Genet. 36, 1165–1173 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Bhogaraju, S. et al. Phosphoribosylation of ubiquitin promotes serine ubiquitination and impairs conventional ubiquitination. Cell 167, 1636–1649.e13 (2016). This paper reveals that ADPR-Ub produced by the mono-ADP-ribosyltransferase (mART) domain of SidE family members is cleaved by phosphodisterase activity within the same proteins and the resulting phosphoribosylated ubiquitin is transferred to serine residues on the substrate.

    Article  CAS  PubMed  Google Scholar 

  81. Kotewicz, K. M. et al. A single Legionella effector catalyzes a multistep ubiquitination pathway to rearrange tubular endoplasmic reticulum for replication. Cell Host Microbe 21, 169–181 (2017). Together with reference 80, this paper reveals the need of phosphodiesterase activity for the ubiquitylation reaction induced by the SidE family effectors; it also demonstrates that ubiquitylation of RTN4 by SidE family members leads to its association with the LCV.

    Article  CAS  PubMed  Google Scholar 

  82. Sheedlo, M. J. et al. Structural basis of substrate recognition by a bacterial deubiquitinase important for dynamics of phagosome ubiquitination. Proc. Natl Acad. Sci. USA 112, 15090–15095 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. Sorbara, M. T. & Girardin, S. E. Emerging themes in bacterial autophagy. Curr. Opin. Microbiol. 23, 163–170 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Itoh, T. et al. Golgi-resident small GTPase Rab33B interacts with Atg16L and modulates autophagosome formation. Mol. Biol. Cell 19, 2916–2925 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rolando, M. et al. Legionella pneumophila S1P-lyase targets host sphingolipid metabolism and restrains autophagy. Proc. Natl Acad. Sci. USA 113, 1901–1906 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. Choy, A. et al. The Legionella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation. Science 338, 1072–1076 (2012). This paper uncovers a highly effective mechanism for a bacterial pathogen to inhibit autophagy in infected cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Jeong, K. C., Sexton, J. A. & Vogel, J. P. Spatiotemporal regulation of a Legionella pneumophila T4SS substrate by the metaeffector SidJ. PLoS Pathog. 11, e1004695 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Qiu, J. et al. A unique deubiquitinase that deconjugates phosphoribosyl-linked protein ubiquitination. Cell Res. http://dx.doi.org/10.1038/cr.2017.66 (2017).

  89. Liu, Y. & Luo, Z. Q. The Legionella pneumophila effector SidJ is required for efficient recruitment of endoplasmic reticulum proteins to the bacterial phagosome. Infect. Immun. 75, 592–603 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Steinberg, B. E. & Grinstein, S. Pathogen destruction versus intracellular survival: the role of lipids as phagosomal fate determinants. J. Clin. Invest. 118, 2002–2011 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. VanRheenen, S. M., Luo, Z. Q., O'Connor, T. & Isberg, R. R. Members of a Legionella pneumophila family of proteins with ExoU (phospholipase A) active sites are translocated to target cells. Infect. Immun. 74, 3597–3606 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Weber, S. S., Ragaz, C., Reus, K., Nyfeler, Y. & Hilbi, H. Legionella pneumophila exploits PI(4)P to anchor secreted effector proteins to the replicative vacuole. PLoS Pathog. 2, e46 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Schink, K. O., Tan, K. W. & Stenmark, H. Phosphoinositides in control of membrane dynamics. Annu. Rev. Cell Dev. Biol. 32, 143–171 (2016).

    Article  CAS  PubMed  Google Scholar 

  94. Hsu, F. et al. Structural basis for substrate recognition by a unique Legionella phosphoinositide phosphatase. Proc. Natl Acad. Sci. USA 109, 13567–13572 (2012). This paper reveals a mechanism used by L. pneumophila to produce PtdIns4P on the LCV.

    Article  PubMed  Google Scholar 

  95. Weber, S. S., Ragaz, C. & Hilbi, H. The inositol polyphosphate 5-phosphatase OCRL1 restricts intracellular growth of Legionella, localizes to the replicative vacuole and binds to the bacterial effector LpnE. Cell. Microbiol. 11, 442–460 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Dong, N. et al. Modulation of membrane phosphoinositide dynamics by the phosphatidylinositide 4-kinase activity of the Legionella LepB effector. Nat. Microbiol. 2, 16236 (2016). Together with reference 94, this paper demonstrates the coordination of two effectors for the production of PtdIns4P on the LCV.

    Article  CAS  PubMed  Google Scholar 

  97. Banga, S. et al. Legionella pneumophila inhibits macrophage apoptosis by targeting pro-death members of the Bcl2 protein family. Proc. Natl Acad. Sci. USA 104, 5121–5126 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Hubber, A. et al. The machinery at endoplasmic reticulum–plasma membrane contact sites contributes to spatial regulation of multiple Legionella effector proteins. PLoS Pathog. 10, e1004222 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Godi, A. et al. ARF mediates recruitment of PtdIns-4-OH kinase-β and stimulates synthesis of PtdIns(4,5)P2 on the Golgi complex. Nat. Cell Biol. 1, 280–287 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Viner, R., Chetrit, D., Ehrlich, M. & Segal, G. Identification of two Legionella pneumophila effectors that manipulate host phospholipids biosynthesis. PLoS Pathog. 8, e1002988 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Fu, Y. & Rubin, C. S. Protein kinase D: coupling extracellular stimuli to the regulation of cell physiology. EMBO Rep. 12, 785–796 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Grinstein, S. & Fairn, G. D. How nascent phagosomes mature to become phagolysosomes. Trends Immunol. 33, 397–405 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Zhu, W., Hammad, L. A., Hsu, F., Mao, Y. & Luo, Z. Q. Induction of caspase 3 activation by multiple Legionella pneumophila Dot/Icm substrates. Cell. Microbiol. 15, 1783–1795 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Degtyar, E., Zusman, T., Ehrlich, M. & Segal, G. A. Legionella effector acquired from protozoa is involved in sphingolipids metabolism and is targeted to the host cell mitochondria. Cell. Microbiol. 11, 1219–1235 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Rowland, A. A. & Voeltz, G. K. Endoplasmic reticulum–mitochondria contacts: function of the junction. Nat. Rev. Mol. Cell Biol. 13, 607–625 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kinchen, J. M. et al. A pathway for phagosome maturation during engulfment of apoptotic cells. Nat. Cell Biol. 10, 556–566 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Vieira, O. V. et al. Modulation of Rab5 and Rab7 recruitment to phagosomes by phosphatidylinositol 3-kinase. Mol. Cell. Biol. 23, 2501–2514 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Losick, V. P. & Isberg, R. R. NF-κB translocation prevents host cell death after low-dose challenge by Legionella pneumophila. J. Exp. Med. 203, 2177–2189 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Rolando, M. et al. Legionella pneumophila effector RomA uniquely modifies host chromatin to repress gene expression and promote intracellular bacterial replication. Cell Host Microbe 13, 395–405 (2013).

    Article  CAS  PubMed  Google Scholar 

  110. Li, T. et al. SET-domain bacterial effectors target heterochromatin protein 1 to activate host rDNA transcription. EMBO Rep. 14, 733–740 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Rolando, M. & Buchrieser, C. Legionella pneumophila type IV effectors hijack the transcription and translation machinery of the host cell. Trends Cell Biol. 24, 771–778 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Son, J. et al. Crystal structure of Legionella pneumophila type IV secretion system effector LegAS4. Biochem. Biophys. Res. Commun. 465, 817–824 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Ge, J. et al. A Legionella type IV effector activates the NF-κB pathway by phosphorylating the IκB family of inhibitors. Proc. Natl Acad. Sci. USA 106, 13725–13730 (2009).

    Article  PubMed  Google Scholar 

  114. Losick, V. P., Haenssler, E., Moy, M. Y. & Isberg, R. R. LnaB: a Legionella pneumophila activator of NF-κB. Cell. Microbiol. 12, 1083–1097 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Belyi, Y. et al. Legionella pneumophila glucosyltransferase inhibits host elongation factor 1A. Proc. Natl Acad. Sci. USA 103, 16953–16958 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Belyi, Y., Tabakova, I., Stahl, M. & Aktories, K. Lgt: a family of cytotoxic glucosyltransferases produced by Legionella pneumophila. J. Bacteriol. 190, 3026–3035 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Shen, X. et al. Targeting eEF1A by a Legionella pneumophila effector leads to inhibition of protein synthesis and induction of host stress response. Cell. Microbiol. 11, 911–926 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Fontana, M. F. et al. Secreted bacterial effectors that inhibit host protein synthesis are critical for induction of the innate immune response to virulent Legionella pneumophila. PLoS Pathog. 7, e1001289 (2011). This paper demonstrates, for the first time, that the inhibition of host protein synthesis induces a robust immune response.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Barry, K. C., Fontana, M. F., Portman, J. L., Dugan, A. S. & Vance, R. E. IL-1α signaling initiates the inflammatory response to virulent Legionella pneumophila in vivo. J. Immunol. 190, 6329–6339 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hempstead, A. D. & Isberg, R. R. Inhibition of host cell translation elongation by Legionella pneumophila blocks the host cell unfolded protein response. Proc. Natl Acad. Sci. USA 112, E6790–E6797 (2015).

    Article  CAS  PubMed  Google Scholar 

  121. Asrat, S., Dugan, A. S. & Isberg, R. R. The frustrated host response to Legionella pneumophila is bypassed by MyD88-dependent translation of pro-inflammatory cytokines. PLoS Pathog. 10, e1004229 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Copenhaver, A. M., Casson, C. N., Nguyen, H. T., Duda, M. M. & Shin, S. IL-1R signaling enables bystander cells to overcome bacterial blockade of host protein synthesis. Proc. Natl Acad. Sci. USA 112, 7557–7562 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. Weber, M. M. et al. Modulation of the host transcriptome by Coxiella burnetii nuclear effector Cbu1314. Microbes Infect. 18, 336–345 (2016).

    Article  CAS  PubMed  Google Scholar 

  124. Luhrmann, A., Nogueira, C. V., Carey, K. L. & Roy, C. R. Inhibition of pathogen-induced apoptosis by a Coxiella burnetii type IV effector protein. Proc. Natl Acad. Sci. USA 107, 18997–19001 (2010).

    Article  PubMed  Google Scholar 

  125. Klingenbeck, L., Eckart, R. A., Berens, C. & Luhrmann, A. The Coxiella burnetii type IV secretion system substrate CaeB inhibits intrinsic apoptosis at the mitochondrial level. Cell. Microbiol. 15, 675–687 (2013).

    Article  CAS  PubMed  Google Scholar 

  126. Bisle, S. et al. The inhibition of the apoptosis pathway by the Coxiella burnetii effector protein CaeA requires the EK repetition motif, but is independent of survivin. Virulence 7, 400–412 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kohler, L. J. et al. Effector protein Cig2 decreases host tolerance of infection by directing constitutive fusion of autophagosomes with the Coxiella-containing vacuole. mBio 7, e01127-16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Weber, M. M. et al. The type IV secretion system effector protein CirA stimulates the GTPase activity of RhoA and is required for virulence in a mouse model of Coxiella burnetii infection. Infect. Immun. 84, 2524–2533 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Colonne, P. M. et al. Vasodilator-stimulated phosphoprotein activity is required for Coxiella burnetii growth in human macrophages. PLoS Pathog. 12, e1005915 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Lifshitz, Z. et al. Identification of novel Coxiella burnetii Icm/Dot effectors and genetic analysis of their involvement in modulating a mitogen-activated protein kinase pathway. Infect. Immun. 82, 3740–3752 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Cunha, L. D. et al. Inhibition of inflammasome activation by Coxiella burnetii type IV secretion system effector IcaA. Nat. Commun. 6, 10205 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Isaac, D. T., Laguna, R. K., Valtz, N. & Isberg, R. R. MavN is a Legionella pneumophila vacuole-associated protein required for efficient iron acquisition during intracellular growth. Proc. Natl Acad. Sci. USA 112, E5208–E5217 (2015).

    Article  CAS  PubMed  Google Scholar 

  133. Portier, E. et al. IroT/mavN, a new iron-regulated gene involved in Legionella pneumophila virulence against amoebae and macrophages. Environ. Microbiol. 17, 1338–1350 (2015).

    Article  CAS  PubMed  Google Scholar 

  134. Yang, Y., Hu, M., Yu, K., Zeng, X. & Liu, X. Mass spectrometry-based proteomic approaches to study pathogenic bacteria-host interactions. Protein Cell 6, 265–274 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank members of their laboratory for helpful discussions. They also thank their colleagues and collaborators S. Banga, X. Shen, Y. Liu, Y. Tan, L. Xu, W. Zhu, M. Sheedlo, Y. Mao (Cornell University), R. Vance (UC Berkeley), X. Liu (Peking University), J. Samuel (Texas A&M University), C. Das (Purdue University) and E. Nakayasu (Pacific Northwest National Laboratory) for productive collaborations and discussion. The authors apologize to colleagues whose works could not be cited owing to space limitation. Work in the author's laboratory was supported by US National Institute of Allergy and Infectious Disease (grants AI103168 and AI105714).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-Qing Luo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (figure)

The mechanisms of induction of host gene expression by Legionella pneumophila effectors. (PDF 374 kb)

PowerPoint slides

Glossary

Lysosome

A cellular compartment that is characterized by low lumen pH (4.5–5.0) and the harbouring of hydrolytic enzymes that are capable of breaking down biomolecules. In addition to degrading biomaterials, the lysosome also has crucial roles in many important cellular processes, such as cell signalling and metabolism.

Phagolysosome

A cellular compartment that is formed by the fusion of a lysosome with a phagosome generated during phagocytosis.

Autophagosome

A structure with double-layer membranes that is formed during autophagy.

Type IV secretion systems

A family of specialized transporters that consist of multiple proteins that span the two bacterial cell membranes and transfer DNA–protein complexes or proteins from the cytosol of donor bacterial cells to the cytosol of eukaryotic or recipient bacterial cells.

Effectors

Secreted proteins used by pathogenic or symbiotic microorganisms, including bacteria, fungi and parasites, to change the physiology of the host cell, thus enabling successful colonization.

Secretory pathway

A branch of the vesicle trafficking pathway that functions to deliver newly synthesized proteins or lipids from the endoplasmic reticulum to various cellular locations, including the extracellular milieu.

Endosomal trafficking

A cellular process that is involved in the transport of internalized cargoes (bacteria, inert particles or receptor–ligand complexes) carried in the lumen of membrane-bound compartments to their final destinations, such as the trans-Golgi site, the plasma membrane or the lysosome.

Endosomes

Membrane-bound compartments that are formed through several complex processes collectively known as endocytosis; it is found in the cytoplasm of almost every eukaryotic cell. Depending on its maturation stage, they can be divided into early endosomes, late endosomes and recycling endosomes.

GTPases

A large family of enzymes that can bind to and hydrolyse GTP. These enzymes often function as molecular switches that assume an on and an off status by binding to GTP and GDP, respectively.

AMPylation

A process, also known as adenylylation, in which the adenosine monophosphate (AMP) moiety from ATP is covalently linked to a substrate protein. This modification alters the function of the target protein and can be reversed by specific enzymes.

Phosphorylcholination

(PCylation). A chemical modification in which the phosphorylcholine moiety often from CDP-choline is enzymatically attached to the backbone of a protein (mostly in eukaryotes). The modification alters the activity of the target molecules and can be reversed by specific enzymes.

Fic proteins

A large family of proteins that share a structural motif originally associated with a protein in a mutant that displays a filamentous phenotype in media containing cyclic AMP. Those proteins that function to transfer the AMP moiety from ATP to target proteins are called AMPylators.

E3 ubiquitin ligases

One of the three enzymes that are involved in the biochemical reactions in the canonical ubiquitylation mechanism that modifies proteins by adding the ubiquitin modifier. They are important in substrate recognition.

Retromer

A complex formed by five different proteins (a heteropentamer) that anchors on the cytosolic face of endosomes; it participates in a wide range of physiological, developmental and pathological processes by mediating retrograde transport of transmembrane cargo from endosomes to the trans-Golgi network.

Clathrin

A protein important for the generation of coated vesicles; it functions by forming a triskelion shape composed of three clathrin heavy chains and three light chains. Clathrin-coated vesicles selectively sort cargo at the cell membrane, trans-Golgi network and endosomal compartments for multiple membrane traffic pathways.

ADP-ribosylation

A biochemical reaction that transfers the ADP-ribose moiety from nicotinamide adenine dinucleotide (NAD) to protein targets. It is often catalysed by bacterial toxins that contain a mono-ADP-ribosyltransferase (mART) motif.

Reticulon

A group of evolutionarily conservative proteins that reside predominantly in the endoplasmic reticulum; their primary role is to promote membrane curvature.

Xenophagy

A form of autophagy that specifically targets and eliminates non-host entities, such as invading pathogens.

Unfolded protein response

(UPR). A cellular stress response that is activated by the accumulation of unfolded or misfolded proteins in the lumen of the endoplasmic reticulum. It functions to alleviate the damage caused by such accumulation by halting protein translation, degrading misfolded proteins and producing molecular chaperones that facilitate protein folding.

Inflammasome

A multiprotein complex that functions to activate caspase 1 and induce inflammation in response to cues released by invading pathogens or host cells. One major component of inflammasome is constituted by members of the nucleotide-binding oligomerization domain-like receptors (NOD-like receptors or NLRs) that define its feature, physiological role and name. For example, the one containing NLRP3 is called the NLRP3 inflammasome.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, J., Luo, ZQ. Legionella and Coxiella effectors: strength in diversity and activity. Nat Rev Microbiol 15, 591–605 (2017). https://doi.org/10.1038/nrmicro.2017.67

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro.2017.67

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology