Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Opinion

The evolution and maintenance of virulence in Staphylococcus aureus: a role for host-to-host transmission?

Abstract

Despite progress in our understanding of infectious disease biology and prevention, the conditions that select for the establishment and maintenance of microbial virulence remain enigmatic. To address this aspect of pathogen biology, we focus on two members of the Staphylococcus genus — Staphylococcus aureus and Staphylococcus epidermidis — and consider why S. aureus has evolved to become more virulent than S. epidermidis. Several hypotheses to explain this phenomenon are discussed and a mathematical model is used to argue that a complex transmission pathway is the key factor in explaining the evolution and maintenance of virulence in S. aureus. In the case of S. epidermidis, where skin contact affords easier transmission between hosts, high levels of virulence do not offer an advantage to this pathogen.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Agr interference and its role in host-to-host transmission by Staphylococcus aureus.
Figure 2: Transmission and the role of virulence — a mathematical model.

Similar content being viewed by others

References

  1. Gill, S. R. et al. Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain. J. Bacteriol. 187, 2426–2438 (2005).

    Article  CAS  Google Scholar 

  2. Freney, J. et al. Recommended minimal standards for description of new staphylococcal species. Subcommittee on the taxonomy of staphylococci and streptococci of the International Committee on Systematic Bacteriology. Int. J. Syst. Bacteriol. 49, 489–502 (1999).

    Article  CAS  Google Scholar 

  3. Lowy, F. D. Staphylococcus aureus infections. N. Engl. J. Med. 339, 520–532 (1998).

    Article  CAS  Google Scholar 

  4. von Eiff, C., Peters, G. & Heilmann, C. Pathogenesis of infections due to coagulase-negative staphylococci. Lancet Infect. Dis. 2, 677–685 (2002).

    Article  CAS  Google Scholar 

  5. Emmerson, A. M., Enstone, J. E., Griffin, M., Kelsey, M. C. & Smyth, E. T. The second national prevalence survey of infection in hospitals — overview of the results. J. Hosp. Infect. 32, 175–190 (1996).

    Article  CAS  Google Scholar 

  6. Jones, R. N. Global epidemiology of antimicrobial resistance among community-acquired and nosocomial pathogens: a five-year summary from the SENTRY Antimicrobial Surveillance Program (1997–2001). Semin. Respir. Crit. Care Med. 24, 121–134 (2003).

    Article  Google Scholar 

  7. Fluit, A. C., Verhoef, J. & Schmitz, F. J. Frequency of isolation and antimicrobial resistance of Gram-negative and Gram-positive bacteria from patients in intensive care units of 25 European university hospitals participating in the European arm of the SENTRY Antimicrobial Surveillance Program 1997–1998. Eur. J. Clin. Microbiol. Infect. Dis. 20, 617–625 (2001).

    CAS  PubMed  Google Scholar 

  8. Tiemersma, E. W. et al. Methicillin-resistant Staphylococcus aureus in Europe, 1999–2002. Emerg. Infect. Dis. 10, 1627–1634 (2004).

    Article  Google Scholar 

  9. Diep, B. A. et al. Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. Lancet. 367, 731–739 (2006).

    Article  CAS  Google Scholar 

  10. Takeuchi, F. et al. Whole-genome sequencing of Staphylococcus haemolyticus uncovers the extreme plasticity of its genome and the evolution of human-colonizing staphylococcal species. J. Bacteriol. 187, 7292–7308 (2005).

    Article  CAS  Google Scholar 

  11. Kuroda, M. et al. Whole genome sequence of Staphylococcus saprophyticus reveals the pathogenesis of uncomplicated urinary tract infection. Proc. Natl. Acad. Sci. USA. 102, 13272–13277 (2005).

    Article  CAS  Google Scholar 

  12. http://www.genome.ou.edu/staph.html

  13. Baba, T. et al. Genome and virulence determinants of high virulence community-acquired MRSA. Lancet. 359, 1819–1827 (2002).

    Article  CAS  Google Scholar 

  14. Kuroda, M. et al. Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet. 357, 1225–1240 (2001).

    Article  CAS  Google Scholar 

  15. Holden, M. T. et al. Complete genomes of two clinical Staphylococcus aureus strains: evidence for the rapid evolution of virulence and drug resistance. Proc. Natl. Acad. Sci. USA. 101, 9786–9791 (2004).

    Article  CAS  Google Scholar 

  16. Foster, T. J. Immune evasion by staphylococci. Nature Rev. Microbiol. 3, 948–958 (2005).

    Article  CAS  Google Scholar 

  17. Lindsay, J. A. & Holden, M. T. Understanding the rise of the superbug: investigation of the evolution and genomic variation of Staphylococcus aureus. Funct. Integr. Genomics 2, 1–16 (2006).

    Google Scholar 

  18. Flannagan, S. E. & Clewell, D. B. Identification and characterization of genes encoding sex pheromone cAM373 activity in Enterococcus faecalis and Staphylococcus aureus. Mol. Microbiol. 44, 803–817 (2002).

    Article  CAS  Google Scholar 

  19. Nakayama, J. et al. Isolation and structure of staph-cAM373 produced by Staphylococcus aureus that induces conjugal transfer of Enterococcus faecalis plasmid pAM373. Biosci. Biotechnol. Biochem. 60, 1038–1039 (1996).

    Article  CAS  Google Scholar 

  20. Fokkens, W. J. & Scheeren, R. A. Upper airway defence mechanisms. Paediatr. Respir. Rev. 1, 336–341 (2000).

    CAS  PubMed  Google Scholar 

  21. Rooijakkers, S. H., van Kessel, K. P. & van Strijp, J. A. Staphylococcal innate immune evasion. Trends. Microbiol. 13, 596–601 (2005).

    Article  CAS  Google Scholar 

  22. Ewald, P. W. & De Leo, G. in Adaptive Dynamics of Infectious Disease (eds Dieckmann, U., Metz, J. A. J., Sabelis, M. W. & Sigmund, K.) 10–25 (Cambridge University Press, 2002).

    Book  Google Scholar 

  23. Quinn, T. C. et al. Viral load and heterosexual transmission of Human Immunodeficiency Virus type 1. N. Engl. J. Med. 342, 921–929 (2000).

    Article  CAS  Google Scholar 

  24. Anderson, R. M. & May, R. M. Infectious Diseases of Humans (Oxford University Press, UK, 1991).

    Google Scholar 

  25. Anderson, R. M. & May, R. M. Regulation and stability of host–parasite population interactions. J. Anim. Ecol. 47, 219–247 (1978).

    Article  Google Scholar 

  26. Anderson, R. M. & May, R. M. The population dynamics of microparasites and their invertebrate hosts. Phil. Trans. R. Soc. 291, 451–524 (1981).

    Article  Google Scholar 

  27. Anderson, R. M. & May, R. M. Epidemiology and genetics in the coevolution of parasites and hosts. Proc. R. Soc. Lond. B Biol. Sci. 219, 281–313 (1983).

    Article  Google Scholar 

  28. Levin, S. A. & Pimentel, D. Selection of intermediate rates of increase in parasite–host systems. Am. Nat. 78, 308–315 (1981).

    Article  Google Scholar 

  29. Levin, B. R. et al. in Population Biology of Infectious Disease (eds Anderson, R. M. & May, R. M.) 212–43 (Springer, New York, 1982).

    Google Scholar 

  30. Nowak, M. & May, R. M. Superinfection and the evolution of parasite virulence. Proc. Biol. Sci. 255, 81–89 (1994).

    Article  CAS  Google Scholar 

  31. Frank, S. A. Models of parasite virulence. Q. Rev. Biol. 71, 37–78 (1996).

    Article  CAS  Google Scholar 

  32. Day, T. Parasite transmission modes and the evolution of virulence. Evolution Int. J. Org. Evolution 55, 2389–2400 (2001).

    Article  CAS  Google Scholar 

  33. Ewald, P. W. Host–parasite relations, vectors, and the evolution of disease severity. Ann. Rev. Ecol. Sys. 14, 465–485 (1983).

    Article  Google Scholar 

  34. Ewald, P. W. et al. Evolutionary control of infectious disease: prospects for vectorborne and waterborne pathogens. Mem. Inst. Oswaldo Cruz. 93, 567—576 (1998).

    Article  CAS  Google Scholar 

  35. Mackinnon, M. J. & Read, A. F. Virulence in malaria: an evolutionary viewpoint. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359, 965–986 (2004).

    Article  Google Scholar 

  36. Paul, R. E. et al. Experimental evaluation of the relationship between lethal or non-lethal virulence and transmission success in malaria parasite infections. BMC Evol. Biol. 4, (2004).

  37. Lorange, E. A., Race, B. L., Sebbane, F. & Hinnebusch, B. J. Poor vector competence of fleas and the evolution of hypervirulence in Yersinia pestis. J. Infect. Dis. 191, 1907–1912 (2005).

    Article  Google Scholar 

  38. Kluytmans, J., van Belkum, A. & Verbrugh, H. Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clin. Microbiol. Rev. 10, 505–520 (1997).

    Article  CAS  Google Scholar 

  39. Van den Akker, E. L. et al. Staphylococcus aureus nasal carriage is associated with glucocorticoid receptor gene polymorphisms. J. Infect. Dis. 194, 814–818 (2006).

    Article  CAS  Google Scholar 

  40. Bauer, T. M., Ofner, E., Just, H. M., Just, H. & Daschner, F. D. An epidemiological study assessing the relative importance of airborne and direct contact transmission of microorganisms in a medical intensive care unit. J. Hosp. Infect. 15, 301–309 (1990).

    Article  CAS  Google Scholar 

  41. Ji, G., Beavis, R. & Novick, R. P. Bacterial interference caused by autoinducing peptide variants. Science 276, 2027–2030 (1997).

    Article  CAS  Google Scholar 

  42. Jarraud, S. et al. Exfoliatin-producing strains define a fourth agr specificity group in Staphylococcus aureus. J. Bacteriol. 182, 6517–6522 (2000).

    Article  CAS  Google Scholar 

  43. Fleming, V. et al. Agr interference between clinical Staphylococcus aureus strains in an insect model of virulence. J. Bacteriol. 21, 7686–7688 (2006).

    Article  Google Scholar 

  44. Dufour, P. et al. High genetic variability of the agr locus in Staphylococcus species. J. Bacteriol. 184, 1180–1186 (2002).

    Article  CAS  Google Scholar 

  45. Lina, G. et al. Bacterial competition for human nasal cavity colonization: role of staphylococcal agr alleles. Appl. Environ. Microbiol. 69, 18–23 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth C. Massey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome Project

Campylobacter jejuni

Enterococcus faecalis

Plasmodium falciparum

CA-MRSA USA300

Staphylococcus aureus

Staphylococcus epidermidis

Vibrio cholera

Yersinia pestis

Yersinia pseudotuberculosis

Rights and permissions

Reprints and permissions

About this article

Cite this article

Massey, R., Horsburgh, M., Lina, G. et al. The evolution and maintenance of virulence in Staphylococcus aureus: a role for host-to-host transmission?. Nat Rev Microbiol 4, 953–958 (2006). https://doi.org/10.1038/nrmicro1551

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1551

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing