Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Wolbachia: master manipulators of invertebrate biology

Key Points

  • This Review focuses on intracellular Wolbachia, which are globally widespread Rickettsia-like bacteria that infect many arthropod species, as well as filarial nematodes.

  • The authors discuss recent advances in Wolbachia research, with an emphasis on genetics and genomics, ecology, evolution and applications to pest and disease control.

  • Wolbachia are primarily reproductive parasites that have several different effects on hosts, including feminization, induced parthenogenesis, male killing and a sperm–egg incompatibility that is known as cytoplasmic incompatibility. Wolbachia can effectively manipulate the biology of host cells, and have evolved mutualisms with their hosts. These and other effects of Wolbachia are discussed, as well as recent advances on the understanding of cytological interactions between bacteria and their host.

  • Maintenance of the global Wolbachia pandemic is discussed, including factors that affect the spread of Wolbachia, transfer between host species and persistence within a host lineage. The usefulness of multilocus strain typing to characterize the movement and diversity of these bacteria is also emphasized.

  • The evolutionary implications of Wolbachia infection are discussed, including the possible role of this endosymbiont in the promotion of reproductive isolation and speciation, as well as its potential to contribute to host genome evolution through horizontal transfer of genes from the bacteria into their host.

  • Finally, the authors outline possible practical applications of Wolbachia in pest and disease vector management strategies and highlight the main unanswered questions regarding Wolbachia biology.

Abstract

Wolbachia are common intracellular bacteria that are found in arthropods and nematodes. These alphaproteobacteria endosymbionts are transmitted vertically through host eggs and alter host biology in diverse ways, including the induction of reproductive manipulations, such as feminization, parthenogenesis, male killing and sperm–egg incompatibility. They can also move horizontally across species boundaries, resulting in a widespread and global distribution in diverse invertebrate hosts. Here, we review the basic biology of Wolbachia, with emphasis on recent advances in our understanding of these fascinating endosymbionts.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phylogeny of Wolbachia.
Figure 2: Wolbachia-induced phenotypes.
Figure 3: The cytological basis of Wolbachia-induced cytoplasmic incompatibility.
Figure 4: Wolbachia-to-host lateral gene transfer in Drosophila ananassae.

References

  1. de Bary, A. The Phenomenon of Symbiosis (Karl J. Trubner, Strasbourg, 1879).

    Google Scholar 

  2. Hentschel, U., Steinert, M. & Hacker, J. Common molecular mechanisms of symbiosis and pathogenesis. Trends Microbiol. 8, 226–231 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Werren, J. H. in Microbial Evolution: Concepts and Controversies (ed. Sapp, J.) 290–316 (Oxford Univ. Press, New York, 2005).

    Google Scholar 

  4. Werren, J. H. et al. Rickettsial relative associate with male-killing in the ladybird beetle (Adalia bipunctata). J. Bacteriol. 176, 388–394 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bourtzis, K. Wolbachia-based technologies for insect pest population control. Adv. Exp. Med. Biol. 627, 104–113 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Hertig, M. & Wolbach, S. B. Studies on Rickettsia-like microorganisms in insects. J. Med. Res. 44, 329–374 (1924).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Casiraghi, M. et al. Phylogeny of Wolbachia pipientis based on gltA, groEL and ftsZ gene sequences: clustering of arthropod and nematode symbionts in the F supergroup, and evidence for further diversity in the Wolbachia tree. Microbiology 151, 4015–4022 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Baldo, L. & Werren, J. H. Revisiting Wolbachia supergroup typing based on WSP: spurious lineages and discordance with MLST. Curr. Microbiol. 55, 81–87 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Funk, D. J., Helbling, L., Wernegreen, J. J. & Moran, N. A. Intraspecific phylogenetic congruence among multiple symbiont genomes. Proc. Biol. Sci. 267, 2517–2521 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Verne, S., Johnson, M., Bouchon, D. & Grandjean, F. Evidence for recombination between feminizing Wolbachia in the isopod genus Armadillidium. Gene 397, 58–66 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Baldo, L. et al. Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Appl. Environ. Microbiol. 72, 7098–7110 (2006).Established a multigene standard for typing Wolbachia variants using a combination of different bacterial genes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Baldo, L., Bordenstein, S. R., Wernegreen, J. J. & Werren, J. H. Widespread recombination throughout Wolbachia genomes. Mol. Biol. Evol. 23, 437–449 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Hilgenboecker, K., Hammerstein, P., Schlattmann, P., Telschow, A. & Werren, J. H. How many species are infected with Wolbachia? — a statistical analysis of current data. FEMS Microbiol. Lett. 281, 215–220 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Kose, H. & Karr, T. L. Organization of Wolbachia pipientis in the Drosophila fertilized egg and embryo revealed by an anti-Wolbachia monoclonal antibody. Mech. Dev. 51, 275–288 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Ferree, P. M. et al. Wolbachia utilizes host microtubules and dynein for anterior localization in the Drosophila oocyte. PLoS Pathog. 1, e14 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Serbus, L. & Sullivan, W. A cellular basis for Wolbachia recruitment to the host germline. PLoS Pathog. 3, e190 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu, M. et al. Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements. PLoS Biol. 2, 327–341 (2004).

    Article  CAS  Google Scholar 

  18. Foster, J. et al. The Wolbachia genome of Brugia malayi: endosymbiont evolution within a human pathogenic nematode. PLoS Biol. 3, e121 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Salzberg, S. L. et al. Serendipitous discovery of Wolbachia genomes in multiple Drosophila species. Genome Biol. 6, R23 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tamas, I. et al. 50 million years of genomic stasis in endosymbiotic bacteria. Science 296, 2376–2379 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Bordenstein, S. R., Marshall, M. L., Fry, A. J., Kim, U. & Wernegreen, J. J. The tripartite associations between bacteriophage, Wolbachia, and arthropods. PloS Pathog. 2, e43 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fenn, K. & Blaxter, M. Wolbachia genomes: revealing the biology of parasitism and mutualism. Trends Parasitol. 22, 60–65 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Sinkins, S. P. et al. Wolbachia variability and host effects on crossing type in Culex mosquitoes. Nature 436, 256–260 (2005).

    Article  CAS  Google Scholar 

  24. Walker, T. et al. Ankyrin repeat domain-encoding genes in the wPip strain of Wolbachia from the Culex pipiens group. BMC Biol. 5, 39 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pan, X., Lührmann, A., Satoh, A., Laskowski-Arce, M. A. & Roy, C. R. Ankyrin repeat proteins comprise a diverse family of bacterial type IV effectors. Science 320, 1651–1654 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kramer, L. et al. Immune response to and tissue localization of the Wolbachia surface protein (WSP) in dogs with natural heartworm (Dirofilaria immitis) infection. Vet. Immunol. Immunopathol. 106, 303–308 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Bordenstein, S. R. & Wernegreen, J. J. Bacteriophage flux in endosymbionts (Wolbachia): infection frequency, lateral transfer, and recombination rates. Mol. Biol. Evol. 21, 1981–1991 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Baldo, L., Lo, N. & Werren, J. H. Mosaic nature of the Wolbachia surface protein. J. Bacteriol. 187, 5406–5418 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cooper, T. F. Recombination speeds adaptation by reducing competition between beneficial mutations in populations of Escherichia coli. PLoS Biol. 5, e225 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zchori-Fein, E., Pelrlman, S. J., Kelly, S. E., Katzir, N. & Hunter, M. S. Characterization of a 'Bacteroidetes' symbiont in Encarsia wasps (Hymenoptera: Aphelinidae): proposal of 'Candidatus Cardinium hertigii'. Int. J. Syst. Evol. Microbiol. 54, 961–968 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Werren, J. H. Biology of Wolbachia. Annu. Rev. Entomol. 42, 587–609 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Poinsot, D., Charlat, S. & Mercot, H. On the mechanism of Wolbachia-induced cytoplasmic incompatibility: confronting the models with the facts. Bioessays 25, 259–265 (2003).

    Article  PubMed  Google Scholar 

  33. Lassy, C. W. & Karr, T. L. Cytological analysis of fertilization and early embryonic development in incompatible crosses of Drosophila simulans. Mech. Dev. 57, 47–58 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Tram, U. & Sullivan, W. Role of delayed nuclear envelope breakdown and mitosis in Wolbachia-induced cytoplasmic incompatibility. Science 296, 1124–1126 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Reed, K. M. & Werren, J. H. Induction of paternal genome loss by the paternal-sex-ratio chromosome and cytoplasmic incompatibility bacteria (Wolbachia): a comparative study of early embryonic events. Mol. Reprod. Dev. 40, 408–418 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Tram, U., Fredrick, K., Werren, J. H. & Sullivan, W. Paternal chromosome segregation during the first mitotic division determines cytoplasmic incompatibility phenotype. J. Cell Sci. 119, 3655–3663 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Zabalou, S. et al. Multiple rescue factors within a Wolbachia strain. Genetics 178, 2145–2160 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Stouthamer, R., Luck, R. F. & Hamilton, W. D. Antibiotics cause parthenogenetic Trichogramma (Hymenoptera/Trichogrammatidae) to revert to sex. Proc. Natl Acad. Sci. USA 87, 2424–2427 (1990). One of the first studies to establish the role of Wolbachia in the induction of parthenogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Weeks, A. R. & Breeuwer, J. A. Wolbachia-induced parthenogenesis in a genus of phytophagous mites. Proc. R. Soc. Lond. B 268, 2245–2251 (2001).

    Article  CAS  Google Scholar 

  40. Arakaki, N., Miyoshi, T. & Noda, H. Wolbachia-mediated parthenogenesis in the predatory thrips Franklinothrips vespiformis (Thysanoptera: Insecta). Proc. R. Soc. Lond. B 268, 1011–1016 (2001).

    Article  CAS  Google Scholar 

  41. Pannebakker, B. A., Pijnacker, L. P., Zwaan, B. J. & Beukeboom, L. W. Cytology of Wolbachia-induced parthenogenesis in Leptopilina clavipes (Hymenoptera: Figitidae). Genome 47, 299–303 (2004).

    Article  PubMed  Google Scholar 

  42. Stouthamer, R. & Kazmer, D. J. Cytogenetics of microbe associated parthenogenesis and its consequences for gene flow in Trichogramma wasps. Heredity 73, 317–327 (1994).

    Article  Google Scholar 

  43. Gottlieb, Y., Zchori-Fein, E., Werren, J. H. & Karr, T. L. Diploidy restoration in Wolbachia-infected Muscidifurax uniraptor (Hymenoptera: Pteromalidae). J. Invertebr. Pathol. 81, 166–174 (2002).

    Article  PubMed  Google Scholar 

  44. Vandekerckhove, T. T. M. et al. Evolutionary trends in feminization and intersexuality in woodlice (Crustacea, Isopoda) infected with Wolbachia pipientis (a-Proteobacteria). Belg. J. Zool. 133, 61–69 (2003).

    Google Scholar 

  45. Hiroki, M., Kato, Y., Kamito, T. & Miura, K. Feminization of genetic males by a symbiotic bacterium in a butterfly, Eurema hecabe (Lepidoptera: Pieridae). Naturwissenschaften 89, 167–170 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Negri, I., Pellecchia, M., Mazzoglio, P. J., Patetta, A. & Alma, A. Feminizing Wolbachia in Zyginidia pullula (Insecta, Hemiptera), a leafhopper with an XX/XO sex determination system. Proc. R. Soc. Lond. B 273, 2409–2416 (2008).

    Article  Google Scholar 

  47. Narita, S., Kageyama, D., Nomura, M. & Fukatsu, T. Unexpected mechanism of symbiont-induced reversal of insect sex: feminizing Wolbachia continuously acts on the butterfly Eurema hecabe during larval development. Appl. Environ. Microbiol. 73, 4332–4341 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Werren, J. H. & Beukeboom, L. W. Sex determination, sex ratios and genetic conflict. Ann. Rev. Ecol. Syst. 29, 233–261 (1998).

    Article  Google Scholar 

  49. Fialho, R. F. & Stevens, L. Male-killing Wolbachia in a flour beetle. Proc. R. Soc. Lond. B 267, 1469–1473 (2000).

    Article  CAS  Google Scholar 

  50. Dyer, K. A. & Jaenike, J. Evolutionarily stable infection by a male-killing endosymbiont in Drosophila innubila: molecular evidence from the host and parasite genomes. Genetics 168, 1443–1455 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jiggins, F. M., Hurst, G. D., Schulenburg, J. H. & Majerus, M. E. Two male-killing Wolbachia strains coexist within a population of the butterfly Acraea encedon. Heredity 86, 161–166 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Zeh, D. W., Zeh, J. A. & Bonilla, M. M. Wolbachia, sex ratio bias and apparent male killing in the harlequin beetle riding pseudoscorpion. Heredity 95, 41–49 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Kageyama, D., Nishimura, G., Hoshizaki, S. & Ishikawa, Y. Feminizing Wolbachia in an insect, Ostrinia furnacalis (Lepidoptera: Crambidae). Heredity 88, 444–449 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Kageyama, D. & Traut, W. Opposite sex-specific effects of Wolbachia and interference with the sex determination of its host Ostrinia scapulalis. Proc. R. Soc. Lond. B 271, 251–258 (2004). Elucidated the complex effect of Wolbachia , which ultimately kills males via lethal feminization, in a lepdopterian host. In the absence of Wolbachia , female development is lethal.

    Article  Google Scholar 

  55. Charlat, S. et al. Male-killing bacteria trigger a cycle of increasing male fatigue and female promiscuity. Curr. Biol. 17, 273–277 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Hornett, E. A. et al. Evolution of male-killer supression in a natural population. PLoS Biol. 4, e283 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sasaki, T. & Ishikawa, H. Transinfection of Wolbachia in the mediterranean flour moth, Ephestia kuehniella, by embryonic microinjection. Heredity 85, 130–135 (2000).

    Article  PubMed  Google Scholar 

  58. Hurst, G. D., Johnson, A. P., Schulenburg, J. H. & Fuyama, Y. Male-killing Wolbachia in Drosophila: a temperature-sensitive trait with a threshold bacterial density. Genetics 156, 699–709 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Jaenike, J. Spontaneous emergence of a new Wolbachia phenotype. Evolution 61, 2244–2252 (2007).

    Article  PubMed  Google Scholar 

  60. Hornett, E. A. et al. You can't keep a good parasite down: evolution of a male-killer suppressor uncovers cytoplasmic incompatibility. Evolution 62, 1258–1263 (2008).

    Article  PubMed  Google Scholar 

  61. Taylor, M. J. & Hoerauf, A. Wolbachia bacteria of filarial nematodes. Parasitol. Today 15, 437–442 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Simon, F. et al. Immunopathology of Dirofilaria immitis infection. Vet. Res. Commun. 31, 161–171 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Dedeine, F., Bouletreau, M. & Vavre, F. Wolbachia requirement for oogenesis: occurrence within the genus Asobara (Hymenoptera, Braconidae) and evidence for intraspecific variation in A. tabida. Heredity 95, 394–400 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Pannebakker, B. A., Loppin, B., Elemans, C. P. H., Humblot, L. & Vavre, F. Parasitic inhibition of cell death facilitates symbiosis. Proc. Natl Acad. Sci. USA 104, 213–215 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Starr, D. J. & Cline, T. W. A host parasite interaction rescues Drosophila oogenesis defects. Nature 418, 76–79 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Koukou, K. et al. Influence of antibiotic treatment and Wolbachia curing on sexual isolation among Drosophila melanogaster cage populations. Evolution 60, 87–96 (2006).

    Article  PubMed  Google Scholar 

  67. Peng, Y., Nielsen, J. E., Cunningham, J. P. & McGraw, E. A. Wolbachia infection alters olfactory cued locomotion in Drosophila. Appl. Environ. Microbiol. 74, 3943–3948 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Clark, M. E., Heath, B. D., Anderson, C. L. & Karr, T. L. Induced paternal effects mimic cytoplasmic incompatibility in Drosophila. Genetics 173, 727–734 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. O'Neill, S. L. et al. In vitro cultivation of Wolbachia pipientis in an Aedes albopictus cell line. Insect Mol. Biol. 6, 33–39 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Dobson, S. L., Marsland, E. J., Veneti, Z., Bourtzis, K. & O'Neill, S. L. Characterization of Wolbachia host cell range via the in vitro establishment of infections. Appl. Environ. Microbiol. 68, 656–660 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ioannidis, P. et al. New criteria for selecting the origin of DNA replication in Wolbachia and closely related bacteria. BMC Genomics 8, 182 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fallon, A. M. Cytological properties of an Aedes albopictus mosquito cell line infected with Wolbachia strain w AlbB. In Vitro Cell. Dev. Biol. Anim. 44, 1071–2690 (2008).

    Google Scholar 

  73. Rasgon, J. L., Gamston, C. & Ren, X. Survival of Wolbachia pipientis in cell-free medium. Appl. Environ. Microbiol. 72, 6934–6937 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Frydman, H. M., Li, J. M., Robson, D. N. & Wieschaus, E. Somatic stem cell niche tropism in Wolbachia. Nature 441, 509–512 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Veneti, Z., Clark, M. E., Karr, T. L., Savakis, C. & Bourtzis, K. Heads or tails: host–parasite interactions in the DrosophilaWolbachia system. Appl. Environ. Microbiol. 70, 5366–5372 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jiggins, F. M., Bentley, J. K., Majerus, M. E. & Hurst, G. D. Recent changes in phenotype and patterns of host specialization in Wolbachia bacteria. Mol. Ecol. 11, 1275–1283 (2002).

    Article  PubMed  Google Scholar 

  77. Baldo, L. et al. Insight into the routes of Wolbachia invasion: high levels of horizontal transfer in the spider genus Agelenopsis revealed by Wolbachia strain and mitochondrial DNA diversity. Mol. Ecol. 17, 557–569 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Tinsley, M. C. & Majerus, E. N. Small steps or giant leaps for male-killers? Phylogenetic constraints to male-killer host shifts. BMC Evol. Biol. 7, 238 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Bordenstein, S. R., O'Hara, F. P. & Werren, J. H. Wolbachia-induced incompatibility precedes other hybrid incompatibilities in Nasonia. Nature 409, 707–710 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Telschou, A., Hammerstein, P. & Werren, J. H. Wolbachia reinforcement and speciation. Evolution 59, 1607–1619 (2005).

    Article  Google Scholar 

  81. Jaenike, J., Dyer, K. A., Cornish, C. & Minhas, M. S. Asymmetrical reinforcement and Wolbachia infection in Drosophila. PLoS Biol. 4, 1852–1862 (2006).

    Article  CAS  Google Scholar 

  82. Gottlieb, Y. & Zchori-Fein, E. Irreversible thelytokous reproduction in Muscidifurax uniraptor. Entomol. Exp. Appl. 100, 271–278 (2001).

    Article  Google Scholar 

  83. Clark, M. E., Anderson, C. L., Cande, J. & Karr, T. L. Widespread prevalence of Wolbachia in laboratory stocks and the implications for Drosophila research. Genetics 170, 1667–1675 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Kondo, N., Nikoh, N., Ijichi, N., Shimada, M. & Fukatsu, T. Genome fragment of Wolbachia endosymbiont transferred to X chromosome of host insect. Proc. Natl Acad. Sci. USA 99, 14280–14285 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hotopp, J. C. et al. Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science 317, 1753–1756 (2007). Established that gene transfer from Wolbachia into the genomes of arthropod and nematode hosts is widespread.

    Article  CAS  Google Scholar 

  86. Nikoh, N. et al. Wolbachia genome integrated in an insect chromosome: evolution and fate of laterally transferred endosymbiont genes. Genome Res. 18, 272–280 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pfarr, K. M. & Hoerauf, A. M. Antibiotics which target the Wolbachia endosymbionts of filarial parasites: a new strategy for control of filariasis and amelioration of pathology. Mini Rev. Med. Chem. 6, 203–210 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Saint Andre, A. et al. The role of endosymbiotic Wolbachia bacteria in the pathogenesis of river blindness. Science 295, 1892–1895 (2002). Elucidated the role of Wolbachia in the pathogenesis of a filarial nematode infection, and found that the severity of river blindness is reduced in the absence of Wolbachia.

    Article  CAS  PubMed  Google Scholar 

  89. Richards, F. O. et al. No depletion of Wolbachia from Onchocerca volvulus after a short course of rifampin and/or azithromycin. Am. J. Trop. Med. Hyg. 77, 878–882 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Debrah, A. Y. et al. Macrofilaricidal effect of 4 weeks of treatment with doxycycline on Wuchereria bancrofti. Trop. Med. Int. Health 12, 1433–1441 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Debrah, A. Y. et al. Doxycycline reduces plasma VEGF-C/sVEGFR-3 and improves pathology in lymphatic filariasis. PLoS Biol. 2, e92 (2006).

    Article  CAS  Google Scholar 

  92. Turner, J. D. et al. A randomized, double-blind clinical trial of a 3-week course of doxycycline plus albendazole and ivermectin for the treatment of Wuchereria bancrofti infection. Clin. Infect. Dis. 42, 1081–1089 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Bazzocchi, C. et al. Combined ivermectin and doxycycline treatment has microfilaricidal and adulticidal activity against Dirofilaria immitis in experimentally infected dogs. Int. J. Parasitol. 21 Mar 2008 (doi:10.1016/j.ijpara.2008.03.002).

    Article  CAS  PubMed  Google Scholar 

  94. Xi, Z., Khoo, C. C. & Dobson, S. L. Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science 310, 326–328 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Zabalou, S. et al. Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control. Proc. Natl Acad. Sci. USA 101, 15042–15045 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Dobson, S. L., Fox, C. W. & Jiggins, F. M. The effect of Wolbachia-induced cytoplasmic incompatibility on host population size in natural and manipulated systems. Proc. R. Soc. Lond. B 269, 437–445 (2002).

    Article  Google Scholar 

  97. Brownstein, J. S., Hett, E. & O'Neill, S. The potential of virulent Wolbachia to modulate disease transmission by insects. J. Invertebr. Pathol. 84, 24–29 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Hotopp, J. C. D. et al. Comparative genomics of emerging human ehrlichiosis agents. PLoS Genet. 2, e21 (2006).

    Article  Google Scholar 

  99. Lo, N. et al. Taxonomic status of the intracellular bacterium Wolbachia pipientis. Int. J. Syst. Evol. Microbiol. 57, 654–657 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Werren.

Related links

Related links

DATABASES

Entrez Genome Project

Brugia malayi

Drosophila ananassae

Drosophila melanogaster

Drosophila simulans

Legionella pneumophila

Orientia tsutsugamushi

Rickettsia bellii

FURTHER INFORMATION

John H. Werren's homepage

Anti-Wolbachia Project

Bill and Melinda Gates Foundation

Wolbachia MLST databases

Glossary

Mutualism

A symbiotic relationship in which both partners benefit.

Commensalism

A symbiotic relationship in which neither partner benefits or is harmed.

Parasitism

A symbiotic relationship in which one partner benefits at the expense of the other.

Clade

A group of genetically related organisms that includes an ancestor and all of its descendants.

Meta-analysis

A method for combining results from separate, related studies.

Feminization

A process in which a male acquires female characteristics.

Haplodiploid

A sex-determining mechanism that is found in some insect groups, in which males are haploid and females are diploid.

Parthenogenesis

An asexual form of reproduction that is found in females, in which growth and development of embryos occurs without fertilization by males.

Heterogamety

The production of dissimilar gametes by an individual of one sex. For example, the production of X- and Y-bearing gametes by the human male.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Werren, J., Baldo, L. & Clark, M. Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6, 741–751 (2008). https://doi.org/10.1038/nrmicro1969

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1969

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing