Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Intracellular pathogenic bacteria and fungi — a case of convergent evolution?

Abstract

The bacterium Yersinia pestis and the fungus Cryptococcus neoformans are the causative agents of human plague and cryptococcosis, respectively. Both microorganisms are facultatively intracellular pathogens. A comparison of their pathogenic strategies reveals similar tactics for intracellular survival in Y. pestis and C. neoformans despite their genetic unrelatedness. Both organisms can survive in environments where they are vulnerable to predation by amoeboid protozoal hosts. Here, we propose that the overall similarities in their pathogenic strategies are an example of convergent evolution that has solved the problem of intracellular survival.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model for the interaction of Yersinia pestis with macrophages.
Figure 2: Model for the interaction of Cryptococcus neoformans with macrophages.

Similar content being viewed by others

References

  1. Harb, O. S., Gao, L. Y. & Abu Kwaik, Y. From protozoa to mammalian cells: a new paradigm in the life cycle of intracellular bacterial pathogens. Environ. Microbiol. 2, 251–265 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Solomon, J. M. & Isberg, R. R. Growth of Legionella pneumophila in Dictyostelium discoideum: a novel system for genetic analysis of host–pathogen interactions. Trends Microbiol. 8, 478–480 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Swanson, M. S. & Hammer, B. K. Legionella pneumophila pathogenesis: a fateful journey from amoebae to macrophages. Annu. Rev. Microbiol. 54, 567–613 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. McLendon, M. K., Apicella, M. A. & Allen, L. A. Francisella tularensis: taxonomy, genetics, and immunopathogenesis of a potential agent of biowarfare. Annu. Rev. Microbiol. 60, 167–185 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Santic, M., Molmeret, M., Klose, K. E. & Abu, K. Y. Francisella tularensis travels a novel, twisted road within macrophages. Trends Microbiol. 14, 37–44 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Sjostedt, A. Intracellular survival mechanisms of Francisella tularensis, a stealth pathogen. Microbes Infect. 8, 561–567 (2006).

    Article  PubMed  CAS  Google Scholar 

  7. Vogel, J. P. & Isberg, R. R. Cell biology of Legionella pneumophila. Curr. Opin. Microbiol. 2, 30–34 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Roy, C. R. & Tilney, L. G. The road less traveled: transport of Legionella to the endoplasmic reticulum. J. Cell Biol. 158, 415–419 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Prentice, M. B. & Rahalison, L. Plague. Lancet 369, 1196–1207 (2007).

    Article  PubMed  Google Scholar 

  10. Wren, B. W. The yersiniae — a model genus to study the rapid evolution of bacterial pathogens. Nature Rev. Microbiol. 1, 55–64 (2003).

    Article  CAS  Google Scholar 

  11. Zhou, D., Han, Y. & Yang, R. Molecular and physiological insights into plague transmission, virulence and etiology. Microbes Infect. 8, 273–284 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Pujol, C. & Bliska, J. B. The ability to replicate in macrophages is conserved between Yersinia pestis and Yersinia pseudotuberculosis. Infect. Immun. 71, 5892–5899 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tauxe, R. V. Salad and pseudoappendicitis: Yersinia pseudotuberculosis as a foodborne pathogen. J. Infect. Dis. 189, 761–763 (2004).

    Article  PubMed  Google Scholar 

  14. Fukushima, H. Direct isolation of Yersinia pseudotuberculosis from fresh water in Japan. Appl. Environ. Microbiol. 58, 2688–2690 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Eisen, R. J. et al. Persistence of Yersinia pestis in soil under natural conditions. Emerg. Infect. Dis. 14, 941–943 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Drancourt, M., Houhamdi, L. & Raoult, D. Yersinia pestis as a telluric, human ectoparasite-borne organism. Lancet Infect. Dis. 6, 234–241 (2006).

    Article  PubMed  Google Scholar 

  17. Cavanaugh, D. C. & Randall, R. The role of multiplication of Pasteurella pestis in mononuclear phagocytes in the pathogenesis of flea-borne plague. J. Immunol. 83, 348–363 (1959).

    CAS  PubMed  Google Scholar 

  18. Bacon, G. A. & Burrows, T. W. The basis of virulence in Pasteurella pestis: an antigen determining virulence. Br. J. Exp. Pathol. 37, 481–493 (1956).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Pujol, C. & Bliska, J. B. Turning Yersinia pathogenesis outside in: subversion of macrophage function by intracellular yersiniae. Clin. Immunol. 114, 216–226 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Lathem, W. W., Crosby, S. D., Miller, V. L. & Goldman, W. E. Progression of primary pneumonic plague: a mouse model of infection, pathology, and bacterial transcriptional activity. Proc. Natl Acad. Sci. USA 102, 17786–17791 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Viboud, G. I. & Bliska, J. B. Yersinia outer proteins: role in modulation of host cell signaling responses and pathogenesis. Annu. Rev. Microbiol. 59, 69–89 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Marketon, M. M., DePaolo, R. W., DeBord, K. L., Jabri, B. & Schneewind, O. Plague bacteria target immune cells during infection. Science 309, 1739–1741 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Du, Y., Rosqvist, R. & Forsberg, A. Role of fraction 1 antigen of Yersinia pestis in inhibition of phagocytosis. Infect. Immun. 70, 1453–1460 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Finegold, M. J. Pneumonic plague in monkeys. An electron microscopic study. Am. J. Pathol. 54, 167–185 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Meyer, K. F. Immunity in plague; a critical consideration of some recent studies. J. Immunol. 64, 139–163 (1950).

    CAS  PubMed  Google Scholar 

  26. Bosio, C. M., Goodyear, A. W. & Dow, S. W. Early interaction of Yersinia pestis with APCs in the lung. J. Immunol. 175, 6750–6756 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Bubeck, S. S., Cantwell, A. M. & Dube, P. H. Delayed inflammatory response to primary pneumonic plague occurs in both outbred and inbred mice. Infect. Immun. 75, 697–705 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Groisman, E. A. The pleiotropic two-component regulatory system PhoP–PhoQ. J. Bacteriol. 183, 1835–1842 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ernst, R. K., Guina, T. & Miller, S. I. How intracellular bacteria survive: surface modifications that promote resistance to host innate immune responses. J. Infect. Dis. 179 (Suppl. 2), 326–330 (1999).

    Article  Google Scholar 

  30. Oyston, P. C. et al. The response regulator PhoP is important for survival under conditions of macrophage-induced stress and virulence in Yersinia pestis. Infect. Immun. 68, 3419–3425 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Grabenstein, J. P., Fukuto, H. S., Palmer, L. E. & Bliska, J. B. Characterization of phagosome trafficking and identification of PhoP-regulated genes important for survival of Yersinia pestis in macrophages. Infect. Immun. 74, 3727–3741 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sebbane, F., Gardner, D., Long, D., Gowen, B. B. & Hinnebusch, B. J. Kinetics of disease progression and host response in a rat model of bubonic plague. Am. J. Pathol. 166, 1427–1439 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sebbane, F., Jarrett, C. O., Gardner, D., Long, D. & Hinnebusch, B. J. Role of the Yersinia pestis plasminogen activator in the incidence of distinct septicemic and bubonic forms of flea-borne plague. Proc. Natl Acad. Sci. USA 103, 5526–5530 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jarrett, C. O. et al. Transmission of Yersinia pestis from an infectious biofilm in the flea vector. J. Infect. Dis. 190, 783–792 (2004).

    Article  PubMed  Google Scholar 

  35. Hinnebusch, B. J. The evolution of flea-borne transmission in Yersinia pestis. Curr. Issues Mol. Biol. 7, 197–212 (2005).

    CAS  PubMed  Google Scholar 

  36. Lukaszewski, R. A. et al. Pathogenesis of Yersinia pestis infection in BALB/c mice: effects on host macrophages and neutrophils. Infect. Immun. 73, 7142–7150 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Diamond, R. D. & Bennett, J. E. Growth of Cryptococcus neoformans within human macrophages in vitro. Infect. Immun. 7, 231–236 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Casadevall, A. & Perfect, J. R. Cryptococcus neoformans (American Society for Microbiology, Washington DC, 1998).

    Book  Google Scholar 

  39. Feldmesser, M., Tucker, S. C. & Casadevall, A. Intracellular parasitism of macrophages by Cryptococcus neoformans. Trends Microbiol. 9, 273–278 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Rittershaus, P. C. et al. Glucosylceramide synthase is an essential regulator of pathogenicity of Cryptococcus neoformans. J. Clin. Invest. 116, 1651–1659 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Weeks, S., Hill, J., Friedlander, A. & Welkos, S. Anti-V antigen antibody protects macrophages from Yersinia pestis-induced cell death and promotes phagocytosis. Microb. Pathog. 32, 227–237 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Cowan, C., Philipovskiy, A. V., Wulff-Strobel, C. R., Ye, Z. & Straley, S. C. Anti-LcrV antibody inhibits delivery of Yops by Yersinia pestis KIM5 by directly promoting phagocytosis. Infect. Immun. 73, 6127–6137 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lahteenmaki, K., Kuusela, P. & Korhonen, T. K. Bacterial plasminogen activators and receptors. FEMS Microbiol. Rev. 25, 531–552 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Cowan, C., Jones, H. A., Kaya, Y. H., Perry, R. D. & Straley, S. C. Invasion of epithelial cells by Yersinia pestis: evidence for a Y. pestis-specific invasin. Infect. Immun. 68, 4523–4530 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu, F., Chen, H., Galvan, E. M., Lasaro, M. A. & Schifferli, D. M. Effects of Psa and F1 on the adhesive and invasive interactions of Yersinia pestis with human respiratory tract epithelial cells. Infect. Immun. 74, 5636–5644 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chang, Y. C. et al. Cryptococcal yeast cells invade the central nervous system via transcellular penetration of the blood–brain barrier. Infect. Immun. 72, 4985–4995 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen, S. H. et al. Cryptococcus neoformans induces alterations in the cytoskeleton of human brain microvascular endothelial cells. J. Med. Microbiol. 52, 961–970 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Shao, X. et al. An innate immune system cell is a major determinant of species-related susceptibility differences to fungal pneumonia. J. Immunol. 175, 3244–3251 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Feldmesser, M., Kress, Y., Novikoff, P. & Casadevall, A. Cryptococcus neoformans is a facultative intracellular pathogen in murine pulmonary infection. Infect. Immun. 68, 4225–4237 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zaragoza, O., Alvarez, M., Telzak, A., Rivera, J. & Casadevall, A. The relative susceptibility of mouse strains to pulmonary Cryptococcus neoformans infection is associated with pleiotropic differences in the immune response. Infect. Immun. 75, 2729–2739 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Straley, S. C. & Harmon, P. A. Yersinia pestis grows within phagolysosomes in mouse peritoneal macrophages. Infect. Immun. 45, 655–659 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tucker, S. C. & Casadevall, A. Replication of Cryptococcus neoformans in macrophages is accompanied by phagosomal permeabilization and accumulation of vesicles containing polysaccharide in the cytoplasm. Proc. Natl Acad. Sci. USA 99, 3165–3170 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Levitz, S. M. et al. Cryptococcus neoformans resides in an acidic phagolysosome of human macrophages. Infect. Immun. 67, 885–890 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tsukano, H. et al. Yersinia pseudotuberculosis blocks the phagosomal acidification of B10.A mouse macrophages through the inhibition of vacuolar H+-ATPase activity. Microb. Pathog. 27, 253–263 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Vieira, O. V., Botelho, R. J. & Grinstein, S. Phagosome maturation: aging gracefully. Biochem. J. 366, 689–704 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cox, G. M. et al. Extracellular phospholipase activity is a virulence factor for Cryptococcus neoformans. Mol. Microbiol. 39, 166–175 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Levitz, S. M., Harrison, T. S., Tabuni, A. & Liu, X. Chloroquine induces human nononuclear phagocytes to inhibit and kill Cryptococcus neoformans by a mechanism independent of iron deprivation. J. Clin. Invest. 100, 1640–1646 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Harrison, T. S., Griffin, G. E. & Levitz, S. M. Conditional lethality of the diprotic weak bases chloroquine and quinacrine against Cryptococcus neoformans. J. Infect. Dis. 182, 283–289 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Perry, R. D. & Fetherston, J. D. Yersinia pestis — etiologic agent of plague. Clin. Microbiol. Rev. 10, 35–66 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Perry, R. D., Mier, I. Jr & Fetherston, J. D. Roles of the Yfe and Feo transporters of Yersinia pestis in iron uptake and intracellular growth. Biometals 20, 699–703 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Pujol, C., Grabenstein, J. P., Perry, R. D. & Bliska, J. B. Replication of Yersinia pestis in interferon γ-activated macrophages requires ripA, a gene encoded in the pigmentation locus. Proc. Natl Acad. Sci. USA 102, 12909–12914 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Goulding, C. W. et al. The structure and computational analysis of Mycobacterium tuberculosis protein CitE suggest a novel enzymatic function. J. Mol. Biol. 365, 275–283 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Brown, S. M., Campbell, L. T. & Lodge, J. K. Cryptococcus neoformans, a fungus under stress. Curr. Opin. Microbiol. 10, 320–325 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Giles, S. S. et al. The Cryptococcus neoformans catalase gene family and its role in antioxidant defense. Eukaryot. Cell 5, 1447–1459 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. de Jesus-Berrios, M. et al. Enzymes that counteract nitrosative stress promote fungal virulence. Curr. Biol. 13, 1963–1968 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Missall, T. A. & Lodge, J. K. Function of the thioredoxin proteins in Cryptococcus neoformans during stress or virulence and regulation by putative transcriptional modulators. Mol. Microbiol. 57, 847–858 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Narasipura, S. D., Chaturvedi, V. & Chaturvedi, S. Characterization of Cryptococcus neoformans variety gattii SOD2 reveals distinct roles of the two superoxide dismutases in fungal biology and virulence. Mol. Microbiol. 55, 1782–1800 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Giles, S. S., Batinic-Haberle, I., Perfect, J. R. & Cox, G. M. Cryptococcus neoformans mitochondrial superoxide dismutase: an essential link between antioxidant function and high-temperature growth. Eukaryot. Cell 4, 46–54 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cox, G. M. et al. Superoxide dismutase influences the virulence of Cryptococcus neoformans by affecting growth within macrophages. Infect. Immun. 71, 173–180 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chatuverdi, V., Wong, B. & Newman, S. L. Oxidative killing of Cryptococcus neoformans by human leukocytes. Evidence that fungal mannitol protects by scavenging reactive oxygen intermediates. J. Immunol. 156, 3836–3840 (1996).

    Google Scholar 

  71. Shea, J. M., Kechichian, T. B., Luberto, C. & Del Poeta, M. The cryptococcal enzyme inositol phosphosphingolipid-phospholipase C confers resistance to the antifungal effects of macrophages and promotes fungal dissemination to the central nervous system. Infect. Immun. 74, 5977–5988 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rodrigues, M. L. et al. Vesicular polysaccharide export in Cryptococcus neoformans is a eukaryotic solution to the problem of fungal trans-cell wall transport. Eukaryot. Cell 6, 48–59 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Rodrigues, M. L. et al. Extracellular vesicles produced by Cryptococcus neoformans contain protein components associated with virulence. Eukaryot. Cell 7, 58–67 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Beatty, W. L. et al. Trafficking and release of mycobacterial lipids from infected macrophages. Traffic 1, 235–247 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Ma, H., Croudace, J. E., Lammas, D. A. & May, R. C. Direct cell-to-cell spread of a pathogenic yeast. BMC Immunol. 8, 15 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Alvarez, M. & Casadevall, A. Cell-to-cell spread and massive vacuole formation after Cryptococcus neoformans infection of murine macrophages. BMC Immunol. 8, 16 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Greub, G. & Raoult, D. Microorganisms resistant to free-living amoebae. Clin. Microbiol. Rev. 17, 413–433 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Steenbergen, J. N., Nosanchuk, J. D., Malliaris, S. D. & Casadevall, A. Interaction of Blastomyces dermatitidis, Sporothrix schenckii, and Histoplasma capsulatum with Acanthamoeba castellanii. Infect. Immun. 72, 3478–3488 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Alvarez, M. & Casadevall, A. Phagosome fusion and extrusion, and host cell survival following Cryptococcus neoformans phagocytosis by macrophages. Curr. Biol. 16, 2161–2165 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Newman, S. L. Macrophages in host defense against Histoplasma capsulatum. Trends Microbiol. 7, 67–71 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Woods, J. P. Knocking on the right door and making a comfortable home: Histoplasma capsulatum intracellular pathogenesis. Curr. Opin. Microbiol. 6, 327–331 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Marion, C. L., Rappleye, C. A., Engle, J. T. & Goldman, W. E. An α-(1,4)-amylase is essential for α-(1,3)-glucan production and virulence in Histoplasma capsulatum. Mol. Microbiol. 62, 970–983 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the laboratory of J.B.B. on intracellular replication of Y. pestis in macrophages is supported by Public Health Service (PHS) grant AI055621. Work in the laboratory of A.C. on intracellular pathogenesis of C. neoformans is supported by PHS grant HL59842-11. A.C. and J.B.B. both contribute research to, and receive support from, the Northeastern Biodefense Center (grant number 5U54AI057158-05). The authors thank C. Pujol and M. Alvarez for providing the electron-microscopy images used in the figures and for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arturo Casadevall.

Related links

Related links

DATABASES

Entrez Genome Project

Cryptococcus neoformans

Francisella tularensis

Histoplasma capsulatu m

Legionella pneumophila

Mycobacterium tuberculosis

S. Typhimurium

Toxoplasma gondii

Yersinia pestis

Yersinia pseudotuberculosis

FURTHER INFORMATION

James B. Bliska's homepage

Arturo Casadevall's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bliska, J., Casadevall, A. Intracellular pathogenic bacteria and fungi — a case of convergent evolution?. Nat Rev Microbiol 7, 165–171 (2009). https://doi.org/10.1038/nrmicro2049

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2049

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing