Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The phasevarion: phase variation of type III DNA methyltransferases controls coordinated switching in multiple genes

Key Points

  • A common feature of host-adapted bacterial pathogens is the high-frequency, random on-and-off switching of surface proteins and glycans. This process, called phase variation, generates a diverse bacterial population and facilitates immune evasion and adaptation to host micro-environments. The most common mechanism of phase-variable gene expression is a tract of simple tandem repeats that mutate at high frequency, altering gene expression through frameshift mutations or changes in the promoter region.

  • Type III restriction–modification (R–M) systems are composed of two enzymes: a methyltransferase (encoded by a mod gene) and a restriction endonuclease (encoded by a res gene). Mod catalyses the methylation of a specific DNA recognition sequence, distinguishing 'self' DNA and protecting it from cleavage. Mod can act independently of the restriction enzyme and methylates one strand only. Res catalyses the double-stranded cleavage of unmethylated, 'non-self' DNA, but can only work as a complex with Mod, which contains the DNA recognition domain.

  • Numerous type III R–M systems in host-adapted bacterial pathogens contain repetitive motifs, indicating the potential for phase variation of these systems in many species, including Haemophilus influenzae, Helicobacter pylori, Mannheimia haemolytica, Neisseria meningitidis, Neisseria gonorrhoeae and Moraxella catarrhalis. Methyltransferases from type III R–M systems, unlike most other phase-variable genes, are not involved in the biosynthesis of surface antigens. R–M systems are traditionally involved in protection of the bacterial cell from incoming foreign DNA.

  • Several roles have been suggested for phase-variable type III R–M systems, including: acting as a barrier to bacteriophage or genetic exchange by transformation; allowing the release of DNA into the environment for uptake by other cells in the population, through autolytic self-DNA degradation by the cognate restriction enzyme; and influencing gene regulation through differential methylation of the genome. A phase-variable methyltransferase could play a part in pathogenicity by randomizing virulence factor expression through global changes in methylation.

  • In DNA adenine methylase (Dam)-dependent phase variation systems, competition between Dam and a DNA-binding protein forms a DNA methylation pattern that controls gene expression at a target site. The target site's methylation state affects the DNA binding of a regulatory protein, which directly regulates transcription. The Dam methylase itself does not phase vary.

  • The 'phasevarion' (phase-variable regulon) is a novel genetic system coordinating the random switching of multiple genes. The mod genes undergo phase variation through their tandem repeats, and this in turn influences the random switching of the expression of multiple genes. The wide distribution of phase-variable mod genes indicates that this may be a common strategy used by host-adapted bacterial pathogens for the generation of 'differentiated' cell types with distinct niche specializations.

Abstract

In several host-adapted pathogens, phase variation has been found to occur in genes that encode methyltransferases associated with type III restriction–modification systems. It was recently shown that in the human pathogens Haemophilus influenzae, Neisseria gonorrhoeae and Neisseria meningitidis phase variation of a type III DNA methyltransferase, encoded by members of the mod gene family, regulates the expression of multiple genes. This novel genetic system has been termed the 'phasevarion' (phase-variable regulon). The wide distribution of phase-variable mod family genes indicates that this may be a common strategy used by host-adapted bacterial pathogens to randomly switch between distinct cell types.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Methylation and restriction by type I, type II and type III restriction–modification systems.
Figure 2: Potentially phase-variable methyltransferase genes associated with type III restriction–modification systems.

Similar content being viewed by others

References

  1. van Ham, S. M., van Alphen, L., Mooi, F. R. and van Putten, J. P. Phase variation of Haemophilus influenzae fimbriae: transcriptional control of two divergent genes through a variable combined promoter region. Cell 73, 1187–1196 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Weiser, J. N., Williams, A. & Moxon, E. R. Phase-variable lipopolysaccharide structures enhance the invasive capacity of Haemophilus influenzae. Infect. Immun. 58, 3455–3457 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Hallet, B. Playing Dr Jekyll and Mr Hyde: combined mechanisms of phase variation in bacteria. Curr. Opin. Microbiol. 4, 570–581 (2001). A comprehensive review focusing on the different phase variation mechanisms in bacteria.

    Article  CAS  PubMed  Google Scholar 

  4. Jennings, M. P., Hood, D. W., Peak, I. R., Virji, M. & Moxon, E. R. Molecular analysis of a locus for the biosynthesis and phase-variable expression of the lacto-N-neotetraose terminal lipopolysaccharide structure in Neisseria meningitidis. Mol. Microbiol. 18, 729–740 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. van der Ende, A. et al. Variable expression of class 1 outer membrane protein in Neisseria meningitidis is caused by variation in the spacing between the -10 and -35 regions of the promoter. J. Bacteriol. 177, 2475–2480 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Moxon, E. R. & Thaler, D. S. Microbial genetics. The tinkerer's evolving tool-box. Nature 387, 659–662 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Robertson, B. D. & Meyer, T. F. Genetic variation in pathogenic bacteria. Trends Genet. 8, 422–427 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. van der Woude, M. W. & Baumler, A. J. Phase and antigenic variation in bacteria. Clin. Microbiol. Rev. 17, 581–611 (2004). An excellent review of type I R–M systems.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. van der Woude, M. W. Re-examining the role and random nature of phase variation. FEMS Microbiol. Lett. 254, 190–197 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Moxon, R., Bayliss, C. & Hood, D. Bacterial contingency loci: the role of simple sequence DNA repeats in bacterial adaptation. Annu. Rev. Genet. 40, 307–333 (2006). A detailed review focusing on the role of simple tandem repeats in bacterial adaptation.

    Article  CAS  PubMed  Google Scholar 

  11. Levinson, G. & Gutman, G. A. Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol. Biol. Evol. 4, 203–221 (1987). An overview of the bacterial proteins and structures that are under the control of phase variation.

    CAS  PubMed  Google Scholar 

  12. Chandler, M. & Fayet, O. Translational frameshifting in the control of transposition in bacteria. Mol. Microbiol. 7, 497–503 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. van Belkum, A., Scherer, S., van Alphen, L. & Verbrugh, H. Short-sequence DNA repeats in prokaryotic genomes. Microbiol. Mol. Biol. Rev. 62, 275–293 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Boyer, H. W. DNA restrictions and modification mechanisms in bacteria. Annu. Rev. Microbiol. 25, 153–176 (1971).

    Article  CAS  PubMed  Google Scholar 

  15. Bickle, T. A., Brack, C. & Yuan, R. ATP-induced conformational changes in the restriction endonuclease from Escherichia coli K-12. Proc. Natl Acad. Sci. USA 75, 3099–3103 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sears, A., Peakman, L. J., Wilson, G. G. & Szczelkun, M. D. Characterization of the Type III restriction endonuclease PstII from Providencia stuartii. Nucleic Acids Res. 33, 4775–4787 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Arber, W. & Dussoix, D. Host specificity of DNA produced by Escherichia coli. I. Host controlled modification of bacteriophage λ. J. Mol. Biol. 5, 18–36 (1962).

    Article  CAS  PubMed  Google Scholar 

  18. Arber, W. & Wauters-Willems, D. Host specificity of DNA produced by Escherichia coli. XII. The two restriction and modification systems of strain 15T-. Mol. Gen. Genet. 108, 203–217 (1970).

    Article  CAS  PubMed  Google Scholar 

  19. Piekarowicz, A., Kauc, L. & Glover, S. W. Host specificity of DNA in Haemophilus influenzae: the restriction and modification systems in strains Rb and Rf. J. Gen. Microbiol. 81, 391–403 (1974).

    Article  CAS  PubMed  Google Scholar 

  20. Bullas, L. R., Colson, C. & Neufeld, B. Deoxyribonucleic acid restriction and modification systems in Salmonella: chromosomally located systems of different serotypes. J. Bacteriol. 141, 275–292 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Bourniquel, A. A. & Bickle, T. A. Complex restriction enzymes: NTP-driven molecular motors. Biochimie 84, 1047–1059 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Dryden, D. T., Murray, N. E. & Rao, D. N. Nucleoside triphosphate-dependent restriction enzymes. Nucleic Acids Res. 29, 3728–3741 (2001). A detailed description of the molecular mechanisms of DNA translocation and cleavage in type I and type III R–M systems.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hadi, S. M., Bachi, B., Iida, S. & Bickle, T. A. DNA restriction–modification enzymes of phage P1 and plasmid p15B. Subunit functions and structural homologies. J. Mol. Biol. 165, 19–34 (1983).

    Article  CAS  PubMed  Google Scholar 

  24. Iida, S. et al. DNA restriction-modification genes of phage P1 and plasmid p15B. Structure and in vitro transciption. J. Mol. Biol. 165, 1–18 (1983).

    Article  CAS  PubMed  Google Scholar 

  25. Meisel, A., Bickle, T. A., Kruger, D. H. & Schroeder, C. Type III restriction enzymes need two inversely oriented recognition sites for DNA cleavage. Nature 355, 467–469 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Bachi, B., Reiser, J. & Pirrotta, V. Methylation and cleavage sequences of the EcoP1 restriction-modification enzyme. J. Mol. Biol. 128, 143–163 (1979).

    Article  CAS  PubMed  Google Scholar 

  27. Janscak, P., Sandmeier, U., Szczelkun, M. D. & Bickle, T. A. Subunit assembly and mode of DNA cleavage of the type III restriction endonucleases EcoP1I and EcoP15I. J. Mol. Biol. 306, 417–431 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Bheemanaik, S., Reddy, Y. V. & Rao, D. N. Structure, function and mechanism of exocyclic DNA methyltransferases. Biochem. J. 399, 177–190 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sistla, S. & Rao, D. N. S-Adenosyl-L-methionine-dependent restriction enzymes. Crit. Rev. Biochem. Mol. Biol. 39, 1–19 (2004). A classic review, covering type I, type II and type III R–M systems.

    Article  CAS  PubMed  Google Scholar 

  30. Roberts, R. J. & Cheng, X. Base flipping. Annu. Rev. Biochem. 67, 181–198 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Reddy, Y. V. & Rao, D. N. Binding of EcoP15I DNA methyltransferase to DNA reveals a large structural distortion within the recognition sequence. J. Mol. Biol. 298, 597–610 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Liebert, K., Hermann, A., Schlickenrieder, M. & Jeltsch, A. Stopped-flow and mutational analysis of base flipping by the Escherichia coli Dam DNA-(adenine-N6)-methyltransferase. J. Mol. Biol. 341, 443–454 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Ahmad, I. & Rao, D. N. Interaction of EcoP15I DNA methyltransferase with oligonucleotides containing the asymmetric sequence 5′-CAGCAG-3′. J. Mol. Biol. 242, 378–388 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Malone, T., Blumenthal, R. M. & Cheng, X. Structure-guided analysis reveals nine sequence motifs conserved among DNA amino-methyltransferases, and suggests a catalytic mechanism for these enzymes. J. Mol. Biol. 253, 618–632 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Humbelin, M. et al. Type III DNA restriction and modification systems EcoP1 and EcoP15. Nucleotide sequence of the EcoP1 operon, the EcoP15 mod gene and some EcoP1 mod mutants. J. Mol. Biol. 200, 23–29 (1988).

    Article  CAS  PubMed  Google Scholar 

  36. Gorbalenya, A. E. & Koonin, E. V. Endonuclease (R) subunits of type-I and type-III restriction-modification enzymes contain a helicase-like domain. FEBS Lett. 291, 277–281 (1991).

    Article  CAS  PubMed  Google Scholar 

  37. Saha, S. & Rao, D. N. Mutations in the Res subunit of the EcoPI restriction enzyme that affect ATP-dependent reactions. J. Mol. Biol. 269, 342–354 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Saha, S., Ahmad, I., Reddy, Y. V., Krishnamurthy, V. & Rao, D. N. Functional analysis of conserved motifs in type III restriction-modification enzymes. Biol. Chem. 379, 511–517 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Pingoud, A. & Jeltsch, A. Recognition and cleavage of DNA by type-II restriction endonucleases. Eur. J. Biochem. 246, 1–22 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Meselson, M. & Yuan, R. DNA restriction enzyme from E. coli. Nature 217, 1110–1114 (1968).

    Article  CAS  PubMed  Google Scholar 

  41. Haberman, A. The bacteriophage P1 restriction endonuclease. J. Mol. Biol. 89, 545–563 (1974).

    Article  CAS  PubMed  Google Scholar 

  42. Reiser, J. & Yuan, R. Purification and properties of the P15 specific restriction endonuclease from Escherichia coli. J. Biol. Chem. 252, 451–456 (1977).

    CAS  PubMed  Google Scholar 

  43. Hadi, S. M. et al. DNA recognition and cleavage by the EcoP15 restriction endonuclease. J. Mol. Biol. 134, 655–666 (1979).

    Article  CAS  PubMed  Google Scholar 

  44. Ahmad, I., Krishnamurthy, V. & Rao, D. N. DNA recognition by the EcoP15I and EcoPI modification methyltransferases. Gene 157, 143–147 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Meisel, A., Mackeldanz, P., Bickle, T. A., Kruger, D. H. & Schroeder, C. Type III restriction endonucleases translocate DNA in a reaction driven by recognition site-specific ATP hydrolysis. EMBO J. 14, 2958–2966 (1995). A paper focusing on type III restriction endonucleases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bist, P. et al. S-adenosyl-L-methionine is required for DNA cleavage by type III restriction enzymes. J. Mol. Biol. 310, 93–109 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Peakman, L. J., Antognozzi, M., Bickle, T. A., Janscak, P. & Szczelkun, M. D. S-adenosyl methionine prevents promiscuous DNA cleavage by the EcoP1I type III restriction enzyme. J. Mol. Biol. 333, 321–335 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Szczelkun, M. D. How do proteins move along DNA? Lessons from type-I and type-III restriction endonucleases. Essays Biochem. 35, 131–143 (2000). A thorough explanation of the tracking mechanisms of the type I and type III R–M enzymes.

    Article  CAS  PubMed  Google Scholar 

  49. Murray, N. E., Daniel, A. S., Cowan, G. M. & Sharp, P. M. Conservation of motifs within the unusually variable polypeptide sequences of type I restriction and modification enzymes. Mol. Microbiol. 9, 133–143 (1993).

    Article  CAS  PubMed  Google Scholar 

  50. Mucke, M., Reich, S., Moncke-Buchner, E., Reuter, M. & Kruger, D. H. DNA cleavage by type III restriction-modification enzyme EcoP15I is independent of spacer distance between two head to head oriented recognition sites. J. Mol. Biol. 312, 687–698 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Peakman, L. J. & Szczelkun, M. D. DNA communications by Type III restriction endonucleases—confirmation of 1D translocation over 3D looping. Nucleic Acids Res. 32, 4166–4174 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Reich, S., Gossl, I., Reuter, M., Rabe, J. P. & Kruger, D. H. Scanning force microscopy of DNA translocation by the Type III restriction enzyme EcoP15I. J. Mol. Biol. 341, 337–343 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Crampton, N. et al. Fast-scan atomic force microscopy reveals that the type III restriction enzyme EcoP15I is capable of DNA translocation and looping. Proc. Natl Acad. Sci. USA 104, 12755–12760 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Crampton, N. et al. DNA looping and translocation provide an optimal cleavage mechanism for the type III restriction enzymes. EMBO J. 26, 3815–3825 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ramanathan, S. P. et al. Type III restriction enzymes communicate in 1D without looping between their target sites. Proc. Natl Acad. Sci. USA 106, 1748–1753 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tock, M. R. & Dryden, D. T. The biology of restriction and anti-restriction. Curr. Opin. Microbiol. 8, 466–472 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Zaleski, P., Wojciechowski, M. & Piekarowicz, A. The role of Dam methylation in phase variation of Haemophilus influenzae genes involved in defence against phage infection. Microbiology 151, 3361–3369 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Highlander, S. K. & Garza, O. The restriction-modification system of Pasteurella haemolytica is a member of a new family of type I enzymes. Gene 178, 89–96 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Dybvig, K., Sitaraman, R. & French, C. T. A family of phase-variable restriction enzymes with differing specificities generated by high-frequency gene rearrangements. Proc. Natl Acad. Sci. USA 95, 13923–13928 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ryan, K. A. & Lo, R. Y. Characterization of a CACAG pentanucleotide repeat in Pasteurella haemolytica and its possible role in modulation of a novel type III restriction-modification system. Nucleic Acids Res. 27, 1505–1511 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. De Bolle, X. et al. The length of a tetranucleotide repeat tract in Haemophilus influenzae determines the phase variation rate of a gene with homology to type III DNA methyltransferases. Mol. Microbiol. 35, 211–222 (2000). A paper detailing phase variation of a type III methyltransferase in H. influenzae.

    Article  CAS  PubMed  Google Scholar 

  62. de Vries, N. et al. Transcriptional phase variation of a type III restriction-modification system in Helicobacter pylori. J. Bacteriol. 184, 6615–6623 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Srikhanta, Y. N. et al. Phasevarions mediate random switching of gene expression in pathogenic Neisseria. PLoS Pathog. 5, e1000400 (2009). Phasevarions in pathogenic Neisseria spp.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Saunders, N. J., Peden, J. F., Hood, D. W. & Moxon, E. R. Simple sequence repeats in the Helicobacter pylori genome. Mol. Microbiol. 27, 1091–1098 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Salaun, L., Linz, B., Suerbaum, S. & Saunders, N. J. The diversity within an expanded and redefined repertoire of phase-variable genes in Helicobacter pylori. Microbiology 150, 817–830 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Fox, K. L., Srikhanta, Y. N. & Jennings, M. P. Phase variable type III restriction-modification systems of host-adapted bacterial pathogens. Mol. Microbiol. 65, 1375–1379 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Rocha, E. P. & Blanchard, A. Genomic repeats, genome plasticity and the dynamics of Mycoplasma evolution. Nucleic Acids Res. 30, 2031–2042 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hood, D. W. et al. DNA repeats identify novel virulence genes in Haemophilus influenzae. Proc. Natl Acad. Sci. USA 93, 11121–11125 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Seib, K. L., Peak, I. R. & Jennings, M. P. Phase variable restriction-modification systems in Moraxella catarrhalis. FEMS Immunol. Med. Microbiol. 32, 159–165 (2002).

    CAS  PubMed  Google Scholar 

  70. Fox, K. L. et al. Haemophilus influenzae phasevarions have evolved from type III DNA restriction systems into epigenetic regulators of gene expression. Nucleic Acids Res. 35, 5242–5252 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bayliss, C. D., Callaghan, M. J. & Moxon, E. R. High allelic diversity in the methyltransferase gene of a phase variable type III restriction-modification system has implications for the fitness of Haemophilus influenzae. Nucleic Acids Res. 34, 4046–4059 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kroll, J. S., Wilks, K. E., Farrant, J. L. & Langford, P. R. Natural genetic exchange between Haemophilus and Neisseria: intergeneric transfer of chromosomal genes between major human pathogens. Proc. Natl Acad. Sci. USA 95, 12381–12385 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ando, T. et al. Restriction-modification system differences in Helicobacter pylori are a barrier to interstrain plasmid transfer. Mol. Microbiol. 37, 1052–1065 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Donahue, J. P., Israel, D. A., Peek, R. M., Blaser, M. J. & Miller, G. G. Overcoming the restriction barrier to plasmid transformation of Helicobacter pylori. Mol. Microbiol. 37, 1066–1074 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Gibbs, C. P. et al. Reassortment of pilin genes in Neisseria gonorrhoeae occurs by two distinct mechanisms. Nature 338, 651–652 (1989).

    Article  CAS  PubMed  Google Scholar 

  76. Hamilton, H. L. & Dillard, J. P. Natural transformation of Neisseria gonorrhoeae: from DNA donation to homologous recombination. Mol. Microbiol. 59, 376–385 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Buhler, R. & Yuan, R. Characterization of a restriction enzyme from Escherichia coli K carrying a mutation in the modification subunit. J. Biol. Chem. 253, 6756–6760 (1978).

    CAS  PubMed  Google Scholar 

  78. Willcock, D. F., Dryden, D. T. & Murray, N. E. A mutational analysis of the two motifs common to adenine methyltransferases. EMBO J. 13, 3902–3908 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Doronina, V. A. & Murray, N. E. The proteolytic control of restriction activity in Escherichia coli K-12. Mol. Microbiol. 39, 416–428 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Makovets, S., Doronina, V. A. & Murray, N. E. Regulation of endonuclease activity by proteolysis prevents breakage of unmodified bacterial chromosomes by type I restriction enzymes. Proc. Natl Acad. Sci. USA 96, 9757–9762 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Murray, N. E. Type I restriction systems: sophisticated molecular machines (a legacy of Bertani and Weigle). Microbiol. Mol. Biol. Rev. 64, 412–434 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Redaschi, N. & Bickle, T. A. Posttranscriptional regulation of EcoP1I and EcoP15I restriction activity. J. Mol. Biol. 257, 790–803 (1996).

    Article  CAS  PubMed  Google Scholar 

  83. Arber, W., Yuan, R. & Bickle, T. A. Strain-specific modification and restriction of DNA in bacteria. FEBS Proc. Symp. 9, 3–22 (1975).

    Google Scholar 

  84. Arber, W. DNA modification and restriction. Prog. Nucleic Acid Res. Mol. Biol. 14, 1–37 (1974).

    Article  CAS  PubMed  Google Scholar 

  85. De Backer, O. & Colson, C. Transfer of the genes for the StyLTI restriction-modification system of Salmonella typhimurium to strains lacking modification ability results in death of the recipient cells and degradation of their DNA. J. Bacteriol. 173, 1328–1330 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sears, A. & Szczelkun, M. D. Subunit assembly modulates the activities of the Type III restriction-modification enzyme PstII in vitro. Nucleic Acids Res. 33, 4788–4796 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Blyn, L. B., Braaten, B. A. & Low, D. A. Regulation of pap pilin phase variation by a mechanism involving differential Dam methylation states. EMBO J. 9, 4045–4054 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Haagmans, W. & van der Woude, M. Phase variation of Ag43 in Escherichia coli: Dam-dependent methylation abrogates OxyR binding and OxyR-mediated repression of transcription. Mol. Microbiol. 35, 877–887 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Nicholson, B. & Low, D. DNA methylation-dependent regulation of Pef expression in Salmonella typhimurium. Mol. Microbiol. 35, 728–742 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Casadesus, J. & Low, D. Epigenetic gene regulation in the bacterial world. Microbiol. Mol. Biol. Rev. 70, 830–856 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wion, D. & Casadesus, J. N6-methyl-adenine: an epigenetic signal for DNA-protein interactions. Nature Rev. Microbiol. 4, 183–192 (2006). This and reference 90 present comprehensive reviews of epigenetic gene regulation in bacteria.

    Article  CAS  Google Scholar 

  92. Marinus, M. G. & Casadesus, J. Roles of DNA adenine methylation in host-pathogen interactions: mismatch repair, transcriptional regulation, and more. FEMS Microbiol. Rev. 33, 488–503 (2009). An excellent review of the role of Dam methylation in host–pathogen interactions.

    Article  CAS  PubMed  Google Scholar 

  93. Heithoff, D. M., Sinsheimer, R. L., Low, D. A. & Mahan, M. J. An essential role for DNA adenine methylation in bacterial virulence. Science 284, 967–970 (1999). A detailed description of the essential role for DNA adenine methylation in bacterial virulence.

    Article  CAS  PubMed  Google Scholar 

  94. Garcia-Del Portillo, F., Pucciarelli, M. G. & Casadesus, J. DNA adenine methylase mutants of Salmonella typhimurium show defects in protein secretion, cell invasion, and M cell cytotoxicity. Proc. Natl Acad. Sci. USA 96, 11578–11583 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Heithoff, D. M. et al. Salmonella DNA adenine methylase mutants confer cross-protective immunity. Infect. Immun. 69, 6725–6730 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Pucciarelli, M. G., Prieto, A. I., Casadesus, J. & Garcia-del Portillo, F. Envelope instability in DNA adenine methylase mutants of Salmonella enterica. Microbiology 148, 1171–1182 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Balbontin, R. et al. DNA adenine methylation regulates virulence gene expression in Salmonella enterica serovar Typhimurium. J. Bacteriol. 188, 8160–8168 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Prieto, A. I. et al. The GATC-binding protein SeqA is required for bile resistance and virulence in Salmonella enterica serovar Typhimurium. J. Bacteriol. 189, 8496–8502 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Jakomin, M., Chessa, D., Baumler, A. J. & Casadesus, J. Regulation of the Salmonella enterica std fimbrial operon by DNA adenine methylation, SeqA, and HdfR. J. Bacteriol. 190, 7406–7413 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chatti, A., Daghfous, D. & Landoulsi, A. Effect of repeated in vivo passage (in mice) on Salmonella typhimurium dam mutant virulence and fitness. Pathol. Biol. (Paris) 56, 121–124 (2008).

    Article  CAS  Google Scholar 

  101. Chen, L. et al. Alteration of DNA adenine methylase (Dam) activity in Pasteurella multocida causes increased spontaneous mutation frequency and attenuation in mice. Microbiology 149, 2283–2290 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Julio, S. M. et al. DNA adenine methylase is essential for viability and plays a role in the pathogenesis of Yersinia pseudotuberculosis and Vibrio cholerae. Infect. Immun. 69, 7610–7615 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Julio, S. M., Heithoff, D. M., Sinsheimer, R. L., Low, D. A. & Mahan, M. J. DNA adenine methylase overproduction in Yersinia pseudotuberculosis alters YopE expression and secretion and host immune responses to infection. Infect. Immun. 70, 1006–1009 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Taylor, V. L., Titball, R. W. & Oyston, P. C. Oral immunization with a dam mutant of Yersinia pseudotuberculosis protects against plague. Microbiology 151, 1919–1926 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Campellone, K. G. et al. Increased adherence and actin pedestal formation by dam-deficient enterohaemorrhagic Escherichia coli O157:H7. Mol. Microbiol. 63, 1468–1481 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Falker, S., Schilling, J., Schmidt, M. A. & Heusipp, G. Overproduction of DNA adenine methyltransferase alters motility, invasion, and the lipopolysaccharide O-antigen composition of Yersinia enterocolitica. Infect. Immun. 75, 4990–4997 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Mehling, J. S., Lavender, H. & Clegg, S. A Dam methylation mutant of Klebsiella pneumoniae is partially attenuated. FEMS Microbiol. Lett. 268, 187–193 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Kim, J. S. et al. Role of the Campylobacter jejuni Cj1461 DNA methyltransferase in regulating virulence characteristics. J. Bacteriol. 190, 6524–6529 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Murphy, K. C., Ritchie, J. M., Waldor, M. K., Lobner-Olesen, A. & Marinus, M. G. Dam methyltransferase is required for stable lysogeny of the Shiga toxin (Stx2)-encoding bacteriophage 933W of enterohemorrhagic Escherichia coli O157:H7. J. Bacteriol. 190, 438–441 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Low, D. A., Weyand, N. J. & Mahan, M. J. Roles of DNA adenine methylation in regulating bacterial gene expression and virulence. Infect. Immun. 69, 7197–7204 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Nou, X., Braaten, B., Kaltenbach, L. & Low, D. A. Differential binding of Lrp to two sets of pap DNA binding sites mediated by Pap I regulates Pap phase variation in Escherichia coli. EMBO J. 14, 5785–5797 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Weyand, N. J. & Low, D. A. Regulation of Pap phase variation. Lrp is sufficient for the establishment of the phase off pap DNA methylation pattern and repression of pap transcription in vitro. J. Biol. Chem. 275, 3192–3200 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. Henderson, I. R. & Owen, P. The major phase-variable outer membrane protein of Escherichia coli structurally resembles the immunoglobulin A1 protease class of exported protein and is regulated by a novel mechanism involving Dam and OxyR. J. Bacteriol. 181, 2132–2141 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Danese, P. N., Pratt, L. A., Dove, S. L. & Kolter, R. The outer membrane protein, antigen 43 mediates cell-to-cell interactions within Escherichia coli biofilms. Mol. Microbiol. 37, 424–432 (2000).

    Article  CAS  PubMed  Google Scholar 

  115. Srikhanta, Y. N., Maguire, T. L., Stacey, K. J., Grimmond, S. M. & Jennings, M. P. The phasevarion: a genetic system controlling coordinated, random switching of expression of multiple genes. Proc. Natl Acad. Sci. USA 102, 5547–5551 (2005). The first report of the phasevarion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hartmann, E., Lingwood, C. A. & Reidl, J. Heat-inducible surface stress protein (Hsp70) mediates sulphatide recognition of the respiratory pathogen Haemophilus influenzae. Infect. Immun. 69, 3438–3441 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Hartmann, E. & Lingwood, C. Brief heat shock treatment induces a long-lasting alteration in the glycolipid receptor binding specificity and growth rate of Haemophilus influenzae. Infect. Immun. 65, 1729–1733 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Herbert, M. A. et al. Signature Tagged Mutagenesis of Haemophilus influenzae identifies genes required for in vivo survival. Microb. Pathog. 33, 211–223 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. Pettersson, A., van der Ley, P., Poolman, J. T. & Tommassen, J. Molecular characterization of the 98-kilodalton iron-regulated outer membrane protein of Neisseria meningitidis. Infect. Immun. 61, 4724–4733 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Pettersson, A., Prinz, T., Umar, A., van der Biezen, J. & Tommassen, J. Molecular characterization of LbpB, the second lactoferrin-binding protein of Neisseria meningitidis. Mol. Microbiol 27, 599–610 (1998).

    Article  CAS  PubMed  Google Scholar 

  121. Lin, L. F., Posfai, J., Roberts, R. J. & Kong, H. Comparative genomics of the restriction-modification systems in Helicobacter pylori. Proc. Natl Acad. Sci. USA 98, 2740–2745 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Skoglund, A. et al. Functional analysis of the, M.HpyAIV DNA-methyltransferase of Helicobacter pylori. J. Bacteriol. 189, 8914–8921 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Bjorkholm, B. M. et al. Colonization of germ-free transgenic mice with genotyped Helicobacter pylori strains from a case-control study of gastric cancer reveals a correlation between host responses and HsdS components of type I restriction-modification systems. J. Biol. Chem. 277, 34191–34197 (2002).

    Article  CAS  PubMed  Google Scholar 

  124. Kong, H. et al. Functional analysis of putative restriction-modification system genes in the Helicobacter pylori J99 genome. Nucleic Acids Res. 28, 3216–3223 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Vitkute, J. et al. Specificities of eleven different DNA methyltransferases of Helicobacter pylori strain 26695. J. Bacteriol. 183, 443–450 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Brocchi, M., Vasconcelos, A. & Zaha, A. Restriction-modification systems in Mycoplasma spp. Genet. Mol. Biol. 30, 236–244 (2007).

    Article  CAS  Google Scholar 

  127. Gumulak-Smith, J. et al. Variations in the surface proteins and restriction enzyme systems of Mycoplasma pulmonis in the respiratory tract of infected rats. Mol. Microbiol. 40, 1037–1044 (2001).

    Article  CAS  PubMed  Google Scholar 

  128. Rao, D. N., Saha, S. & Krishnamurthy, V. ATP-dependent restriction enzymes. Prog. Nucleic Acid Res. Mol. Biol. 64, 1–63 (2000).

    Article  CAS  PubMed  Google Scholar 

  129. Titheradge, A. J., King, J., Ryu, J. & Murray, N. E. Families of restriction enzymes: an analysis prompted by molecular and genetic data for type ID restriction and modification systems. Nucleic Acids Res. 29, 4195–4205 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Chin, V., Valinluck, V., Magaki, S. & Ryu, J. KpnBI is the prototype of a new family (IE) of bacterial type I restriction-modification system. Nucleic Acids Res. 32, e138 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Gough, J. A. & Murray, N. E. Sequence diversity among related genes for recognition of specific targets in DNA molecules. J. Mol. Biol. 166, 1–19 (1983).

    Article  CAS  PubMed  Google Scholar 

  132. Murray, N. E. 2001 Fred Griffith review lecture. Immigration control of DNA in bacteria: self versus non-self. Microbiology 148, 3–20 (2002).

    Article  CAS  PubMed  Google Scholar 

  133. Titheradge, A. J., Ternent, D. & Murray, N. E. A third family of allelic hsd genes in Salmonella enterica: sequence comparisons with related proteins identify conserved regions implicated in restriction of DNA. Mol. Microbiol. 22, 437–447 (1996).

    Article  CAS  PubMed  Google Scholar 

  134. Davies, G. P., Kemp, P., Molineux, I. J. & Murray, N. E. The DNA translocation and ATPase activities of restriction-deficient mutants of EcoKI. J. Mol. Biol. 292, 787–796 (1999).

    Article  CAS  PubMed  Google Scholar 

  135. Ellis, D. J., Dryden, D. T., Berge, T., Edwardson, J. M. & Henderson, R. M. Direct observation of DNA translocation and cleavage by the EcoKI endonuclease using atomic force microscopy. Nature Struct. Biol. 6, 15–17 (1999).

    Article  CAS  PubMed  Google Scholar 

  136. Goodsell, D. S. Inside a living cell. Trends Biochem. Sci. 16, 203–206 (1991).

    Article  CAS  PubMed  Google Scholar 

  137. Dreier, J., MacWilliams, M. P. & Bickle, T. A. DNA cleavage by the type IC restriction-modification enzyme EcoR124II. J. Mol. Biol. 264, 722–733 (1996).

    Article  CAS  PubMed  Google Scholar 

  138. Janscak, P., MacWilliams, M. P., Sandmeier, U., Nagaraja, V. & Bickle, T. A. DNA translocation blockage, a general mechanism of cleavage site selection by type I restriction enzymes. EMBO J. 18, 2638–2647 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Szczelkun, M. D. Kinetic models of translocation, head-on collision, and DNA cleavage by type I restriction endonucleases. Biochemistry 41, 2067–2074 (2002).

    Article  CAS  PubMed  Google Scholar 

  140. Pingoud, A. & Jeltsch, A. Structure and function of type II restriction endonucleases. Nucleic Acids Res. 29, 3705–3727 (2001). A review of the structure and function of type II R–M systems.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Saunders, N. J. et al. Repeat-associated phase variable genes in the complete genome sequence of Neisseria meningitidis strain MC58. Mol. Microbiol. 37, 207–215 (2000).

    Article  CAS  PubMed  Google Scholar 

  142. Snyder, L. A., Butcher, S. A. & Saunders, N. J. Comparative whole-genome analyses reveal over 100 putative phase-variable genes in the pathogenic Neisseria spp. Microbiology 147, 2321–2332 (2001).

    Article  CAS  PubMed  Google Scholar 

  143. Mrazek, J., Spormann, A. M. & Karlin, S. Genomic comparisons among gamma-proteobacteria. Environ. Microbiol. 8, 273–288 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Health and Medical Research Council (Australia) Research Program (grants 565526 and 519704) and the Australian Research Council Discovery Projects scheme (grant DP0879604).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Jennings.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome Project

Escherichia coli

Haemophilus influenzae

Helicobacter pylori

Mannheimia haemolytica

Moraxella catarrhalis

Mycoplasma hyopneumoniae

Mycoplasma pulmonis

Neisseria gonorrhoeae

Neisseria lactamica

Neisseria meningitidis

Providencia stuartii

Salmonella enterica subsp. enterica serovar Typhimurium

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srikhanta, Y., Fox, K. & Jennings, M. The phasevarion: phase variation of type III DNA methyltransferases controls coordinated switching in multiple genes. Nat Rev Microbiol 8, 196–206 (2010). https://doi.org/10.1038/nrmicro2283

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2283

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing