Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dual RNA-seq of pathogen and host

Key Points

  • During the infection process, the interaction between pathogen and host results in large-scale changes in gene expression within both organisms.

  • Owing to technical limitations, previous transcriptomic studies using probe- and tag-based approaches often required the separation of the interacting host and pathogen. However, the development of a new technology, RNA sequencing (RNA-seq), now promises to allow the analysis of both partners simultaneously.

  • This dual RNA-seq approach is not without difficulties, owing to the very different nature of bacterial and eukaryotic cells, and especially the properties of the RNAs in these two different domains of life.

  • There are various technical considerations required for the successful determination of the host and pathogen transcriptomes. An analysis of these considerations has led to the proposal that the dual RNA-seq approach is currently becoming feasible and will probably become the gold standard for host–pathogen transcriptomics in the future.

Abstract

A comprehensive understanding of host–pathogen interactions requires a knowledge of the associated gene expression changes in both the pathogen and the host. Traditional, probe-dependent approaches using microarrays or reverse transcription PCR typically require the pathogen and host cells to be physically separated before gene expression analysis. However, the development of the probe-independent RNA sequencing (RNA-seq) approach has begun to revolutionize transcriptomics. Here, we assess the feasibility of taking transcriptomics one step further by performing 'dual RNA-seq', in which gene expression changes in both the pathogen and the host are analysed simultaneously.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fundamental differences between probe-dependent and probe-independent approaches to gene expression analysis.
Figure 2: A paradigm shift in parallel host–pathogen transcriptomics.
Figure 3: Estimation of the minimal sequencing depth required for dual host–pathogen RNA-seq.

Similar content being viewed by others

References

  1. Jenner, R. G. & Young, R. A. Insights into host responses against pathogens from transcriptional profiling. Nature Rev. Microbiol. 3, 281–294 (2005).

    Article  CAS  Google Scholar 

  2. Hossain, H., Tchatalbachev, S. & Chakraborty, T. Host gene expression profiling in pathogen-host interactions. Curr. Opin. Immunol. 18, 422–429 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Rappuoli, R. Pushing the limits of cellular microbiology: microarrays to study bacteria–host cell intimate contacts. Proc. Natl Acad. Sci. USA 97, 13467–13469 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fodor, S. P. et al. Multiplexed biochemical assays with biological chips. Nature 364, 555–556 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Schena, M., Shalon, D., Davis, R. W. & Brown, P. O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Selinger, D. W., Saxena, R. M., Cheung, K. J., Church, G. M. & Rosenow, C. Global RNA half-life analysis in Escherichia coli reveals positional patterns of transcript degradation. Genome Res. 13, 216–223 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yamada, K. et al. Empirical analysis of transcriptional activity in the Arabidopsis genome. Science 302, 842–846 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Bertone, P. et al. Global identification of human transcribed sequences with genome tiling arrays. Science 306, 2242–2246 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Merrell, D. S. et al. Host-induced epidemic spread of the cholera bacterium. Nature 417, 642–645 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Revel, A. T., Talaat, A. M. & Norgard, M. V. DNA microarray analysis of differential gene expression in Borrelia burgdorferi, the Lyme disease spirochete. Proc. Natl Acad. Sci. USA 99, 1562–1567 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Belland, R. J. et al. Genomic transcriptional profiling of the developmental cycle of Chlamydia trachomatis. Proc. Natl Acad. Sci. USA 100, 8478–8483 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Maurer, A. P., Mehlitz, A., Mollenkopf, H. J. & Meyer, T. F. Gene expression profiles of Chlamydophila pneumoniae during the developmental cycle and iron depletion-mediated persistence. PLoS Pathog. 3, e83 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Eriksson, S., Lucchini, S., Thompson, A., Rhen, M. & Hinton, J. C. Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Mol. Microbiol. 47, 103–118 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Hautefort, I. et al. During infection of epithelial cells Salmonella enterica serovar Typhimurium undergoes a time-dependent transcriptional adaptation that results in simultaneous expression of three type 3 secretion systems. Cell. Microbiol. 10, 958–984 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Toledo-Arana, A. et al. The Listeria transcriptional landscape from saprophytism to virulence. Nature 459, 950–956 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Perez, N. et al. A genome-wide analysis of small regulatory RNAs in the human pathogen group A Streptococcus. PLoS ONE 4, e7668 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kumar, R. et al. Identification of novel non-coding small RNAs from Streptococcus pneumoniae TIGR4 using high-resolution genome tiling arrays. BMC Genomics 11, 350 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zheng, X. et al. Identification of genes and genomic islands correlated with high pathogenicity in Streptococcus suis using whole genome tiling microarrays. PLoS ONE 6, e17987 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Der, S. D., Zhou, A., Williams, B. R. & Silverman, R. H. Identification of genes differentially regulated by interferon α, β, or γ using oligonucleotide arrays. Proc. Natl Acad. Sci. USA 95, 15623–15628 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhu, H., Cong, J. P., Mamtora, G., Gingeras, T. & Shenk, T. Cellular gene expression altered by human cytomegalovirus: global monitoring with oligonucleotide arrays. Proc. Natl Acad. Sci. USA 95, 14470–14475 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hedges, J. F., Lubick, K. J. & Jutila, M. A. γδ T cells respond directly to pathogen-associated molecular patterns. J. Immunol. 174, 6045–6053 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Kerns, H. M., Jutila, M. A. & Hedges, J. F. The distinct response of γδ T cells to the Nod2 agonist muramyl dipeptide. Cell. Immunol. 257, 38–43 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tross, D., Petrenko, L., Klaschik, S., Zhu, Q. & Klinman, D. M. Global changes in gene expression and synergistic interactions induced by TLR9 and TLR3. Mol. Immunol. 46, 2557–2564 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Motley, S. T. et al. Simultaneous analysis of host and pathogen interactions during an in vivo infection reveals local induction of host acute phase response proteins, a novel bacterial stress response, and evidence of a host-imposed metal ion limited environment. Cell. Microbiol. 6, 849–865 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Velculescu, V. E., Zhang, L., Vogelstein, B. & Kinzler, K. W. Serial analysis of gene expression. Science 270, 484–487 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Shiraki, T. et al. Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proc. Natl Acad. Sci. USA 100, 15776–15781 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Matsumura, H., Kruger, D. H., Kahl, G. & Terauchi, R. SuperSAGE: a modern platform for genome-wide quantitative transcript profiling. Curr. Pharm. Biotechnol. 9, 368–374 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Kronstad, J. W. Serial analysis of gene expression in eukaryotic pathogens. Infect. Disord. Drug Targets 6, 281–297 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Canales, R. D. et al. Evaluation of DNA microarray results with quantitative gene expression platforms. Nature Biotech. 24, 1115–1122 (2006).

    Article  CAS  Google Scholar 

  30. Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nature Rev. Genet. 10, 57–63 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Sultan, M. et al. A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science 321, 956–960 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Marioni, J. C., Mason, C. E., Mane, S. M., Stephens, M. & Gilad, Y. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res. 18, 1509–1517 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods 5, 621–628 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Morin, R. et al. Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing. Biotechniques 45, 81–94 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Perkins, T. T. et al. A strand-specific RNA-seq analysis of the transcriptome of the typhoid bacillus Salmonella Typhi. PLoS Genet. 5, e1000569 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yoder-Himes, D. R. et al. Mapping the Burkholderia cenocepacia niche response via high-throughput sequencing. Proc. Natl Acad. Sci. USA 106, 3976–3981 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Oliver, H. F. et al. Deep RNA sequencing of L. monocytogenes reveals overlapping and extensive stationary phase and sigma B-dependent transcriptomes, including multiple highly transcribed noncoding RNAs. BMC Genomics 10, 641 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sharma, C. M. et al. The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464, 250–255 (2010). A good example of how to use strand-specific RNA-seq of total RNA to analyse gene expression and annotate a bacterial transcriptome with respect to both coding and non-coding information and operon structure.

    Article  CAS  PubMed  Google Scholar 

  39. Toung, J. M., Morley, M., Li, M. & Cheung, V. G. RNA-sequence analysis of human B-cells. Genome Res. 21, 991–998 (2011). An in-depth transcriptomic study on human B cells that defines the coverage requirements for different biological applications such as gene discovery and expression quantification.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wilhelm, B. T. & Landry, J. R. RNA-Seq—quantitative measurement of expression through massively parallel RNA-sequencing. Methods 48, 249–257 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Xiong, J. et al. Transcriptome analysis of the model protozoan, Tetrahymena thermophila, using deep RNA sequencing. PLoS ONE 7, e30630 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Holland, M. J. Transcript abundance in yeast varies over six orders of magnitude. J. Biol. Chem. 277, 14363–14366 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotech. 28, 511–515 (2010).

    Article  CAS  Google Scholar 

  44. Croucher, N. J. & Thomson, N. R. Studying bacterial transcriptomes using RNA-seq. Curr. Opin. Microbiol. 13, 619–624 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Filiatrault, M. J. Progress in prokaryotic transcriptomics. Curr. Opin. Microbiol. 14, 579–586 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Bruno, V. M. et al. Comprehensive annotation of the transcriptome of the human fungal pathogen Candida albicans using RNA-seq. Genome Res. 20, 1451–1458 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Siegel, T. N., Hekstra, D. R., Wang, X., Dewell, S. & Cross, G. A. Genome-wide analysis of mRNA abundance in two life-cycle stages of Trypanosoma brucei and identification of splicing and polyadenylation sites. Nucleic Acids Res. 38, 4946–4957 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kolev, N. G. et al. The transcriptome of the human pathogen Trypanosoma brucei at single-nucleotide resolution. PLoS Pathog. 6, e1001090 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sorber, K., Dimon, M. T. & DeRisi, J. L. RNA-Seq analysis of splicing in Plasmodium falciparum uncovers new splice junctions, alternative splicing and splicing of antisense transcripts. Nucleic Acids Res. 39, 3820–3835 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wurtzel, O. et al. Comparative transcriptomics of pathogenic and non-pathogenic Listeria species. Mol. Syst. Biol. 8, 583 (2012). A pioneering study that uses RNA-seq to explore differences and similarities between related bacterial transcriptomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Albrecht, M., Sharma, C. M., Reinhardt, R., Vogel, J. & Rudel, T. Deep sequencing-based discovery of the Chlamydia trachomatis transcriptome. Nucleic Acids Res. 38, 868–877 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Albrecht, M. et al. The transcriptional landscape of Chlamydia pneumoniae. Genome Biol. 12, R98 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mandlik, A. et al. RNA-seq-based monitoring of infection-linked changes in Vibrio cholerae gene expression. Cell Host Microbe 10, 165–174 (2011). A description of the pathogen transcriptomes from bacteria isolated from either rabbit or mouse hosts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cloonan, N. et al. Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nature Methods 5, 613–619 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Wang, E. T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pan, Q., Shai, O., Lee, L. J., Frey, B. J. & Blencowe, B. J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nature Genet. 40, 1413–1415 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Peng, Z. et al. Comprehensive analysis of RNA-Seq data reveals extensive RNA editing in a human transcriptome. Nature Biotech. 30, 253–260 (2012).

    Article  CAS  Google Scholar 

  58. Schulte, L. N., Eulalio, A., Mollenkopf, H. J., Reinhardt, R. & Vogel, J. Analysis of the host microRNA response to Salmonella uncovers the control of major cytokines by the let-7 family. EMBO J. 30, 1977–1989 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Oosthuizen, J. L. et al. Dual organism transcriptomics of airway epithelial cells interacting with conidia of Aspergillus fumigatus. PLoS ONE 6, e20527 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lovegrove, F. E. et al. Simultaneous host and parasite expression profiling identifies tissue-specific transcriptional programs associated with susceptibility or resistance to experimental cerebral malaria. BMC Genomics 7, 295 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Guerfali, F. Z. et al. Simultaneous gene expression profiling in human macrophages infected with Leishmania major parasites using SAGE. BMC Genomics 9, 238 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Matsumura, H. et al. Gene expression analysis of plant host–pathogen interactions by SuperSAGE. Proc. Natl Acad. Sci. USA 100, 15718–15723 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tierney, L. et al. An interspecies regulatory network inferred from simultaneous RNA-seq of Candida albicans invading innate immune cells. Front. Microbiol. 3, 85 (2012). The first study to describe the parallel analysis of a eukaryotic host and a eukaryotic pathogen via RNA-seq.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cox, M. L. et al. Investigating fixative-induced changes in RNA quality and utility by microarray analysis. Exp. Mol. Pathol. 84, 156–172 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Eulalio, A., Schulte, L. & Vogel, J. The mammalian microRNA response to bacterial infections. RNA Biol 9, 742–750 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Wang, K. C. & Chang, H. Y. Molecular mechanisms of long noncoding RNAs. Mol. Cell 43, 904–914 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen, J. & Wagner, E. J. snRNA 3′ end formation: the dawn of the Integrator complex. Biochem. Soc. Trans. 38, 1082–1087 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bratkovic, T. & Rogelj, B. Biology and applications of small nucleolar RNAs. Cell. Mol. Life Sci. 68, 3843–3851 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Papenfort, K. & Vogel, J. Regulatory RNA in bacterial pathogens. Cell Host Microbe 8, 116–127 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Clark, M. B. et al. Genome-wide analysis of long noncoding RNA stability. Genome Res. 22, 885–898 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yang, E. et al. Decay rates of human mRNAs: correlation with functional characteristics and sequence attributes. Genome Res. 13, 1863–1872 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Armour, C. D. et al. Digital transcriptome profiling using selective hexamer priming for cDNA synthesis. Nature Methods 6, 647–649 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Chen, Z. & Duan, X. Ribosomal RNA depletion for massively parallel bacterial RNA-sequencing applications. Methods Mol. Biol. 733, 93–103 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Huang, R. et al. An RNA-Seq strategy to detect the complete coding and non-coding transcriptome including full-length imprinted macro ncRNAs. PLoS ONE 6, e27288 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Giannoukos, G. et al. Efficient and robust RNA-seq process for cultured bacteria and complex community transcriptomes. Genome Biol. 13, R23 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Knoop, V. When you can't trust the DNA: RNA editing changes transcript sequences. Cell. Mol. Life Sci. 68, 567–586 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Cantara, W. A. et al. The RNA Modification Database, RNAMDB: 2011 update. Nucleic Acids Res. 39, D195–D201 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Ishitani, R., Yokoyama, S. & Nureki, O. Structure, dynamics, and function of RNA modification enzymes. Curr. Opin. Struct. Biol. 18, 330–339 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Motorin, Y., Muller, S., Behm-Ansmant, I. & Branlant, C. Identification of modified residues in RNAs by reverse transcription-based methods. Methods Enzymol. 425, 21–53 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Findeiss, S., Langenberger, D., Stadler, P. F. & Hoffmann, S. Traces of post-transcriptional RNA modifications in deep sequencing data. Biol. Chem. 392, 305–313 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Iida, K., Jin, H. & Zhu, J. K. Bioinformatics analysis suggests base modifications of tRNAs and miRNAs in Arabidopsis thaliana. BMC Genomics 10, 155 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ebhardt, H. A. et al. Meta-analysis of small RNA-sequencing errors reveals ubiquitous post-transcriptional RNA modifications. Nucleic Acids Res. 37, 2461–2470 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Levin, J. Z. et al. Comprehensive comparative analysis of strand-specific RNA sequencing methods. Nature Methods 7, 709–715 (2010). A detailed overview of the current approaches used to ensure the maintenance of strand-specific information in RNA-seq experiments.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Parkhomchuk, D. et al. Transcriptome analysis by strand-specific sequencing of complementary DNA. Nucleic Acids Res. 37, e123 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Borodina, T., Adjaye, J. & Sultan, M. A strand-specific library preparation protocol for RNA sequencing. Methods Enzymol. 500, 79–98 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Croucher, N. J. et al. A simple method for directional transcriptome sequencing using Illumina technology. Nucleic Acids Res. 37, e148 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Munafo, D. B. & Robb, G. B. Optimization of enzymatic reaction conditions for generating representative pools of cDNA from small RNA. RNA 16, 2537–2552 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tarazona, S., Garcia-Alcalde, F., Dopazo, J., Ferrer, A. & Conesa, A. Differential expression in RNA-seq: a matter of depth. Genome Res. 21, 2213–2223 (2011). An exploration of the sequencing depths that are required for accurate gene expression profiling in mammals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. McIntyre, L. M. et al. RNA-seq: technical variability and sampling. BMC Genomics 12, 293 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Jiang, L. et al. Synthetic spike-in standards for RNA-seq experiments. Genome Res. 21, 1543–1551 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Garber, M., Grabherr, M. G., Guttman, M. & Trapnell, C. Computational methods for transcriptome annotation and quantification using RNA-seq. Nature Methods 8, 469–477 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Malone, J. H. & Oliver, B. Microarrays, deep sequencing and the true measure of the transcriptome. BMC Biol. 9, 34 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Metzker, M. L. Sequencing technologies — the next generation. Nature Rev. Genet. 11, 31–46 (2010). A review of the working principles, performances and costs of popular NGS platforms, with an outlook on third-generation sequencing techniques.

    Article  CAS  PubMed  Google Scholar 

  94. Zhang, J., Chiodini, R., Badr, A. & Zhang, G. The impact of next-generation sequencing on genomics. J. Genet. Genomics 38, 95–109 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Rothberg, J. M. et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature 475, 348–352 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Sam, L. T. et al. A comparison of single molecule and amplification based sequencing of cancer transcriptomes. PLoS ONE 6, e17305 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Koren, S. et al. Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nature Biotech. 30, 693–700 (2012).

    Article  CAS  Google Scholar 

  98. Clarke, J. et al. Continuous base identification for single-molecule nanopore DNA sequencing. Nature Nanotechnol. 4, 265–270 (2009).

    Article  CAS  Google Scholar 

  99. Blencowe, B. J., Ahmad, S. & Lee, L. J. Current-generation high-throughput sequencing: deepening insights into mammalian transcriptomes. Genes Dev. 23, 1379–1386 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Antoniou, E. & Taft, R. Gene expression in mouse oocytes by RNA-Seq. Methods Mol. Biol. 825, 237–251 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Lao, K. Q. et al. mRNA-sequencing whole transcriptome analysis of a single cell on the SOLiD system. J. Biomol. Tech. 20, 266–271 (2009). The first study to successfully combine single-cell analysis with RNA-seq.

    PubMed  PubMed Central  Google Scholar 

  102. Tang, F. et al. RNA-Seq analysis to capture the transcriptome landscape of a single cell. Nature Protoc. 5, 516–535 (2010).

    Article  CAS  Google Scholar 

  103. Tang, F., Lao, K. & Surani, M. A. Development and applications of single-cell transcriptome analysis. Nature Methods 8, S6–S11 (2011). An overview of the requirements for single-cell RNA-seq.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Tang, F. et al. Tracing the derivation of embryonic stem cells from the inner cell mass by single-cell RNA-Seq analysis. Cell Stem Cell 6, 468–478 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Tang, F. et al. Deterministic and stochastic allele specific gene expression in single mouse blastomeres. PLoS ONE 6, e21208 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Islam, S. et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res. 21, 1160–1167 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ramsköld, D. et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nature Biotech. 22 Jul 2012 (doi: 10.1038/nbt.2282).

  108. Kang, Y. et al. Transcript amplification from single bacterium for transcriptome analysis. Genome Res. 21, 925–935 (2011). The first study to monitor differential gene expression in a single bacterial cell by Sanger sequencing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Brouzes, E. Droplet microfluidics for single-cell analysis. Methods Mol. Biol. 853, 105–139 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Connell, J. L. et al. Probing prokaryotic social behaviors with bacterial “lobster traps”. mBio 1, e00202-10 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Decarlo, K., Emley, A., Dadzie, O. E. & Mahalingam, M. Laser capture microdissection: methods and applications. Methods Mol. Biol. 755, 1–15 (2011).

    Article  CAS  PubMed  Google Scholar 

  112. Ozsolak, F. et al. Amplification-free digital gene expression profiling from minute cell quantities. Nature Methods 7, 619–621 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Linnarsson, S. Recent advances in DNA sequencing methods - general principles of sample preparation. Exp. Cell Res. 316, 1339–1343 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the German Research Foundation (DFG) Priority Program SPP1258 (DFG grant Vo875/4-2) and from the German Ministry of Education and Research (BMBF) (grant 01GS0806). A.J.W. is the recipient of an Elite Advancement Ph.D. stipend from the Universität Bayern e.V., Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Vogel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table S1

Selection of (pro- and eukaryotic) organisms to which full-genome RNA-seq has been applied to (PDF 367 kb)

Supplementary Table S2

Steady increase in sequencing depth from early to current RNA-seq studies in both bacteria and mammals (PDF 331 kb)

Supplementary Table S3

Selection of reported values of copy numbers of different bacterial species per host cell (PDF 244 kb)

Related links

Related links

FURTHER INFORMATION

Jörg Vogel's homepage

Glossary

Pathogen-associated molecular patterns

(PAMPs).General small molecular motifs that are present on microorganisms and engage host innate immune receptors, in particular Toll-like receptors. Examples of PAMPs include lipopolysaccharide, peptidoglycan and flagellin.

Tiling arrays

DNA microarray chips on which probe sequences are tiled (overlapping) and comprise a subset of, or the whole, genome at high resolution.

Small non-coding RNA

A short transcript (50–500 nucleotides) that regulates gene expression in bacteria, often by base-pairing with mRNAs.

microRNA

A short (22 nucleotide) processed RNA that guides post-transcriptional repression of mRNAs in animals and plants.

Long non-coding RNAs

Heterogeneous non-coding RNAs (>200 nucleotides) that lack protein-coding capability and are found in eukaryotes.

Small nuclear RNAs

Short RNAs that are involved in precursor mRNA processing.

Small nucleolar RNAs

RNAs that typically guide ribose methylation and pseudouridylation in other RNA molecules.

Bar-code sequences

Short unique sequence tags (4–6 nucleotides) that are incorporated into cDNA fragments and used to tag a specific sequence as belonging to a particular cDNA library.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Westermann, A., Gorski, S. & Vogel, J. Dual RNA-seq of pathogen and host. Nat Rev Microbiol 10, 618–630 (2012). https://doi.org/10.1038/nrmicro2852

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2852

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research