Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Restricting HIV the SAMHD1 way: through nucleotide starvation

Abstract

HIV replication is limited by cellular restriction factors, such as APOBEC and tetherin, which themselves are counteracted by viral proteins. SAMHD1 was recently identified as a novel HIV restriction factor in myeloid cells, and was shown to be blocked by the lentiviral protein Vpx. SAMHD1 limits viral replication through an original mechanism: it hydrolyses intracellular dNTPs in non-cycling cells, thus decreasing the amount of these key substrates, which are required for viral DNA synthesis. In this Progress article, we describe how SAMHD1 regulates the pool of intracellular nucleotides to control HIV replication and the innate immune response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of SAMHD1, and of other cellular enzymes that target nucleic acids, on HIV-1 replication.

Similar content being viewed by others

References

  1. Sheehy, A. M., Gaddis, N. C., Choi, J. D. & Malim, M. H. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418, 646–650 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Zhang, H. et al. The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature 424, 94–98 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mangeat, B. et al. Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 424, 99–103 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Lecossier, D., Bouchonnet, F., Clavel, F. & Hance, A. J. Hypermutation of HIV-1 DNA in the absence of the Vif protein. Science 300, 1112 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Stremlau, M. et al. The cytoplasmic body component TRIM5α restricts HIV-1 infection in Old World monkeys. Nature 427, 848–853 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Stremlau, M. et al. Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5α restriction factor. Proc. Natl Acad. Sci. USA 103, 5514–5519 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yap, M. W., Nisole, S., Lynch, C. & Stoye, J. P. Trim5α protein restricts both HIV-1 and murine leukemia virus. Proc. Natl Acad. Sci. USA 101, 10786–10791 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Van Damme, N. et al. The interferon-induced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral Vpu protein. Cell Host Microbe 3, 245–252 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Miyagi, E., Andrew, A. J., Kao, S. & Strebel, K. Vpu enhances HIV-1 virus release in the absence of Bst-2 cell surface down-modulation and intracellular depletion. Proc. Natl Acad. Sci. USA 106, 2868–2873 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Neil, S. J., Zang, T. & Bieniasz, P. D. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 451, 425–430 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Schoggins, J. W. et al. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 472, 481–485 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yu, X. et al. Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science 302, 1056–1060 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Sheehy, A. M., Gaddis, N. C. & Malim, M. H. The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nature Med. 9, 1404–1407 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Goffinet, C. et al. HIV-1 antagonism of CD317 is species specific and involves Vpu-mediated proteasomal degradation of the restriction factor. Cell Host Microbe 5, 285–297 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Mangeat, B. et al. HIV-1 Vpu neutralizes the antiviral factor Tetherin/BST-2 by binding it and directing its beta-TrCP2-dependent degradation. PLoS Pathog. 5, e1000574 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Bergamaschi, A. et al. The human immunodeficiency virus type 2 Vpx protein usurps the CUL4A-DDB1DCAF1 ubiquitin ligase to overcome a postentry block in macrophage infection. J. Virol. 83, 4854–4860 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Goujon, C. et al. SIVSM/HIV-2 Vpx proteins promote retroviral escape from a proteasome-dependent restriction pathway present in human dendritic cells. Retrovirology 4, 2 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Kaushik, R., Zhu, X., Stranska, R., Wu, Y. & Stevenson, M. A cellular restriction dictates the permissivity of nondividing monocytes/macrophages to lentivirus and gammaretrovirus infection. Cell Host Microbe 6, 68–80 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schule, S. et al. Restriction of HIV-1 replication in monocytes is abolished by Vpx of SIVsmmPBj. PLoS ONE 4, e7098 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Sharova, N. et al. Primate lentiviral Vpx commandeers DDB1 to counteract a macrophage restriction. PLoS Pathog. 4, e1000057 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Srivastava, S. et al. Lentiviral Vpx accessory factor targets VprBP/DCAF1 substrate adaptor for cullin 4 E3 ubiquitin ligase to enable macrophage infection. PLoS Pathog. 4, e1000059 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Hrecka, K. et al. Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 474, 658–661 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Laguette, N. et al. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 474, 654–657 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Belshan, M. et al. Vpx is critical for SIVmne infection of pigtail macaques. Retrovirology 9, 32 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gibbs, J. S. et al. Progression to AIDS in the absence of a gene for vpr or vpx. J. Virol. 69, 2378–2383 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hirsch, V. M. et al. Vpx is required for dissemination and pathogenesis of SIVSM PBj: evidence of macrophage-dependent viral amplification. Nature Med. 4, 1401–1408 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Ayinde, D., Maudet, C., Transy, C. & Margottin-Goguet, F. Limelight on two HIV/SIV accessory proteins in macrophage infection: is Vpx overshadowing Vpr? Retrovirology 7, 35 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Aravind, L. & Koonin, E. V. The HD domain defines a new superfamily of metal-dependent phosphohydrolases. Trends Biochem. Sci. 23, 469–472 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Qiao, F. & Bowie, J. U. The many faces of SAM. Sci. STKE 2005, re7 (2005).

    PubMed  Google Scholar 

  30. Lahouassa, H. et al. SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nature Immunol. 13, 223–228 (2012).

    Article  CAS  Google Scholar 

  31. Ahn, J. et al. HIV/simian immunodeficiency virus (SIV) accessory virulence factor Vpx loads the host cell restriction factor SAMHD1 onto the E3 ubiquitin ligase complex CRL4DCAF1. J. Biol. Chem. 287, 12550–12558 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pancio, H. A., Vander Heyden, N. & Ratner, L. The C-terminal proline-rich tail of human immunodeficiency virus type 2 Vpx is necessary for nuclear localization of the viral preintegration complex in nondividing cells. J. Virol. 74, 6162–6167 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Singhal, P. K., Rajendra Kumar, P., Subba Rao, M. R. & Mahalingam, S. Nuclear export of simian immunodeficiency virus Vpx protein. J. Virol. 80, 12271–12282 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Brandariz-Nunez, A. et al. Role of SAMHD1 nuclear localization in restriction of HIV-1 and SIVmac. Retrovirology 9, 49 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rice, G. I. et al. Mutations involved in Aicardi-Goutières syndrome implicate SAMHD1 as regulator of the innate immune response. Nature Genet. 41, 829–832 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Li, N., Zhang, W. & Cao, X. Identification of human homologue of mouse IFN-γ induced protein from human dendritic cells. Immunol. Lett. 74, 221–224 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Berger, A. et al. SAMHD1-deficient CD14+ cells from individuals with Aicardi-Goutières syndrome are highly susceptible to HIV-1 infection. PLoS Pathog. 7, e1002425 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li, S., Wang, L., Berman, M., Kong, Y. Y. & Dorf, M. E. Mapping a dynamic innate immunity protein interaction network regulating type I interferon production. Immunity 35, 426–440 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gramberg, T., Sunseri, N. & Landau, N. R. Evidence for an activation domain at the amino terminus of simian immunodeficiency virus Vpx. J. Virol. 84, 1387–1396 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Prehaud, C., Megret, F., Lafage, M. & Lafon, M. Virus infection switches TLR-3-positive human neurons to become strong producers of beta interferon. J. Virol. 79, 12893–12904 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Powell, R. D., Holland, P. J., Hollis, T. & Perrino, F. W. Aicardi-Goutières syndrome gene and HIV-1 restriction factor SAMHD1 is a dGTP-regulated deoxynucleotide triphosphohydrolase. J. Biol. Chem. 286, 43596–43600 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Goldstone, D. C. et al. HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature 480, 379–382 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Kim, B., Nguyen, L. A., Daddacha, W. & Hollenbaugh, J. A. Tight interplay among SAMHD1 protein level, cellular dNTP levels and HIV-1 proviral, DNA synthesis kinetics in human primary monocyte-derived macrophages. J. Biol. Chem. 287, 21570–21574 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Diamond, T. L. et al. Macrophage tropism of HIV-1 depends on efficient cellular dNTP utilization by reverse transcriptase. J. Biol. Chem. 279, 51545–51553 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Kennedy, E. M. et al. Ribonucleoside triphosphates as substrate of human immunodeficiency virus type 1 reverse transcriptase in human macrophages. J. Biol. Chem. 285, 39380–39391 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gao, W. Y., Cara, A., Gallo, R. C. & Lori, F. Low levels of deoxynucleotides in peripheral blood lymphocytes: a strategy to inhibit human immunodeficiency virus type 1 replication. Proc. Natl Acad. Sci. USA 90, 8925–8928 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hofer, A., Crona, M., Logan, D. T. & Sjoberg, B. M. DNA building blocks: keeping control of manufacture. Crit. Rev. Biochem. Mol. Biol. 47, 50–63 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Mathews, C. K. DNA precursor metabolism and genomic stability. FASEB J. 20, 1300–1314 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Niida, H., Shimada, M., Murakami, H. & Nakanishi, M. Mechanisms of dNTP supply that play an essential role in maintaining genome integrity in eukaryotic cells. Cancer Sci. 101, 2505–2509 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Rampazzo, C. et al. Regulation by degradation, a cellular defense against deoxyribonucleotide pool imbalances. Mutat. Res. 703, 2–10 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Clouser, C. L., Patterson, S. E. & Mansky, L. M. Exploiting drug repositioning for discovery of a novel HIV combination therapy. J. Virol. 84, 9301–9309 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kootstra, N. A., Zwart, B. M. & Schuitemaker, H. Diminished human immunodeficiency virus type 1 reverse transcription and nuclear transport in primary macrophages arrested in early G1 phase of the cell cycle. J. Virol. 74, 1712–1717 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lori, F. et al. Hydroxyurea as an inhibitor of human immunodeficiency virus-type 1 replication. Science 266, 801–805 (1994).

    Article  CAS  PubMed  Google Scholar 

  54. Tanaka, H. et al. A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature 404, 42–49 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Chabes, A. & Thelander, L. Controlled protein degradation regulates ribonucleotide reductase activity in proliferating mammalian cells during the normal cell cycle and in response to DNA damage and replication blocks. J. Biol. Chem. 275, 17747–17753 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. O'Brien, W. A. et al. Kinetics of human immunodeficiency virus type 1 reverse transcription in blood mononuclear phagocytes are slowed by limitations of nucleotide precursors. J. Virol. 68, 1258–1263 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Korin, Y. D. & Zack, J. A. Nonproductive human immunodeficiency virus type 1 infection in nucleoside-treated G0 lymphocytes. J. Virol. 73, 6526–6532 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Ravot, E., Comolli, G., Lori, F. & Lisziewicz, J. High efficiency lentiviral gene delivery in non-dividing cells by deoxynucleoside treatment. J. Gene Med. 4, 161–169 (2002).

    Article  PubMed  Google Scholar 

  59. Vatakis, D. N., Nixon, C. C. & Zack, J. A. Quiescent T cells and HIV: an unresolved relationship. Immunol. Res. 48, 110–121 (2010).

    Article  PubMed  Google Scholar 

  60. Plesa, G. et al. Addition of deoxynucleosides enhances human immunodeficiency virus type 1 integration and 2LTR formation in resting CD4+ T cells. J. Virol. 81, 13938–13942 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Skasko, M. et al. Mechanistic differences in RNA-dependent DNA polymerization and fidelity between murine leukemia virus and HIV-1 reverse transcriptases. J. Biol. Chem. 280, 12190–12200 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Jamburuthugoda, V. K., Chugh, P. & Kim, B. Modification of human immunodeficiency virus type 1 reverse transcriptase to target cells with elevated cellular dNTP concentrations. J. Biol. Chem. 281, 13388–13395 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Pontarin, G. et al. p53R2-dependent ribonucleotide reduction provides deoxyribonucleotides in quiescent human fibroblasts in the absence of induced DNA damage. J. Biol. Chem. 282, 16820–16828 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Cohen, D., Adamovich, Y., Reuven, N. & Shaul, Y. Hepatitis B virus activates deoxynucleotide synthesis in nondividing hepatocytes by targeting the R2 gene. Hepatology 51, 1538–1546 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Cameron, J. M. et al. Ribonucleotide reductase encoded by herpes simplex virus is a determinant of the pathogenicity of the virus in mice and a valid antiviral target. J. Gen. Virol. 69, 2607–2612 (1988).

    Article  CAS  PubMed  Google Scholar 

  66. Jacobson, J. G. et al. A herpes simplex virus ribonucleotide reductase deletion mutant is defective for productive acute and reactivatable latent infections of mice and for replication in mouse cells. Virology 173, 276–283 (1989).

    Article  CAS  PubMed  Google Scholar 

  67. Guittet, O. et al. Mammalian p53R2 protein forms an active ribonucleotide reductase in vitro with the R1 protein, which is expressed both in resting cells in response to DNA damage and in proliferating cells. J. Biol. Chem. 276, 40647–40651 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Mock, D. J. et al. Leishmania induces survival, proliferation and elevated cellular dNTP levels in human monocytes promoting acceleration of HIV co-infection. PLoS Pathog. 8, e1002635 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. de Silva, T. I., Cotten, M. & Rowland-Jones, S. L. HIV-2: the forgotten AIDS virus. Trends Microbiol. 16, 588–595 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Duvall, M. G. et al. Dendritic cells are less susceptible to human immunodeficiency virus type 2 (HIV-2) infection than to HIV-1 infection. J. Virol. 81, 13486–13498 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Manel, N. et al. A cryptic sensor for HIV-1 activates antiviral innate immunity in dendritic cells. Nature 467, 214–217 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nobile, C. et al. Covert human immunodeficiency virus replication in dendritic cells and in DC-SIGN-expressing cells promotes long-term transmission to lymphocytes. J. Virol. 79, 5386–5399 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Laguette, N. et al. Evolutionary and functional analyses of the interaction between the myeloid restriction factor SAMHD1 and the lentiviral Vpx protein. Cell Host Microbe 11, 205–217 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lim, E. S. et al. The ability of primate lentiviruses to degrade the monocyte restriction factor SAMHD1 preceded the birth of the viral accessory protein Vpx. Cell Host Microbe 11, 194–204 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang, C., de Silva, S., Wang, J. H. & Wu, L. Co-evolution of primate SAMHD1 and lentivirus Vpx leads to the loss of the vpx gene in HIV-1 ancestor. PLoS ONE 7, e37477 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sharp, P. M., Bailes, E., Stevenson, M., Emerman, M. & Hahn, B. H. Gene acquisition in HIV and SIV. Nature 383, 586–587 (1996).

    Article  CAS  PubMed  Google Scholar 

  77. Tristem, M., Marshall, C., Karpas, A., Petrik, J. & Hill, F. Origin of vpx in lentiviruses. Nature 347, 341–342 (1990).

    Article  CAS  PubMed  Google Scholar 

  78. Brasey, A. et al. The leader of human immunodeficiency virus type 1 genomic RNA harbors an internal ribosome entry segment that is active during the G2/M phase of the cell cycle. J. Virol. 77, 3939–3949 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Fletcher, T. M. 3rd et al. Nuclear import and cell cycle arrest functions of the HIV-1 Vpr protein are encoded by two separate genes in HIV-2/SIVSM . EMBO J. 15, 6155–6165 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Goh, W. C. et al. HIV-1 Vpr increases viral expression by manipulation of the cell cycle: a mechanism for selection of Vpr in vivo. Nature Med. 4, 65–71 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. Lepelley, A. et al. Innate sensing of HIV-infected cells. PLoS Pathog. 7, e1001284 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Beignon, A. S. et al. Endocytosis of HIV-1 activates plasmacytoid dendritic cells via Toll-like receptor-viral RNA interactions. J. Clin. Invest. 115, 3265–3275 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Crow, Y. J. & Rehwinkel, J. Aicardi-Goutières syndrome and related phenotypes: linking nucleic acid metabolism with autoimmunity. Hum. Mol. Genet. 18, R130–R136 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Prinz, M. & Knobeloch, K. P. Type I interferons as ambiguous modulators of chronic inflammation in the central nervous system. Front. Immunol. 3, 67 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Nagpal, K. et al. A TIR domain variant of MyD88 adapter-like (Mal)/TIRAP results in loss of MyD88 binding and reduced TLR2/TLR4 signaling. J. Biol. Chem. 284, 25742–25748 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Aicardi, J. & Goutières, F. A progressive familial encephalopathy in infancy with calcifications of the basal ganglia and chronic cerebrospinal fluid lymphocytosis. Ann. Neurol. 15, 49–54 (1984).

    Article  CAS  PubMed  Google Scholar 

  87. Crow, Y. J. et al. Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 cause Aicardi-Goutières syndrome at the AGS1 locus. Nature Genet. 38, 917–920 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Crow, Y. J. et al. Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutières syndrome and mimic congenital viral brain infection. Nature Genet. 38, 910–916 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Yan, N., Regalado-Magdos, A. D., Stiggelbout, B., Lee-Kirsch, M. A. & Lieberman, J. The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1. Nature Immunol. 11, 1005–1013 (2010).

    Article  CAS  Google Scholar 

  90. Hiller, B. et al. Mammalian RNase H2 removes ribonucleotides from DNA to maintain genome integrity. J. Exp. Med. 209, 1419–1426 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lazzaro, F. et al. RNase H and postreplication repair protect cells from ribonucleotides incorporated in DNA. Mol. Cell 45, 99–110 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Genovesio, A. et al. Automated genome-wide visual profiling of cellular proteins involved in HIV infection. J. Biomol. Screen 16, 945–958 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Unité Virus et Immunité, Institut Pasteur, Paris, France, for discussions and P. Lebon for critical reading of the manuscript. Work in the authors' laboratory is supported by grants from the French Agence Nationale de Recherche sur le SIDA et les Hépatite Virales (ANRS), SIDACTION, AREVA, the Vaccine Research Institute (Creteil, France), the Laboratoire d'Excellence Integrative Biology of Emerging Infectious Diseases (IBEID) programme and the Institut Pasteur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Schwartz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Olivier Schwartz's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayinde, D., Casartelli, N. & Schwartz, O. Restricting HIV the SAMHD1 way: through nucleotide starvation. Nat Rev Microbiol 10, 675–680 (2012). https://doi.org/10.1038/nrmicro2862

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2862

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology