Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

RNA silencing suppression by plant pathogens: defence, counter-defence and counter-counter-defence

Key Points

  • Coevolution between plants and pathogens has given rise to a large variety of defence pathways and counter-acting virulence pathways. Plant resistance against bacterial and fungal pathogens is largely mediated by a first layer of basal resistance and a second layer of strong race-specific resistance; successful pathogens have evolved effector molecules to suppress both layers of defence. Analogously, virus resistance is mediated broadly by RNA silencing and also by race-specific resistance.

  • Viruses actively suppress RNA silencing, which alleviates anti-viral defence but also disrupts endogenous host gene regulation through microRNAs and small-interfering RNAs. Virulent infections thus cause disease partly through disrupting host silencing, while viruses unable to suppress silencing fail to replicate in healthy plants.

  • RNA silencing actively contributes to defence against bacterial and eukaryotic pathogens as well, through regulation of host gene expression. These non-viral pathogens have consequently evolved silencing suppressors that contribute to disease.

  • Recent work has revealed a crucial role for multiple aspects of host silencing in repressing race-specific defence responses. Thus, resistance and defence-promoting genes are silenced by miRNAs, siRNAs and/or epigenetically through DNA methylation.

  • Silencing suppressors deployed by pathogens therefore prevent the first layer of defence responses, but relieve repression of strong race-specific resistance mechanisms, which can contribute to increased host resistance.

  • This review synthesizes the intricate interplay between plant resistance pathways, RNA silencing and its manipulation by pathogens.

Abstract

RNA silencing is a central regulator of gene expression in most eukaryotes and acts both at the transcriptional level through DNA methylation and at the post-transcriptional level through direct mRNA interference mediated by small RNAs. In plants and invertebrates, the same pathways also function directly in host defence against viruses by targeting viral RNA for degradation. Successful viruses have consequently evolved diverse mechanisms to avoid silencing, most notably through the expression of viral suppressors of RNA silencing. RNA silencing suppressors have also been recently identified in plant pathogenic bacteria and oomycetes, suggesting that disruption of host silencing is a general virulence strategy across several kingdoms of plant pathogens. There is also increasing evidence that plants have evolved specific defences against RNA-silencing suppression by pathogens, providing yet another illustration of the never-ending molecular arms race between plant pathogens and their hosts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular and cellular bases for antiviral silencing.
Figure 2: Examples of silencing suppression and evasion mechanisms.
Figure 3: Methods to investigate antiviral RNA silencing in plants.
Figure 4: The miR393–miR393* response as a paradigm for antibacterial silencing.
Figure 5: Dampening RNA-directed DNA methylation enhances Arabidopsis thaliana resistance against Pseudomonas syringae.
Figure 6: Defence, counter-defence and counter-counter-defence of RNA silencing.

Similar content being viewed by others

References

  1. Brodersen, P. & Voinnet, O. The diversity of RNA silencing pathways in plants. Trends Genet. 22, 268–280 (2006).

    CAS  PubMed  Google Scholar 

  2. Sunkar, R., Li, Y. F. & Jagadeeswaran, G. Functions of microRNAs in plant stress responses. Trends Plant Sci. 17, 196–203 (2012).

    CAS  PubMed  Google Scholar 

  3. Carlsbecker, A. et al. Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 465, 316–321 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Yu, A. et al. Dynamics and biological relevance of DNA demethylation in Arabidopsis antibacterial defense. Proc. Natl Acad. Sci. USA 110, 2389–2394 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Voinnet, O. Origin, biogenesis, and activity of plant microRNAs. Cell 136, 669–687 (2009).

    CAS  PubMed  Google Scholar 

  6. Ding, S. W. & Voinnet, O. Antiviral immunity directed by small RNAs. Cell 130, 413–426 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Zipfel, C. et al. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428, 764–767 (2004).

    CAS  PubMed  Google Scholar 

  8. Shan, L. et al. Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptor-signaling complexes and impede plant immunity. Cell Host Microbe 4, 17–27 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Jones, J. D. & Dangl, J. L. The plant immune system. Nature 444, 323–329 (2006).

    CAS  PubMed  Google Scholar 

  10. Zhai, J. et al. MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. Genes Dev. 25, 2540–2553 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Li, F. et al. MicroRNA regulation of plant innate immune receptors. Proc. Natl Acad. Sci. USA 109, 1790–1795 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Shivaprasad, P. V. et al. A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs. Plant Cell 24, 859–874 (2012). References 10, 11 and 12 uncovered a role for siRNAs in repressing plant resistance genes

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Navarro, L., Jay, F., Nomura, K., He, S. Y. & Voinnet, O. Suppression of the microRNA pathway by bacterial effector proteins. Science 321, 964–967 (2008). First report of a silencing suppressor outside of viruses.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Qiao, Y. et al. Oomycete pathogens encode RNA silencing suppressors. Nature Genet. 45, 330–333 (2013). First discovery of a silencing suppressor in a eukaryotic pathogen.

    CAS  PubMed  Google Scholar 

  15. Ruiz-Ferrer, V. & Voinnet, O. Roles of plant small RNAs in biotic stress responses. Annu. Rev. Plant Biol. 60, 485–510 (2009).

    CAS  PubMed  Google Scholar 

  16. Pagan, I. et al. Arabidopsis thaliana as a model for the study of plant-virus co-evolution. Phil. Trans. R. Soc. B 365, 1983–1995 (2010).

    PubMed  PubMed Central  Google Scholar 

  17. Burgyan, J. & Havelda, Z. Viral suppressors of RNA silencing. Trends Plant Sci. 16, 265–272 (2011).

    CAS  PubMed  Google Scholar 

  18. Qu, F., Ye, X. & Morris, T. J. Arabidopsis DRB4, AGO1, AGO7, and RDR6 participate in a DCL4-initiated antiviral RNA silencing pathway negatively regulated by DCL1. Proc. Natl Acad. Sci. USA 105, 14732–14737 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Jakubiec, A., Yang, S. W. & Chua, N. H. Arabidopsis DRB4 protein in antiviral defense against Turnip yellow mosaic virus infection. Plant J. 69, 14–25 (2012).

    CAS  PubMed  Google Scholar 

  20. Deleris, A. et al. Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. Science 313, 68–71 (2006).

    CAS  PubMed  Google Scholar 

  21. Garcia-Ruiz, H. et al. Arabidopsis RNA-dependent RNA polymerases and Dicer-like proteins in antiviral defense and small interfering RNA biogenesis during turnip mosaic virus infection. Plant Cell 22, 481–496 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, X. B. et al. The 21-nucleotide, but not 22-nucleotide, viral secondary small interfering RNAs direct potent antiviral defense by two cooperative Argonautes in Arabidopsis thaliana. Plant Cell 23, 1625–1638 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Vogler, H. et al. Modification of small RNAs associated with suppression of RNA silencing by tobamovirus replicase protein. J. Virol. 81, 10379–10388 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Morel, J. B. et al. Fertile hypomorphic ARGONAUTE (ago1) mutants impaired in post-transcriptional gene silencing and virus resistance. Plant Cell 14, 629–639 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang, X., Zhang, X., Singh, J., Li, D. & Qu, F. Temperature-dependent survival of turnip crinkle virus-infected Arabidopsis plants relies on an RNA silencing-based defense that requires DCL2, AGO2, and HEN1. J. Virol. 86, 6847–6854 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Harvey, J. J. et al. An antiviral defense role of AGO2 in plants. PLoS ONE 6, e14639 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Jaubert, M. J., Bhattacharjee, S., Mello, A. F., Perry, K. L. & Moffett, P. ARGONAUTE2 mediates RNA silencing antiviral defenses against Potato virus X in Arabidopsis. Plant Physiol. 156, 1556–1564 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Scholthof, H. B. et al. Identification of an ARGONAUTE for antiviral RNA silencing in Nicotiana benthamiana. Plant Physiol. 156, 1548–1555 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Azevedo, J. et al. Argonaute quenching and global changes in Dicer homeostasis caused by a pathogen-encoded GW repeat protein. Genes Dev. 24, 904–915 (2010). References 21, 22 and 29 detail genetic work with subtle viral mutations that disrupt silencing suppressors.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Akbergenov, R. et al. Molecular characterization of geminivirus-derived small RNAs in different plant species. Nucleic Acids Res. 34, 462–471 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Carbonell, A. et al. Functional analysis of three Arabidopsis ARGONAUTES using slicer-defective mutants. Plant Cell 24, 3613–3629 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Vaucheret, H. Plant ARGONAUTES. Trends Plant Sci. 13, 350–358 (2008).

    CAS  PubMed  Google Scholar 

  33. Laliberte, J. F. & Sanfacon, H. Cellular remodeling during plant virus infection. Annu. Rev. Phytopathol. 48, 69–91 (2010).

    CAS  PubMed  Google Scholar 

  34. Brodersen, P. et al. Isoprenoid biosynthesis is required for miRNA function and affects membrane association of ARGONAUTE 1 in Arabidopsis. Proc. Natl Acad. Sci. USA 109, 1778–1783 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Li, S. et al. MicroRNAs inhibit the translation of target mRNAs on the endoplasmic reticulum in Arabidopsis. Cell 153, 562–574 (2013). References 34 and 35 reveal a functional association between AGO1 and membranes.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Brodersen, P. et al. Widespread translational inhibition by plant miRNAs and siRNAs. Science 320, 1185–1190 (2008).

    CAS  PubMed  Google Scholar 

  37. Lanet, E. et al. Biochemical evidence for translational repression by Arabidopsis microRNAs. Plant Cell 21, 1762–1768 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Miozzi, L., Gambino, G., Burgyan, J. & Pantaleo, V. Genome-wide identification of viral and host transcripts targeted by viral siRNAs in Vitis vinifera. Mol. Plant Pathol. 14, 30–43 (2013).

    CAS  PubMed  Google Scholar 

  39. Pantaleo, V., Szittya, G. & Burgyan, J. Molecular bases of viral RNA targeting by viral small interfering RNA-programmed RISC. J. Virol. 81, 3797–3806 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hoffer, P. et al. Posttranscriptional gene silencing in nuclei. Proc. Natl Acad. Sci. USA 108, 409–414 (2011).

    CAS  PubMed  Google Scholar 

  41. Kumakura, N. et al. SGS3 and RDR6 interact and colocalize in cytoplasmic SGS3/RDR6-bodies. FEBS Lett. 583, 1261–1266 (2009).

    CAS  PubMed  Google Scholar 

  42. Mourrain, P. et al. Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell 101, 533–542 (2000).

    CAS  PubMed  Google Scholar 

  43. Schwach, F., Vaistij, F. E., Jones, L. & Baulcombe, D. C. An RNA-dependent RNA polymerase prevents meristem invasion by potato virus x and is required for the activity but not the production of a systemic silencing signal. Plant Physiol. 138, 1842–1852 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Gy, I. et al. Arabidopsis FIERY1, XRN2, and XRN3 are endogenous RNA silencing suppressors. Plant Cell 19, 3451–3461 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Gazzani, S., Lawerson, T., Woodward, D., Headon, R. & Sablowski, R. A link between mRNA turnover and RNA interference in Arabidopsis. Science 306, 1046–1048 (2004).

    CAS  PubMed  Google Scholar 

  46. Moreno, A. B. et al. Cytoplasmic and nuclear quality control and turnover of single-stranded RNA modulate post-transcriptional gene silencing in plants. Nucleic Acids Res. 41, 4699–4708 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Diaz-Pendon, J. A., Li, F., Li, W. X. & Ding, S. W. Suppression of antiviral silencing by cucumber mosaic virus 2b protein in Arabidopsis is associated with drastically reduced accumulation of three classes of viral small interfering RNAs. Plant Cell 19, 2053–2063 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Donaire, L. et al. Structural and genetic requirements for the biogenesis of tobacco rattle virus-derived small interfering RNAs. J. Virol. 82, 5167–5177 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang, X. B. et al. RNAi-mediated viral immunity requires amplification of virus-derived siRNAs in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 107, 484–489 (2010).

    CAS  PubMed  Google Scholar 

  50. Qi, X., Bao, F. S. & Xie, Z. Small RNA deep sequencing reveals role for Arabidopsis thaliana RNA-dependent RNA polymerases in viral siRNA biogenesis. PLoS ONE 4, e4971 (2009).

    PubMed  PubMed Central  Google Scholar 

  51. Dunoyer, P. et al. Small RNA duplexes function as mobile silencing signals between plant cells. Science 328, 912–916 (2010).

    CAS  PubMed  Google Scholar 

  52. Molnar, A. et al. Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. Science 328, 872–875 (2011).

    Google Scholar 

  53. Montgomery, T. A. et al. Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell 133, 128–141 (2008).

    CAS  PubMed  Google Scholar 

  54. Mi, S. et al. Sorting of small RNAs into Arabidopsis Argonaute complexes is directed by the 5′ terminal nucleotide. Cell 133, 116–127 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Brigneti, G. et al. Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO J. 17, 6739–6746 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Anandalakshmi, R. et al. A viral suppressor of gene silencing in plants. Proc. Natl Acad. Sci. USA 95, 13079–13084 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kasschau, K. D. & Carrington, J. C. A counterdefensive strategy of plant viruses: suppression of posttranscriptional gene silencing. Cell 95, 461–470 (1998).

    CAS  PubMed  Google Scholar 

  58. Voinnet, O., Pinto, Y. M. & Baulcombe, D. C. Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses. Proc. Natl Acad. Sci. USA 96, 14147–14152 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Schott, G. et al. Differential effects of viral silencing suppressors on siRNA and miRNA loading support the existence of two distinct cellular pools of ARGONAUTE1. EMBO J. 31, 2553–2565 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Baumberger, N., Tsai, C. H., Lie, M., Havecker, E. & Baulcombe, D. C. The Polerovirus silencing suppressor P0 targets ARGONAUTE proteins for degradation. Curr. Biol. 17, 1609–1614 (2007).

    CAS  PubMed  Google Scholar 

  61. Csorba, T., Lozsa, R., Hutvagner, G. & Burgyan, J. Polerovirus protein P0 prevents the assembly of small RNA-containing RISC complexes and leads to degradation of ARGONAUTE1. Plant J. 62, 463–472 (2010).

    CAS  PubMed  Google Scholar 

  62. Derrien, B. et al. Degradation of the antiviral component ARGONAUTE1 by the autophagy pathway. Proc. Natl Acad. Sci. USA 109, 15942–15946 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Gibbings, D. et al. Selective autophagy degrades DICER and AGO2 and regulates miRNA activity. Nature Cell Biol. 14, 1314–1321 (2012).

    CAS  PubMed  Google Scholar 

  64. Zhang, P. & Zhang, H. Autophagy modulates miRNA-mediated gene silencing and selectively degrades AIN-1/GW182 in C. elegans. EMBO Rep. 14, 568–576 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Chiu, M. H., Chen, I. H., Baulcombe, D. C. & Tsai, C. H. The silencing suppressor P25 of Potato virus X interacts with Argonaute1 and mediates its degradation through the proteasome pathway. Mol. Plant Pathol. 11, 641–649 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Duan, C. G. et al. Suppression of Arabidopsis ARGONAUTE1-mediated slicing, transgene-induced RNA silencing, and DNA methylation by distinct domains of the Cucumber mosaic virus 2b protein. Plant Cell 24, 259–274 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Haas, G. et al. Nuclear import of CaMV P6 is required for infection and suppression of the RNA silencing factor DRB4. EMBO J. 27, 2102–2112 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Guo, H. et al. Rice yellow stunt rhabdovirus protein 6 suppresses systemic RNA silencing by blocking RDR6-mediated secondary siRNA synthesis. Mol. Plant Microbe Interact. 26, 927–936 (2013).

    CAS  PubMed  Google Scholar 

  69. Glick, E. et al. Interaction with host SGS3 is required for suppression of RNA silencing by tomato yellow leaf curl virus V2 protein. Proc. Natl Acad. Sci. USA 105, 157–161 (2008).

    CAS  PubMed  Google Scholar 

  70. Cuellar, W. J. et al. Elimination of antiviral defense by viral RNase III. Proc. Natl Acad. Sci. USA 106, 10354–10358 (2009).

    PubMed  PubMed Central  Google Scholar 

  71. Ye, K., Malinina, L. & Patel, D. J. Recognition of small interfering RNA by a viral suppressor of RNA silencing. Nature 426, 874–878 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Vargason, J. M., Szittya, G., Burgyan, J. & Tanaka Hall, T. M. Size selective recognition of siRNA by an RNA silencing suppressor. Cell 115, 799–811 (2003).

    CAS  PubMed  Google Scholar 

  73. Varallyay, E., Valoczi, A., Agyi, A., Burgyan, J. & Havelda, Z. Plant virus-mediated induction of miR168 is associated with repression of ARGONAUTE1 accumulation. EMBO J. 29, 3507–3519 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Mallory, A. C. & Vaucheret, H. ARGONAUTE 1 homeostasis invokes the coordinate action of the microRNA and siRNA pathways. EMBO Rep. 10, 521–526 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Mallory, A. C. et al. Redundant and specific roles of the ARGONAUTE proteins AGO1 and ZLL in development and small RNA-directed gene silencing. PLoS Genet. 5, e1000646 (2009).

    PubMed  PubMed Central  Google Scholar 

  76. Varallyay, E. & Havelda, Z. Unrelated viral suppressors of RNA silencing mediate the control of ARGONAUTE1 level. Mol. Plant Pathol. 14, 567–575 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Wu, Q. et al. Homology-independent discovery of replicating pathogenic circular RNAs by deep sequencing and a new computational algorithm. Proc. Natl Acad. Sci. USA 109, 3938–3943 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Flores, R. et al. Viroids: the minimal non-coding RNAs with autonomous replication. FEBS Lett. 567, 42–48 (2004).

    CAS  PubMed  Google Scholar 

  79. Itaya, A. et al. A structured viroid RNA serves as a substrate for dicer-like cleavage to produce biologically active small RNAs but is resistant to RNA-induced silencing complex-mediated degradation. J. Virol. 81, 2980–2994 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Denti, M. A., Boutla, A., Tsagris, M. & Tabler, M. Short interfering RNAs specific for potato spindle tuber viroid are found in the cytoplasm but not in the nucleus. Plant J. 37, 762–769 (2004).

    CAS  PubMed  Google Scholar 

  81. Blevins, T. et al. Massive production of small RNAs from a non-coding region of Cauliflower mosaic virus in plant defense and viral counter-defense. Nucleic Acids Res. 39, 5003–5014 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Moissiard, G. & Voinnet, O. RNA silencing of host transcripts by cauliflower mosaic virus requires coordinated action of the four Arabidopsis Dicer-like proteins. Proc. Natl Acad. Sci. USA 103, 19593–19598 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Voinnet, O., Rivas, S., Mestre, P. & Baulcombe, D. An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J. 33, 949–956 (2003).

    CAS  PubMed  Google Scholar 

  84. Zhang, X. et al. Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense. Genes Dev. 20, 3255–3268 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Chapman, E. J., Prokhnevsky, A. I., Gopinath, K., Dolja, V. V. & Carrington, J. C. Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step. Genes Dev. 18, 1179–1186 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Dunoyer, P., Lecellier, C. H., Parizotto, E. A., Himber, C. & Voinnet, O. Probing the microRNA and small interfering RNA pathways with virus-encoded suppressors of RNA silencing. Plant Cell 16, 1235–1250 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Lichner, Z., Silhavy, D. & Burgyan, J. Double-stranded RNA-binding proteins could suppress RNA interference-mediated antiviral defences. J. Gen. Virol. 84, 975–980 (2003).

    CAS  PubMed  Google Scholar 

  88. Bucher, E., Hemmes, H., de Haan, P., Goldbach, R. & Prins, M. The influenza A virus NS1 protein binds small interfering RNAs and suppresses RNA silencing in plants. J. Gen. Virol. 85, 983–991 (2004).

    CAS  PubMed  Google Scholar 

  89. Himber, C., Dunoyer, P., Moissiard, G., Ritzenthaler, C. & Voinnet, O. Transitivity-dependent and -independent cell-to-cell movement of RNA silencing. EMBO J. 22, 4523–4533 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Havelda, Z., Hornyik, C., Crescenzi, A. & Burgyan, J. In situ characterization of Cymbidium ringspot Tombusvirus infection-induced posttranscriptional gene silencing in Nicotiana benthamiana. J. Virol. 77, 6082–6086 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Chen, H. Y., Yang, J., Lin, C. & Yuan, Y. A. Structural basis for RNA-silencing suppression by Tomato aspermy virus protein 2b. EMBO Rep. 9, 754–760 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Bayne, E. H., Rakitina, D. V., Morozov, S. Y. & Baulcombe, D. C. Cell-to-cell movement of potato potexvirus X is dependent on suppression of RNA silencing. Plant J. 44, 471–482 (2005).

    CAS  PubMed  Google Scholar 

  93. Lakatos, L. et al. Small RNA binding is a common strategy to suppress RNA silencing by several viral suppressors. EMBO J. 25, 2768–2780 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Fahlgren, N. et al. MicroRNA gene evolution in Arabidopsis lyrata and Arabidopsis thaliana. Plant Cell 22, 1074–1089 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Cuperus, J. T., Fahlgren, N. & Carrington, J. C. Evolution and functional diversification of MIRNA genes. Plant Cell 23, 431–442 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Navarro, L. et al. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312, 436–439 (2006).

    CAS  PubMed  Google Scholar 

  97. Katiyar-Agarwal, S. & Jin, H. Role of small RNAs in host-microbe interactions. Annu. Rev. Phytopathol. 48, 225–246 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Fahlgren, N. et al. High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS ONE 2, e219 (2007).

    PubMed  PubMed Central  Google Scholar 

  99. Xin, M. et al. Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.). BMC Plant Biol. 10, 123 (2010).

    PubMed  PubMed Central  Google Scholar 

  100. Lu, S., Sun, Y. H., Amerson, H. & Chiang, V. L. MicroRNAs in loblolly pine (Pinus taeda L.) and their association with fusiform rust gall development. Plant J. 51, 1077–1098 (2007).

    CAS  PubMed  Google Scholar 

  101. Guo, N. et al. Microarray profiling reveals microRNAs involving soybean resistance to Phytophthora sojae. Genome 54, 954–958 (2011).

    CAS  PubMed  Google Scholar 

  102. Li, Y. et al. Identification of microRNAs involved in pathogen-associated molecular pattern-triggered plant innate immunity. Plant Physiol. 152, 2222–2231 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Dharmasiri, N., Dharmasiri, S. & Estelle, M. The F-box protein TIR1 is an auxin receptor. Nature 435, 441–445 (2005).

    CAS  PubMed  Google Scholar 

  104. Fu, J. & Wang, S. Insights into auxin signaling in plant-pathogen interactions. Front. Plant Sci. 2, 74 (2011).

    PubMed  PubMed Central  Google Scholar 

  105. Zhang, X. et al. Arabidopsis Argonaute 2 regulates innate immunity via miRNA393*-mediated silencing of a Golgi-localized SNARE gene, MEMB12. Mol. Cell 42, 356–366 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Ellendorff, U., Fradin, E. F., de Jonge, R. & Thomma, B. P. RNA silencing is required for Arabidopsis defence against Verticillium wilt disease. J. Exp. Bot. 60, 591–602 (2009).

    CAS  PubMed  Google Scholar 

  107. Katiyar-Agarwal, S. et al. A pathogen-inducible endogenous siRNA in plant immunity. Proc. Natl Acad. Sci. USA 103, 18002–18007 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Katiyar-Agarwal, S., Gao, S., Vivian-Smith, A. & Jin, H. A novel class of bacteria-induced small RNAs in Arabidopsis. Genes Dev. 21, 3123–3134 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Wang, X. J., Gaasterland, T. & Chua, N. H. Genome-wide prediction and identification of cis-natural antisense transcripts in Arabidopsis thaliana. Genome Biol. 6, R30 (2005).

    PubMed  PubMed Central  Google Scholar 

  110. Raja, P., Wolf, J. N. & Bisaro, D. M. RNA silencing directed against geminiviruses: post-transcriptional and epigenetic components. Biochim. Biophys. Acta 1799, 337–351 (2010).

    CAS  PubMed  Google Scholar 

  111. Chellappan, P., Vanitharani, R. & Fauquet, C. M. Short interfering RNA accumulation correlates with host recovery in DNA virus-infected hosts, and gene silencing targets specific viral sequences. J. Virol. 78, 7465–7477 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Raja, P., Sanville, B. C., Buchmann, R. C. & Bisaro, D. M. Viral genome methylation as an epigenetic defense against geminiviruses. J. Virol. 82, 8997–9007 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Dogar, A. M. RNAi dependent epigenetic marks on a geminivirus promoter. Virol. J. 3, 5 (2006).

    PubMed  PubMed Central  Google Scholar 

  114. Al-Kaff, N. S. et al. Transcriptional and posttranscriptional plant gene silencing in response to a pathogen. Science 279, 2113–2115 (1998).

    CAS  PubMed  Google Scholar 

  115. Seemanpillai, M., Dry, I., Randles, J. & Rezaian, A. Transcriptional silencing of geminiviral promoter-driven transgenes following homologous virus infection. Mol. Plant Microbe Interact. 16, 429–438 (2003).

    CAS  PubMed  Google Scholar 

  116. Yang, X. et al. Suppression of methylation-mediated transcriptional gene silencing by βC1-SAHH protein interaction during geminivirus-betasatellite infection. PLoS Pathog. 7, e1002329 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Buchmann, R. C., Asad, S., Wolf, J. N., Mohannath, G. & Bisaro, D. M. Geminivirus AL2 and L2 proteins suppress transcriptional gene silencing and cause genome-wide reductions in cytosine methylation. J. Virol. 83, 5005–5013 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Wang, H., Buckley, K. J., Yang, X., Buchmann, R. C. & Bisaro, D. M. Adenosine kinase inhibition and suppression of RNA silencing by geminivirus AL2 and L2 proteins. J. Virol. 79, 7410–7418 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhang, Z. et al. BSCTV C2 attenuates the degradation of SAMDC1 to suppress DNA methylation-mediated gene silencing in Arabidopsis. Plant Cell 23, 273–288 (2011).

    PubMed  PubMed Central  Google Scholar 

  120. Rodriguez-Negrete, E. et al. Geminivirus Rep protein interferes with the plant DNA methylation machinery and suppresses transcriptional gene silencing. New Phytol. 199, 464–475 (2013).

    CAS  PubMed  Google Scholar 

  121. Tian, D., Traw, M. B., Chen, J. Q., Kreitman, M. & Bergelson, J. Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana. Nature 423, 74–77 (2003).

    CAS  PubMed  Google Scholar 

  122. Pavet, V., Quintero, C., Cecchini, N. M., Rosa, A. L. & Alvarez, M. E. Arabidopsis displays centromeric DNA hypomethylation and cytological alterations of heterochromatin upon attack by pseudomonas syringae. Mol. Plant Microbe Interact. 19, 577–587 (2006).

    CAS  PubMed  Google Scholar 

  123. Dowen, R. H. et al. Widespread dynamic DNA methylation in response to biotic stress. Proc. Natl Acad. Sci. USA 109, E2183–E2191 (2012). With Reference 4, first demonstration that RdDM represses plant defence.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Lopez, A., Ramirez, V., Garcia-Andrade, J., Flors, V. & Vera, P. The RNA silencing enzyme RNA polymerase v is required for plant immunity. PLoS Genet. 7, e1002434 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Henderson, I. R. et al. Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning. Nature Genet. 38, 721–725 (2006).

    CAS  PubMed  Google Scholar 

  126. Kallman, T., Chen, J., Gyllenstrand, N. & Lagercrantz, U. A significant fraction of 21-nucleotide small RNA originates from phased degradation of resistance genes in several perennial species. Plant Physiol. 162, 741–754 (2013).

    PubMed  PubMed Central  Google Scholar 

  127. Palma, K. et al. Autoimmunity in Arabidopsis acd11 is mediated by epigenetic regulation of an immune receptor. PLoS Pathog. 6, e1001137 (2010).

    PubMed  PubMed Central  Google Scholar 

  128. Bendahmane, A., Kanyuka, K. & Baulcombe, D. C. The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 11, 781–792 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Yi, H. & Richards, E. J. A cluster of disease resistance genes in Arabidopsis is coordinately regulated by transcriptional activation and RNA silencing. Plant Cell 19, 2929–2939 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Whitham, S. et al. The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell 78, 1101–1115 (1994).

    CAS  PubMed  Google Scholar 

  131. Burch-Smith, T. M. et al. A novel role for the TIR domain in association with pathogen-derived elicitors. PLoS Biol. 5, e68 (2007).

    PubMed  PubMed Central  Google Scholar 

  132. Padmanabhan, M. S. et al. Novel positive regulatory role for the SPL6 transcription factor in the N TIR-NB-LRR receptor-mediated plant innate immunity. PLoS Pathog. 9, e1003235 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Li, H. W. et al. Strong host resistance targeted against a viral suppressor of the plant gene silencing defence mechanism. EMBO J. 18, 2683–2691 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Sansregret, R. et al. Extreme resistance as a host counter-counter defense against viral suppression of RNA silencing. PLoS Pathog. 9, e1003435 (2013). Demonstrates a strong defence response triggered specifically by the activity of a VSR.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Cooley, M. B., Pathirana, S., Wu, H. J., Kachroo, P. & Klessig, D. F. Members of the Arabidopsis HRT/RPP8 family of resistance genes confer resistance to both viral and oomycete pathogens. Plant Cell 12, 663–676 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Wang, L. Y. et al. Multiple domains of the tobacco mosaic virus p126 protein can independently suppress local and systemic RNA silencing. Mol. Plant Microbe Interact. 25, 648–657 (2012).

    CAS  PubMed  Google Scholar 

  137. Smith, N. A., Eamens, A. L. & Wang, M. B. Viral small interfering RNAs target host genes to mediate disease symptoms in plants. PLoS Pathog. 7, e1002022 (2011). Clear demonstration of disease symptoms caused by a vsiRNA targeting a host gene.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Rasmann, S. et al. Herbivory in the previous generation primes plants for enhanced insect resistance. Plant Physiol. 158, 854–863 (2012).

    CAS  PubMed  Google Scholar 

  139. Slaughter, A. et al. Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiol. 158, 835–843 (2012).

    CAS  PubMed  Google Scholar 

  140. Luna, E., Bruce, T. J., Roberts, M. R., Flors, V. & Ton, J. Next-generation systemic acquired resistance. Plant Physiol. 158, 844–853 (2012).

    CAS  PubMed  Google Scholar 

  141. Kanazawa, A. et al. Virus-mediated efficient induction of epigenetic modifications of endogenous genes with phenotypic changes in plants. Plant J. 65, 156–168 (2011).

    CAS  PubMed  Google Scholar 

  142. Voinnet, O. Use, tolerance and avoidance of amplified RNA silencing by plants. Trends Plant Sci. 13, 317–328 (2008).

    CAS  PubMed  Google Scholar 

  143. Liu, Q., Feng, Y. & Zhu, Z. Dicer-like (DCL) proteins in plants. Funct. Integr. Genom. 9, 277–286 (2009).

    CAS  Google Scholar 

  144. Boutet, S. et al. Arabidopsis HEN1: a genetic link between endogenous miRNA controlling development and siRNA controlling transgene silencing and virus resistance. Curr. Biol. 13, 843–848 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Yu, B. et al. Methylation as a crucial step in plant microRNA biogenesis. Science 307, 932–935 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Law, J. A. & Jacobsen, S. E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nature Rev. Genet. 11, 204–220 (2010).

    CAS  PubMed  Google Scholar 

  147. Han, M. H., Goud, S., Song, L. & Fedoroff, N. The Arabidopsis double-stranded RNA-binding protein HYL1 plays a role in microRNA-mediated gene regulation. Proc. Natl Acad. Sci. USA 101, 1093–1098 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Zilberman, D., Cao, X. & Jacobsen, S. E. ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science 299, 716–719 (2003).

    CAS  PubMed  Google Scholar 

  149. Kanno, T. et al. Involvement of putative SNF2 chromatin remodeling protein DRD1 in RNA-directed DNA methylation. Curr. Biol. 14, 801–805 (2004).

    CAS  PubMed  Google Scholar 

  150. Zheng, X., Zhu, J., Kapoor, A. & Zhu, J. K. Role of Arabidopsis AGO6 in siRNA accumulation, DNA methylation and transcriptional gene silencing. EMBO J. 26, 1691–1701 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Matzke, M., Kanno, T., Daxinger, L., Huettel, B. & Matzke, A. J. RNA-mediated chromatin-based silencing in plants. Curr. Opin. Cell Biol. 21, 367–376 (2009).

    CAS  PubMed  Google Scholar 

  152. Chen, H. M. et al. 22-nucleotide RNAs trigger secondary siRNA biogenesis in plants. Proc. Natl Acad. Sci. USA 107, 15269–15274 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Cuperus, J. T. et al. Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis. Nature Struct. Mol. Biol. 17, 997–1003 (2010).

    CAS  Google Scholar 

  154. Manavella, P. A., Koenig, D. & Weigel, D. Plant secondary siRNA production determined by microRNA-duplex structure. Proc. Natl Acad. Sci. USA 109, 2461–2466 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Gomez-Gomez, L. & Boller, T. FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol. Cell 5, 1003–1011 (2000).

    CAS  PubMed  Google Scholar 

  156. Chinchilla, D. et al. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448, 497–500 (2007).

    CAS  PubMed  Google Scholar 

  157. van der Hoorn, R. A. & Kamoun, S. From guard to decoy: a new model for perception of plant pathogen effectors. Plant Cell 20, 2009–2017 (2008).

    PubMed  PubMed Central  Google Scholar 

  158. Friedman, A. R. & Baker, B. J. The evolution of resistance genes in multi-protein plant resistance systems. Curr. Opin. Genet. Dev. 17, 493–499 (2007).

    CAS  PubMed  Google Scholar 

  159. Belkhadir, Y., Nimchuk, Z., Hubert, D. A., Mackey, D. & Dangl, J. L. Arabidopsis RIN4 negatively regulates disease resistance mediated by RPS2 and RPM1 downstream or independent of the NDR1 signal modulator and is not required for the virulence functions of bacterial type III effectors AvrRpt2 or AvrRpm1. Plant Cell 16, 2822–2835 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Lorrain, S., Vailleau, F., Balague, C. & Roby, D. Lesion mimic mutants: keys for deciphering cell death and defense pathways in plants? Trends Plant Sci. 8, 263–271 (2003).

    CAS  PubMed  Google Scholar 

  161. Lecellier, C. H. et al. A cellular microRNA mediates antiviral defense in human cells. Science 308, 557–560 (2005).

    CAS  PubMed  Google Scholar 

  162. Lu, S. & Cullen, B. R. Adenovirus VA1 noncoding RNA can inhibit small interfering RNA and microRNA biogenesis. J. Virol. 78, 12868–12876 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Cullen, B. R. MicroRNAs as mediators of viral evasion of the immune system. Nature Immunol. 14, 205–210 (2013).

    CAS  Google Scholar 

  164. Umbach, J. L. et al. MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature 454, 780–783 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Sullivan, C. S., Grundhoff, A. T., Tevethia, S., Pipas, J. M. & Ganem, D. SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature 435, 682–686 (2005).

    CAS  PubMed  Google Scholar 

  166. Choy, E. Y. et al. An Epstein–Barr virus-encoded microRNA targets PUMA to promote host cell survival. J. Exp. Med. 205, 2551–2560 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Abend, J. R., Uldrick, T. & Ziegelbauer, J. M. Regulation of tumor necrosis factor-like weak inducer of apoptosis receptor protein (TWEAKR) expression by Kaposi's sarcoma-associated herpesvirus microRNA prevents TWEAK-induced apoptosis and inflammatory cytokine expression. J. Virol. 84, 12139–12151 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Lewsey, M., Robertson, F. C., Canto, T., Palukaitis, P. & Carr, J. P. Selective targeting of miRNA-regulated plant development by a viral counter-silencing protein. Plant J. 50, 240–252 (2007).

    CAS  PubMed  Google Scholar 

  169. Chen, J., Li, W. X., Xie, D., Peng, J. R. & Ding, S. W. Viral virulence protein suppresses RNA silencing-mediated defense but upregulates the role of microrna in host gene expression. Plant Cell 16, 1302–1313 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Jay, F. et al. Misregulation of AUXIN RESPONSE FACTOR 8 underlies the developmental abnormalities caused by three distinct viral silencing suppressors in Arabidopsis. PLoS Pathog. 7, e1002035 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Wang, M. B. et al. On the role of RNA silencing in the pathogenicity and evolution of viroids and viral satellites. Proc. Natl Acad. Sci. USA 101, 3275–3280 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Zhu, S. et al. Double-stranded RNA-binding protein 4 is required for resistance signaling against viral and bacterial pathogens. Cell Rep. 4, 1168–1184 (2013)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the O.V. group is supported by a core grant from ETH-Z, Advanced Researcher grant 'Frontiers of RNAi-II' (No. 323071), from the European Research Council, and a grant from the Swiss National Foundation (No. 31003A_132907). N.P. received support from an EMBO Long-Term Fellowship and a Marie-Curie Actions Incoming International Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Voinnet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Pathogen-associated molecular patterns

(PAMPs; alternatively, microorganism-associated molecular patterns). Conserved and essential pathogen signature molecules that include flagellin, lipopoly-saccharide, elongation factors and double-stranded RNA.

Oomycetes

Eukaryotic fungal-like organisms of the kingdom Stramenopila that include the causal agent of the Irish potato famine, Phytophthora infestans.

Viral suppressors of RNA silencing

(VSRs). Proteins encoded by viruses that function as virulence factors by inhibiting post-transcriptional gene silencing pathways in plants and invertebrates.

MicroRNA

(miRNA). Discrete 21- or 22-nucleotide small RNAs, arising from genome-encoded imperfect foldback structures processed by DCL1, which negatively regulate endogenous target mRNAs by complementary base-pairing.

Repeat-associated small interfering RNA

(rasiRNA). 24-nucleotide small interfering RNAs generated from genomic repeats and transposon loci by DCL3, which target DNA methylation and chromatin modification at their loci of origin.

Trans-acting siRNA

(tasiRNA). 21-nucleotide small interfering RNAs produced by sequential processing by DCL4 on long, perfectly complementary double-stranded RNA.

hrcC

A mutant of Pseudomonas syringae pv. tomato that lacks a functional type III secretion system, thus making it unable to deliver virulence effectors into its host.

Type III secretion system

(T3SS). A delivery system encoded by a wide range of Gram-negative bacterial pathogens of plants and animals that is used to inject effector proteins into host cells.

Avirulent

A pathogen that elicits a specific effector-triggered immunity response owing to recognition of one of its virulence factors by a cognate host-encoded resistance gene, resulting in an incompatible interaction.

SNARE

Soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein (SNAP) receptor, which regulates secretory vesicle fusion.

PATHOGENESIS-RELATED 1

(PR1). A secreted protein with suspected antimicrobial functions. It is used as a classic defence marker owing to its strong induction during pathogen challenge.

Hypersensitive response

(HR). A specific form of programmed cell death, often induced by effector-triggered immunity and correlated with accumulation of antimicrobial compounds and systemic acquired resistance.

Bacterial suppressors of RNA silencing

(BSRs). Effector molecules used by bacterial pathogens to alter host post-transcriptional gene silencing or, possibly, transcriptional gene silencing.

Chromocentres

Densely packed heterochromatic (silenced) DNA including pericentromeric regions, transposons and repetitive elements.

Salicylic acid

A central plant hormone signal that induces local and systemic defence responses, including systemic acquired resistance.

Biotrophic

Organisms that complete their life cycle on living plant tissue; such organisms actively prevent host cell death.

Necrotrophic

Organisms that kill host cells before invasion and gain nutrients from the dead plant tissue.

Jasmonic acid

A phytohormone that regulates defence against necrotrophic pathogens and herbivores.

Helitron

A DNA transposon that is commonly subjected to repressive DNA methylation and that transposes through rolling circle DNA replication.

Extreme resistance

A plant defence response against viruses that is elicited by effector-triggered immunity. It differs from the hypersensitive response in that it restricts viral accumulation without cell death.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pumplin, N., Voinnet, O. RNA silencing suppression by plant pathogens: defence, counter-defence and counter-counter-defence. Nat Rev Microbiol 11, 745–760 (2013). https://doi.org/10.1038/nrmicro3120

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3120

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing