Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Type VI secretion system effectors: poisons with a purpose

Key Points

  • Many bacteria exist in complex communities that consist of dense populations that are in close contact and in competition for shared resources.

  • The Gram-negative type VI secretion system (T6SS) has recently emerged as a potent contact-dependent pathway for mediating bacterial interactions.

  • Effector proteins that are translocated by the T6SS disrupt multiple essential and conserved features of bacterial physiology.

  • Regulatory, biochemical, and genomic data are consistent with a role for the T6SS and its associated effectors in directly contributing to fitness when bacteria are in competition with one another.

  • The T6SS seems to have the capacity to participate in direct cell-to-cell signalling, and potentially has an important role in the coordination of social behaviours and the maintenance of cooperative groups.

  • The presence of the T6SS both in pathogens that are common in polymicrobial sites of infection and in organisms of environmental interest suggests that the effects that are mediated by the pathway might have an important role in the dynamics of these habitats and so affect both human health and the success of attempts to manipulate native bacterial communities.

Abstract

The type VI secretion system (T6SS) mediates interactions between a broad range of Gram-negative bacterial species. Recent studies have led to a substantial increase in the number of characterized T6SS effector proteins and a more complete and nuanced view of the adaptive importance of the system. Although the T6SS is most often implicated in antagonism, in this Review, we consider the case for its involvement in both antagonistic and non-antagonistic behaviours. Clarifying the roles that type VI secretion has in microbial communities will contribute to broader efforts to understand the importance of microbial interactions in maintaining human and environmental health, and will inform efforts to manipulate these interactions for therapeutic or environmental benefit.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: T6SS effectors target varying aspects of bacterial physiology.
Figure 2: Multiple roles for interbacterial T6S.
Figure 3: Interbacterial T6S and infection.

Similar content being viewed by others

References

  1. Roesch, L. F. et al. Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J. 1, 283–290 (2007).

    CAS  PubMed  Google Scholar 

  2. Kostic, A. D., Howitt, M. R. & Garrett, W. S. Exploring host–microbiota interactions in animal models and humans. Genes Dev. 27, 701–718 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Overmann, J. The phototrophic consortium “Chlorochromatium aggregatum” — a model for bacterial heterologous multicellularity. Adv. Exp. Med. Biol. 675, 15–29 (2010).

    PubMed  Google Scholar 

  4. Baker, B. J. & Banfield, J. F. Microbial communities in acid mine drainage. FEMS Microbiol. Ecol. 44, 139–152 (2003).

    CAS  PubMed  Google Scholar 

  5. Dekas, A. E., Poretsky, R. S. & Orphan, V. J. Deep-sea archaea fix and share nitrogen in methane-consuming microbial consortia. Science 326, 422–426 (2009).

    CAS  PubMed  Google Scholar 

  6. Boetius, A. et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407, 623–626 (2000).

    CAS  PubMed  Google Scholar 

  7. Strom, S. L. Microbial ecology of ocean biogeochemistry: a community perspective. Science 320, 1043–1045 (2008).

    CAS  PubMed  Google Scholar 

  8. Belda-Ferre, P. et al. The oral metagenome in health and disease. ISME J. 6, 46–56 (2012).

    CAS  PubMed  Google Scholar 

  9. Nielsen, P. H., Saunders, A. M., Hansen, A. A., Larsen, P. & Nielsen, J. L. Microbial communities involved in enhanced biological phosphorus removal from wastewater — a model system in environmental biotechnology. Curr. Opin. Biotechnol. 23, 452–459 (2012).

    CAS  PubMed  Google Scholar 

  10. Hood, R. D. et al. A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 7, 25–37 (2010). This study provides the first evidence that the T6SS can deliver effector proteins between bacterial cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Schwarz, S., Hood, R. D. & Mougous, J. D. What is type VI secretion doing in all those bugs? Trends Microbiol. 18, 531–537 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Boyer, F., Fichant, G., Berthod, J., Vandenbrouck, Y. & Attree, I. Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources? BMC Genomics 10, 104 (2009). This paper provides an exhaustive analysis of the distribution and gene content of T6S clusters.

    PubMed  PubMed Central  Google Scholar 

  13. Shalom, G., Shaw, J. G. & Thomas, M. S. In vivo expression technology identifies a type VI secretion system locus in Burkholderia pseudomallei that is induced upon invasion of macrophages. Microbiology 153, 2689–2699 (2007).

    CAS  PubMed  Google Scholar 

  14. Schwarz, S. et al. Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions. PLoS Pathog. 6, e1001068 (2010).

    PubMed  PubMed Central  Google Scholar 

  15. Russell, A. B. et al. Type VI secretion delivers bacteriolytic effectors to target cells. Nature 475, 343–347 (2011). This paper identifies peptidoglycan within the bacterial cell wall as a target of interbacterial T6SS effector proteins.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. English, G. et al. New secreted toxins and immunity proteins encoded within the Type VI secretion system gene cluster of Serratia marcescens. Mol. Microbiol. 86, 921–936 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Dong, T. G., Ho, B. T., Yoder-Himes, D. R. & Mekalanos, J. J. Identification of T6SS-dependent effector and immunity proteins by Tn-seq in Vibrio cholerae. Proc. Natl Acad. Sci. USA 110, 2623–2628 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Brooks, T. M., Unterweger, D., Bachmann, V., Kostiuk, B. & Pukatzki, S. Lytic activity of the Vibrio cholerae type VI secretion toxin VgrG-3 is inhibited by the antitoxin TsaB. J. Biol. Chem. 288, 7618–7625 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Russell, A. B. et al. A widespread bacterial type VI secretion effector superfamily identified using a heuristic approach. Cell Host Microbe 11, 538–549 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Benz, J., Sendlmeier, C., Barends, T. R. & Meinhart, A. Structural insights into the effector-immunity system Tse1/Tsi1 from Pseudomonas aeruginosa. PLoS ONE 7, e40453 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang, H. et al. Structure of the type VI effector–immunity complex (Tae4–Tai4) provides novel insights into the inhibition mechanism of the effector by its immunity protein. J. Biol. Chem. 288, 5928–5939 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Vollmer, W., Pilsl, H., Hantke, K., Holtje, J. V. & Braun, V. Pesticin displays muramidase activity. J. Bacteriol. 179, 1580–1583 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Browder, H. P., Zygmunt, W. A., Young, J. R. & Tavormina, P. A. Lysostaphin: enzymatic mode of action. Biochem. Biophys. Res. Commun. 19, 383–389 (1965).

    CAS  PubMed  Google Scholar 

  24. El Ghachi, M. et al. Colicin M exerts its bacteriolytic effect via enzymatic degradation of undecaprenyl phosphate-linked peptidoglycan precursors. J. Biol. Chem. 281, 22761–22772 (2006).

    CAS  PubMed  Google Scholar 

  25. Kong, K. F., Schneper, L. & Mathee, K. Beta-lactam antibiotics: from antibiosis to resistance and bacteriology. APMIS 118, 1–36 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Reynolds, P. E. Structure, biochemistry and mechanism of action of glycopeptide antibiotics. Eur. J. Clin. Microbiol. Infect. Dis. 8, 943–950 (1989).

    CAS  PubMed  Google Scholar 

  27. Chou, S. et al. Structure of a peptidoglycan amidase effector targeted to Gram-negative bacteria by the type VI secretion system. Cell Rep. 1, 656–664 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Ding, J., Wang, W., Feng, H., Zhang, Y. & Wang, D. C. Structural insights into the Pseudomonas aeruginosa type VI virulence effector Tse1 bacteriolysis and self-protection mechanisms. J. Biol. Chem. 287, 26911–26920 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang, H., Gao, Z.-Q., Su, X.-D. & Dong, Y.-H. Crystal structure of type VI effector Tse1 from Pseudomonas aeruginosa. FEBS Lett. 586, 3193–3199 (2012).

    CAS  PubMed  Google Scholar 

  30. LeRoux, M. et al. Quantitative single-cell characterization of bacterial interactions reveals type VI secretion is a double-edged sword. Proc. Natl Acad. Sci. USA 109, 19804–19809 (2012). This was the first study to show that inactivation of T6S can provide resistance to T6S-based attack by neighbouring cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Srikannathasan, V. et al. Structural basis for type VI secreted peptidoglycan DL-endopeptidase function, specificity and neutralization in Serratia marcescens. Acta Crystallogr. D Biol. Crystallogr. 69, 2468–2482 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Fischetti, V. A. Bacteriophage lysins as effective antibacterials. Curr. Opin. Microbiol. 11, 393–400 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Whitney, J. C. et al. Identification, structure and function of a novel type VI secretion peptidoglycan glycoside hydrolase effector–immunity pair. J. Biol. Chem. 288, 26616–26624 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Pukatzki, S., Ma, A. T., Revel, A. T., Sturtevant, D. & Mekalanos, J. J. Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc. Natl Acad. Sci. USA 104, 15508–15513 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Suarez, G. et al. A type VI secretion system effector protein, VgrG1, from Aeromonas hydrophila that induces host cell toxicity by ADP ribosylation of actin. J. Bacteriol. 192, 155–168 (2010).

    CAS  PubMed  Google Scholar 

  36. Russell, A. B. et al. Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors. Nature 496, 508–512 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wilderman, P. J., Vasil, A. I., Johnson, Z. & Vasil, M. L. Genetic and biochemical analyses of a eukaryotic-like phospholipase D of Pseudomonas aeruginosa suggest horizontal acquisition and a role for persistence in a chronic pulmonary infection model. Mol. Microbiol. 39, 291–303 (2001).

    CAS  PubMed  Google Scholar 

  38. Cascales, E. et al. Colicin biology. Microbiol. Mol. Biol. Rev. 71, 158–229 (2007). This is a comprehensive review of colicins, which are the best characterized of the bacteriocins.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zheng, J., Ho, B. & Mekalanos, J. J. Genetic analysis of anti-amoebae and anti-bacterial activities of the type VI secretion system in Vibrio cholerae. PLoS ONE 6, e23876 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Miyata, S. T., Kitaoka, M., Brooks, T. M., McAuley, S. B. & Pukatzki, S. Vibrio cholerae requires the type VI secretion system virulence factor VasX to kill Dictyostelium discoideum. Infect. Immun. 79, 2941–2949 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Miyata, S.T., Unterweger, D., Rudko, S.P. & Pukatzki, S. Dual expression profile of type VI secretion system immunity genes protects pandemic Vibrio cholerae. PLoS Pathog. 9, e1003752 (2013).

    PubMed  PubMed Central  Google Scholar 

  42. Geli, V., Baty, D., Pattus, F. & Lazdunski, C. Topology and function of the integral membrane protein conferring immunity to colicin A. Mol. Microbiol. 3, 679–687 (1989).

    CAS  PubMed  Google Scholar 

  43. Poole, S. J. et al. Identification of functional toxin/immunity genes linked to contact-dependent growth inhibition (CDI) and rearrangement hotspot (Rhs) systems. PLoS Genet. 7, e1002217 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Koskiniemi, S. et al. Rhs proteins from diverse bacteria mediate intercellular competition. Proc. Natl Acad. Sci. USA 110, 7032–7037 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wenren, L. M., Sullivan, N. L., Cardarelli, L., Septer, A. N. & Gibbs, K. A. Two independent pathways for self-recognition in Proteus mirabilis are linked by type VI-dependent export. mBio 4, e00374–00313 (2013). This is a follow-up study to reference 67.

    PubMed  PubMed Central  Google Scholar 

  46. Fritsch, M. J. et al. Proteomic identification of novel secreted anti-bacterial toxins of the Serratia marcescens Type VI secretion system. Mol. Cell Proteom. 12, 2735–2749 (2013).

    CAS  Google Scholar 

  47. MacIntyre, D. L., Miyata, S. T., Kitaoka, M. & Pukatzki, S. The Vibrio cholerae type VI secretion system displays antimicrobial properties. Proc. Natl Acad. Sci. USA 107, 19520–19524 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Murdoch, S. L. et al. The opportunistic pathogen Serratia marcescens utilizes type VI secretion to target bacterial competitors. J. Bacteriol. 193, 6057–6069 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Salomon, D., Gonzalez, H., Updegraff, B. L. & Orth, K. Vibrio parahaemolyticus type VI secretion system 1 is activated in marine conditions to target bacteria, and is differentially regulated from system 2. PLoS ONE 8, e61086 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Gueguen, E. & Cascales, E. Promoter swapping unveils the role of the Citrobacter rodentium CTS1 type VI secretion system in interbacterial competition. Appl. Environ. Microbiol. 79, 32–38 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Haapalainen, M. et al. Hcp2, a secreted protein of the phytopathogen Pseudomonas syringae pv. tomato DC3000, is required for fitness for competition against bacteria and yeasts. J. Bacteriol. 194, 4810–4822 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Carruthers, M. D., Nicholson, P. A., Tracy, E. N. & Munson, R. S. Jr. Acinetobacter baumannii utilizes a type VI secretion system for bacterial competition. PLoS ONE 8, e59388 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Dong, C. et al. Structural insights into the inhibition of type VI effector Tae3 by its immunity protein Tai3. Biochem. J. 454, 59–68 (2013).

    CAS  PubMed  Google Scholar 

  54. Cornforth, D. M. & Foster, K. R. Competition sensing: the social side of bacterial stress responses. Nature Rev. Microbiol. 11, 285–293 (2013). This review discusses an evolutionary rationale for the observed regulatory patterns that are exhibited in the expression of antagonistic bacterial factors.

    CAS  Google Scholar 

  55. Basler, M. & Mekalanos, J. J. Type 6 secretion dynamics within and between bacterial cells. Science 337, 815 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Lesic, B., Starkey, M., He, J., Hazan, R. & Rahme, L. G. Quorum sensing differentially regulates Pseudomonas aeruginosa type VI secretion locus I and homologous loci II and III, which are required for pathogenesis. Microbiology 155, 2845–2855 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ishikawa, T., Rompikuntal, P. K., Lindmark, B., Milton, D. L. & Wai, S. N. Quorum sensing regulation of the two hcp alleles in Vibrio cholerae O1 strains. PLoS ONE 4, e6734 (2009).

    PubMed  PubMed Central  Google Scholar 

  58. Wu, C. F., Lin, J. S., Shaw, G. C. & Lai, E. M. Acid-induced type VI secretion system is regulated by ExoR-ChvG/ChvI signaling cascade in Agrobacterium tumefaciens. PLoS Pathog. 8, e1002938 (2012).

    PubMed  PubMed Central  Google Scholar 

  59. Robinson, J. B. et al. Evaluation of a Yersinia pestis mutant impaired in a thermoregulated type VI-like secretion system in flea, macrophage and murine models. Microb. Pathog. 47, 243–251 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Brunet, Y. R., Bernard, C. S., Gavioli, M., Lloubes, R. & Cascales, E. An epigenetic switch involving overlapping fur and DNA methylation optimizes expression of a type VI secretion gene cluster. PLoS Genet. 7, e1002205 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Ishikawa, T. et al. Pathoadaptive conditional regulation of the type VI secretion system in Vibrio cholerae O1 strains. Infect. Immun. 80, 575–584 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Termine, E. & Michel, G. P. Transcriptome and secretome analyses of the adaptive response of Pseudomonas aeruginosa to suboptimal growth temperature. Int. Microbiol. 12, 7–12 (2009).

    CAS  PubMed  Google Scholar 

  63. Tilman, D. Resource competition and community structure. Monogr. Popul. Biol. 17, 1–296 (1982).

    CAS  PubMed  Google Scholar 

  64. Hawlena, H., Bashey, F., Mendes-Soares, H. & Lively, C. M. Spiteful interactions in a natural population of the bacterium Xenorhabdus bovienii. Am. Nat. 175, 374–381 (2010).

    PubMed  Google Scholar 

  65. Vos, M. & Velicer, G. J. Social conflict in centimeter-and global-scale populations of the bacterium Myxococcus xanthus. Curr. Biol. 19, 1763–1767 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Chantratita, N. et al. Genetic diversity and microevolution of Burkholderia pseudomallei in the environment. PLoS Negl Trop. Dis. 2, e182 (2008).

    PubMed  PubMed Central  Google Scholar 

  67. Gibbs, K. A., Urbanowski, M. L. & Greenberg, E. P. Genetic determinants of self identity and social recognition in bacteria. Science 321, 256–259 (2008). This study identified a single genetic locus that is linked to self-recognition in P. mirabilis , which is an important bacterial model for social behaviour.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Riley, M. A. & Wertz, J. E. Bacteriocins: evolution, ecology, and application. Annu. Rev. Microbiol. 56, 117–137 (2002).

    CAS  PubMed  Google Scholar 

  69. Eldar, A. Social conflict drives the evolutionary divergence of quorum sensing. Proc. Natl Acad. Sci. USA 108, 13635–13640 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Strassmann, J. E., Gilbert, O. M. & Queller, D. C. Kin discrimination and cooperation in microbes. Annu. Rev. Microbiol. 65, 349–367 (2011).

    CAS  PubMed  Google Scholar 

  71. Ruhe, Z. C., Low, D. A. & Hayes, C. S. Bacterial contact-dependent growth inhibition. Trends Microbiol. 21, 230–237 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Unterweger, D. et al. Constitutive type VI secretion system expression gives Vibrio cholerae intra- and interspecific competitive advantages. PLoS ONE 7, e48320 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang, W. et al. Modulation of a thermoregulated type VI secretion system by AHL-dependent quorum sensing in Yersinia pseudotuberculosis. Arch. Microbiol. 193, 351–363 (2011).

    CAS  PubMed  Google Scholar 

  74. Bernard, C. S., Brunet, Y. R., Gueguen, E. & Cascales, E. Nooks and crannies in type VI secretion regulation. J. Bacteriol. 192, 3850–3860 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Nadell, C. D., Foster, K. R. & Xavier, J. B. Emergence of spatial structure in cell groups and the evolution of cooperation. PLoS Comput. Biol. 6, e1000716 (2010).

    PubMed  PubMed Central  Google Scholar 

  76. Engelberg-Kulka, H. & Glaser, G. Addiction modules and programmed cell death and antideath in bacterial cultures. Annu. Rev. Microbiol. 53, 43–70 (1999).

    CAS  PubMed  Google Scholar 

  77. Yamaguchi, Y., Park, J. H. & Inouye, M. Toxin–antitoxin systems in bacteria and archaea. Annu. Rev. Genet. 45, 61–79 (2011).

    CAS  PubMed  Google Scholar 

  78. Li, M. et al. Structural basis for type VI secretion effector recognition by a cognate immunity protein. PLoS Pathog. 8, e1002613 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Van Melderen, L. & Saavedra De Bast, M. Bacterial toxin–antitoxin systems: more than selfish entities? PLoS Genet. 5, e1000437 (2009).

    PubMed  PubMed Central  Google Scholar 

  80. Yamaguchi, Y. & Inouye, M. Regulation of growth and death in Escherichia coli by toxin–antitoxin systems. Nature Rev. Microbiol. 9, 779–790 (2011).

    CAS  Google Scholar 

  81. Frampton, R., Aggio, R. B., Villas-Boas, S. G., Arcus, V. L. & Cook, G. M. Toxin–antitoxin systems of Mycobacterium smegmatis are essential for cell survival. J. Biol. Chem. 287, 5340–5356 (2012).

    CAS  PubMed  Google Scholar 

  82. Hazan, R. & Engelberg-Kulka, H. Escherichia coli mazEF-mediated cell death as a defense mechanism that inhibits the spread of phage P1. Mol. Genet. Genom. 272, 227–234 (2004).

    CAS  Google Scholar 

  83. Gerdes, K. & Maisonneuve, E. Bacterial persistence and toxin–antitoxin loci. Annu. Rev. Microbiol. 66, 103–123 (2012).

    CAS  PubMed  Google Scholar 

  84. Maisonneuve, E., Castro-Camargo, M. & Gerdes, K. (p)ppGpp controls bacterial persistence by stochastic induction of toxin-antitoxin activity. Cell 154, 1140–1150 (2013).

    CAS  PubMed  Google Scholar 

  85. Stoodley, P., Sauer, K., Davies, D. G. & Costerton, J. W. Biofilms as complex differentiated communities. Annu. Rev. Microbiol. 56, 187–209 (2002).

    CAS  PubMed  Google Scholar 

  86. Parsek, M. R. & Greenberg, E. P. Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol. 13, 27–33 (2005).

    CAS  PubMed  Google Scholar 

  87. Blango, M. G. & Mulvey, M. A. Bacterial landlines: contact-dependent signaling in bacterial populations. Curr. Opin. Microbiol. 12, 177–181 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Fagotto, F. & Gumbiner, B. M. Cell contact-dependent signaling. Dev. Biol. 180, 445–454 (1996).

    CAS  PubMed  Google Scholar 

  89. Downing, K. J. et al. Mutants of Mycobacterium tuberculosis lacking three of the five rpf-like genes are defective for growth in vivo and for resuscitation in vitro. Infect. Immun. 73, 3038–3043 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Mukamolova, G. V. et al. Muralytic activity of Micrococcus luteus Rpf and its relationship to physiological activity in promoting bacterial growth and resuscitation. Mol. Microbiol. 59, 84–98 (2006).

    CAS  PubMed  Google Scholar 

  91. Mukamolova, G. V. et al. The rpf gene of Micrococcus luteus encodes an essential secreted growth factor. Mol. Microbiol. 46, 611–621 (2002).

    CAS  PubMed  Google Scholar 

  92. Ravagnani, A., Finan, C. L. & Young, M. A novel firmicute protein family related to the actinobacterial resuscitation-promoting factors by non-orthologous domain displacement. BMC Genomics 6, 39 (2005).

    PubMed  PubMed Central  Google Scholar 

  93. West, S. A., Griffin, A. S. & Gardner, A. Evolutionary explanations for cooperation. Curr. Biol. 17, R661–R672 (2007). This paper provides a comprehensive discussion of the possible mechanisms for the evolution of cooperative behaviour.

    CAS  PubMed  Google Scholar 

  94. Diggle, S. P., Griffin, A. S., Campbell, G. S. & West, S. A. Cooperation and conflict in quorum-sensing bacterial populations. Nature 450, 411–414 (2007).

    CAS  PubMed  Google Scholar 

  95. Lapouge, K., Schubert, M., Allain, F. H. & Haas, D. Gac/Rsm signal transduction pathway of γ-proteobacteria: from RNA recognition to regulation of social behaviour. Mol. Microbiol. 67, 241–253 (2008).

    CAS  PubMed  Google Scholar 

  96. Hassan, K. A. et al. Inactivation of the GacA response regulator in Pseudomonas fluorescens Pf-5 has far-reaching transcriptomic consequences. Environ. Microbiol. 12, 899–915 (2010).

    CAS  PubMed  Google Scholar 

  97. Mougous, J. D. et al. A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312, 1526–1530 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Enos-Berlage, J. L., Guvener, Z. T., Keenan, C. E. & McCarter, L. L. Genetic determinants of biofilm development of opaque and translucent Vibrio parahaemolyticus. Mol. Microbiol. 55, 1160–1182 (2005).

    CAS  PubMed  Google Scholar 

  99. Aschtgen, M. S., Bernard, C. S., De Bentzmann, S., Lloubes, R. & Cascales, E. SciN is an outer membrane lipoprotein required for type VI secretion in enteroaggregative Escherichia coli. J. Bacteriol. 190, 7523–7531 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Sha, J. et al. Evaluation of the roles played by Hcp and VgrG type 6 secretion system effectors in Aeromonas hydrophila SSU pathogenesis. Microbiology 159, 1120–1135 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Webb, J. S., Givskov, M. & Kjelleberg, S. Bacterial biofilms: prokaryotic adventures in multicellularity. Curr. Opin. Microbiol. 6, 578–585 (2003).

    CAS  PubMed  Google Scholar 

  102. Whitchurch, C. B., Tolker-Nielsen, T., Ragas, P. C. & Mattick, J. S. Extracellular DNA required for bacterial biofilm formation. Science 295, 1487 (2002).

    CAS  PubMed  Google Scholar 

  103. Stewart, P. S. & Franklin, M. J. Physiological heterogeneity in biofilms. Nature Rev. Microbiol. 6, 199–210 (2008).

    CAS  Google Scholar 

  104. Otsuka, Y. & Yonesaki, T. Dmd of bacteriophage T4 functions as an antitoxin against Escherichia coli LsoA and RnlA toxins. Mol. Microbiol. 83, 669–681 (2012).

    CAS  PubMed  Google Scholar 

  105. Corr, S. C. et al. Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc. Natl Acad. Sci. USA 104, 7617–7621 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Dawid, S., Roche, A. M. & Weiser, J. N. The blp bacteriocins of Streptococcus pneumoniae mediate intraspecies competition both in vitro and in vivo. Infect. Immun. 75, 443–451 (2007).

    CAS  PubMed  Google Scholar 

  107. Sekirov, I., Russell, S. L., Antunes, L. C. & Finlay, B. B. Gut microbiota in health and disease. Physiol. Rev. 90, 859–904 (2010).

    CAS  PubMed  Google Scholar 

  108. Blondel, C. J., Jimenez, J. C., Contreras, I. & Santiviago, C. A. Comparative genomic analysis uncovers 3 novel loci encoding type six secretion systems differentially distributed in Salmonella serotypes. BMC Genomics 10, 354 (2009).

    PubMed  PubMed Central  Google Scholar 

  109. Suarez, G. et al. Molecular characterization of a functional type VI secretion system from a clinical isolate of Aeromonas hydrophila. Microb. Pathog. 44, 344–361 (2008).

    CAS  PubMed  Google Scholar 

  110. Brunet, Y. R., Espinosa, L., Harchouni, S., Mignot, T. & Cascales, E. Imaging type VI secretion-mediated bacterial killing. Cell Rep. 3, 36–41 (2013).

    CAS  PubMed  Google Scholar 

  111. Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Percival, S. L., Emanuel, C., Cutting, K. F. & Williams, D. W. Microbiology of the skin and the role of biofilms in infection. Int. Wound J. 9, 14–32 (2012).

    PubMed  Google Scholar 

  113. O'Hara, C. M., Brenner, F. W. & Miller, J. M. Classification, identification, and clinical significance of Proteus, Providencia, and Morganella. Clin. Microbiol. Rev. 13, 534–546 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Hejazi, A. & Falkiner, F. R. Serratia marcescens. J. Med. Microbiol. 46, 903–912 (1997).

    CAS  PubMed  Google Scholar 

  115. Goddard, A. F. et al. Direct sampling of cystic fibrosis lungs indicates that DNA-based analyses of upper-airway specimens can misrepresent lung microbiota. Proc. Natl Acad. Sci. USA 109, 13769–13774 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Cox, M. J. et al. Airway microbiota and pathogen abundance in age-stratified cystic fibrosis patients. PLoS ONE 5, e11044 (2010).

    PubMed  PubMed Central  Google Scholar 

  117. Zhao, J. et al. Decade-long bacterial community dynamics in cystic fibrosis airways. Proc. Natl Acad. Sci. USA 109, 5809–5814 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Davies, J. C. Pseudomonas aeruginosa in cystic fibrosis: pathogenesis and persistence. Paediatr. Respir. Rev. 3, 128–134 (2002).

    PubMed  Google Scholar 

  119. Moscoso, J. A., Mikkelsen, H., Heeb, S., Williams, P. & Filloux, A. The Pseudomonas aeruginosa sensor RetS switches type III and type VI secretion via c-di-GMP signalling. Environ. Microbiol. 13, 3128–3138 (2011).

    CAS  PubMed  Google Scholar 

  120. Folkesson, A. et al. Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: an evolutionary perspective. Nature Rev. Microbiol. 10, 841–851 (2012).

    CAS  Google Scholar 

  121. Ehrlich, G. D., Hu, F. Z., Shen, K., Stoodley, P. & Post, J. C. Bacterial plurality as a general mechanism driving persistence in chronic infections. Clin Orthop Relat Res. 437, 20–24 (2005).

    Google Scholar 

  122. Vorholt, J. A. Microbial life in the phyllosphere. Nature Rev. Microbiol. 10, 828–840 (2012).

    CAS  Google Scholar 

  123. Whipps, J. M. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52, 487–511 (2001).

    CAS  PubMed  Google Scholar 

  124. Sarris, P. F., Skandalis, N., Kokkinidis, M. & Panopoulos, N. J. In silico analysis reveals multiple putative type VI secretion systems and effector proteins in Pseudomonas syringae pathovars. Mol. Plant Pathol. 11, 795–804 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. De Maayer, P. et al. Comparative genomics of the Type VI secretion systems of Pantoea and Erwinia species reveals the presence of putative effector islands that may be translocated by the VgrG and Hcp proteins. BMC Genomics 12, 576 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Mattinen, L. et al. Microarray profiling of host-extract-induced genes and characterization of the type VI secretion cluster in the potato pathogen Pectobacterium atrosepticum. Microbiology 154, 2387–2396 (2008).

    CAS  PubMed  Google Scholar 

  127. Varivarn, K., Champa, L. A., Silby, M. W. & Robleto, E. A. Colonization strategies of Pseudomonas fluorescens Pf0-1: activation of soil-specific genes important for diverse and specific environments. BMC Microbiol. 13, 92 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Parsek, M. R. & Singh, P. K. Bacterial biofilms: an emerging link to disease pathogenesis. Annu. Rev. Microbiol. 57, 677–701 (2003).

    CAS  PubMed  Google Scholar 

  129. Leiman, P. G. et al. Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc. Natl Acad. Sci. USA 106, 4154–4159 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Kanamaru, S. Structural similarity of tailed phages and pathogenic bacterial secretion systems. Proc. Natl Acad. Sci. USA 106, 4067–4068 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Basler, M., Pilhofer, M., Henderson, G. P., Jensen, G. J. & Mekalanos, J. J. Type VI secretion requires a dynamic contractile phage tail-like structure. Nature 483, 182–186 (2012). This paper reports the visualization of a contractile filamentous structure that is composed of TssB and TssC.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Silverman, J. M., Brunet, Y. R., Cascales, E. & Mougous, J. D. Structure and regulation of the type VI secretion system. Annu. Rev. Microbiol. 66, 453–472 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Cascales, E. & Cambillau, C. Structural biology of type VI secretion systems. Phil. Trans. R. Soc. Lond. B Biol. Sci. 367, 1102–1111 (2012).

    CAS  Google Scholar 

  134. Hachani, A. et al. Type VI secretion system in Pseudomonas aeruginosa: secretion and multimerization of VgrG proteins. J. Biol. Chem. 286, 12317–12327 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Shneider, M. M. et al. PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature 500, 350–353 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Silverman, J. M. et al. Haemolysin co-regulated protein is an exported receptor and chaperone of type VI secretion substrates. Mol. Cell 51, 584–593 (2013).

    CAS  PubMed  Google Scholar 

  137. Pukatzki, S. et al. Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc. Natl Acad. Sci. USA 103, 1528–1533 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Bladergroen, M. R., Badelt, K. & Spaink, H. P. Infection-blocking genes of a symbiotic Rhizobium leguminosarum strain that are involved in temperature-dependent protein secretion. Mol. Plant Microbe Interact. 16, 53–64 (2003).

    CAS  PubMed  Google Scholar 

  139. Rao, P. S., Yamada, Y., Tan, Y. P. & Leung, K. Y. Use of proteomics to identify novel virulence determinants that are required for Edwardsiella tarda pathogenesis. Mol. Microbiol. 53, 573–586 (2004). This study reports for the first time that the export of Hcp depends on genes within a conserved cluster.

    CAS  PubMed  Google Scholar 

  140. Zheng, J. & Leung, K. Y. Dissection of a type VI secretion system in Edwardsiella tarda. Mol. Microbiol. 66, 1192–1206 (2007).

    CAS  PubMed  Google Scholar 

  141. Aoki, S. K. et al. A widespread family of polymorphic contact-dependent toxin delivery systems in bacteria. Nature 468, 439–442 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Nikolakakis, K. et al. The toxin/immunity network of Burkholderia pseudomallei contact-dependent growth inhibition (CDI) systems. Mol. Microbiol. 84, 516–529 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Anderson, M. S., Garcia, E. C. & Cotter, P. A. The Burkholderia bcpAIOB genes define unique classes of two-partner secretion and contact dependent growth inhibition systems. PLoS Genet. 8, e1002877 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Aoki, S. K. et al. Contact-dependent growth inhibition requires the essential outer membrane protein BamA (YaeT) as the receptor and the inner membrane transport protein AcrB. Mol. Microbiol. 70, 323–340 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Aoki, S. K. et al. Contact-dependent inhibition of growth in Escherichia coli. Science 309, 1245–1248 (2005). This paper reports the discovery of CDI in E. coli.

    CAS  PubMed  Google Scholar 

  146. Webb, J. S. et al. Delivery of CdiA nuclease toxins into target cells during contact-dependent growth inhibition. PLoS ONE 8, e57609 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Mougous laboratory for insightful discussions. This work was supported by grants from the US National Institutes of Health (AI080609 and AI057141) and Cystic Fibrosis Foundation (CFR565-CR07). A.B.R. was supported by a Graduate Research Fellowship from the National Science Foundation (DGE-0718124), and J.D.M. holds an Investigator in the Pathogenesis of Infectious Disease Award from the Burroughs Wellcome Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph D. Mougous.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Haemolysin co-regulated protein

(Hcp). A ring-shaped substrate and structural component of the type VI secretion system. It is structurally related to the T4 bacteriophage tail tube protein gp19.

Sacculus

The total cell wall structure (which contains peptidoglycan and associated molecules) of a bacterium; the term derives from the appearance of isolated cell wall superstructures as meshwork bags.

Type IV secretion systems

Secretion systems involved in the transfer of both DNA and proteins to bacterial and eukaryotic targets.

Valine–glycine repeat protein G

(VgrG). A substrate and structural component of the type VI secretion system (T6SS). It is structurally related to the T4 bacteriophage tail spike apparatus, gp27 and gp5.

Bacteriocins

Proteins released by bacteria that exerts toxic effects on related organisms. Bacteriocins and specific immunity determinants that protect the producing cell are typically encoded by adjacent genes.

Recombination hotspot proteins

(Rhs proteins). Large multi-domain proteins that have a central element consisting of a repeating motif and a toxin domain at their carboxyl terminus. They were initially identified as sites of frequent recombination in the Escherichia coli genome.

Quorum sensing

An interbacterial signalling system in which signal concentration correlates with cell density, thus providing a measure of the local concentration of signal-producing organisms.

Toxin–antitoxin systems

(TA systems). Systems that consist of a toxic element and an unstable cognate antitoxin that mediate toxicity in the producing cell such that depletion of the antitoxin results in death or senescence of the organism.

Viable but non-culturable

(VBNC). Describes a growth state in which a cell is not actively dividing but in which viability is maintained.

Cooperation

The investment of resources by one individual into a process that benefits other individuals. Cooperation is not necessarily mutually beneficial.

Phyllosphere

A habitat that consists of the above-ground surfaces of plants, particularly the leaves.

Rhizosphere

A habitat that consists of plant roots and the surrounding soil that is influenced by their secretions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russell, A., Peterson, S. & Mougous, J. Type VI secretion system effectors: poisons with a purpose. Nat Rev Microbiol 12, 137–148 (2014). https://doi.org/10.1038/nrmicro3185

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3185

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing