Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

CRISPR–Cas systems: beyond adaptive immunity

Abstract

The discovery of CRISPR–Cas (clustered, regularly interspaced short palindromic repeats–CRISPR-associated proteins) adaptive immune systems in prokaryotes has been one of the most exciting advances in microbiology in the past decade. Their role in host protection against mobile genetic elements is now well established, but there is mounting evidence that these systems modulate other processes, such as the genetic regulation of group behaviour and virulence, DNA repair and genome evolution. In this Progress article, we discuss recent studies that have provided insights into these unconventional CRISPR–Cas functions and consider their potential evolutionary implications. Understanding the role of CRISPR–Cas in these processes will improve our understanding of the evolution and maintenance of CRISPR–Cas systems in prokaryotic genomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regulation of fruiting body formation in Myxococcus xanthus.
Figure 2: Virulence regulation by Cas9–tracrRNA–scaRNA in Francisella novicida.

Similar content being viewed by others

References

  1. Westra, E. R. et al. The CRISPRs, they are a-changin': how prokaryotes generate adaptive immunity. Annu. Rev. Genet. 46, 311–339 (2012).

    CAS  PubMed  Google Scholar 

  2. Labrie, S. J., Samson, J. E. & Moineau, S. Bacteriophage resistance mechanisms. Nature Rev. Microbiol. 8, 317–327 (2010).

    CAS  Google Scholar 

  3. Wiedenheft, B., Sternberg, S. H. & Doudna, J. A. RNA-guided genetic silencing systems in bacteria and archaea. Nature 482, 331–338 (2012).

    CAS  PubMed  Google Scholar 

  4. Makarova, K. S. et al. Evolution and classification of the CRISPR–Cas systems. Nature Rev. Microbiol. 9, 467–477 (2011).

    CAS  Google Scholar 

  5. Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007).

    CAS  PubMed  Google Scholar 

  6. Andersson, A. F. & Banfield, J. F. Virus population dynamics and acquired virus resistance in natural microbial communities. Science 320, 1047–1050 (2008).

    CAS  PubMed  Google Scholar 

  7. Tyson, G. W. & Banfield, J. F. Rapidly evolving CRISPRs implicated in acquired resistance of microorganisms to viruses. Environ. Microbiol. 10, 200–207 (2008).

    CAS  PubMed  Google Scholar 

  8. Emerson, J. B. et al. Virus–host and CRISPR dynamics in archaea-dominated hypersaline Lake Tyrrell, Victoria, Australia. Archaea 2013, 370871 (2013).

    PubMed  PubMed Central  Google Scholar 

  9. Delaney, N. F. et al. Ultrafast evolution and loss of CRISPRs following a host shift in a novel wildlife pathogen, Mycoplasma gallisepticum. PLoS Genet. 8, e1002511 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Diez-Villasenor, C., Almendros, C., Garcia-Martinez, J. & Mojica, F. J. Diversity of CRISPR loci in Escherichia coli. Microbiology 156, 1351–1361 (2010).

    CAS  PubMed  Google Scholar 

  11. Pougach, K. et al. Transcription, processing and function of CRISPR cassettes in Escherichia coli. Mol. Microbiol. 77, 1367–1379 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Westra, E. R. et al. H-NS-mediated repression of CRISPR-based immunity in Escherichia coli K12 can be relieved by the transcription activator LeuO. Mol. Microbiol. 77, 1380–1393 (2010).

    CAS  PubMed  Google Scholar 

  13. Pul, U. et al. Identification and characterization of E. coli CRISPR–Cas promoters and their silencing by H-NS. Mol. Microbiol. 75, 1495–1512 (2010).

    CAS  PubMed  Google Scholar 

  14. Brouns, S. J. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960–964 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Touchon, M. et al. CRISPR distribution within the Escherichia coli species is not suggestive of immunity-associated diversifying selection. J. Bacteriol. 193, 2460–2467 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Touchon, M. & Rocha, E. P. The small, slow and specialized CRISPR and anti-CRISPR of Escherichia and Salmonella. PLoS ONE 5, e11126 (2010).

    PubMed  PubMed Central  Google Scholar 

  17. Touchon, M. et al. Antibiotic resistance plasmids spread among natural isolates of Escherichia coli in spite of CRISPR elements. Microbiology 158, 2997–3004 (2012).

    CAS  PubMed  Google Scholar 

  18. Ketting, R. F. The many faces of RNAi. Dev. Cell 20, 148–161 (2011).

    CAS  PubMed  Google Scholar 

  19. Kaiser, D., Robinson, M. & Kroos, L. Myxobacteria, polarity, and multicellular morphogenesis. Cold Spring Harb. Perspect. Biol. 2, a000380 (2010).

    PubMed  PubMed Central  Google Scholar 

  20. Thony-Meyer, L. & Kaiser, D. devRS, an autoregulated and essential genetic locus for fruiting body development in Myxococcus xanthus. J. Bacteriol. 175, 7450–7462 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Boysen, A., Ellehauge, E., Julien, B. & Sogaard-Andersen, L. The DevT protein stimulates synthesis of FruA, a signal transduction protein required for fruiting body morphogenesis in Myxococcus xanthus. J. Bacteriol. 184, 1540–1546 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Viswanathan, P., Murphy, K., Julien, B., Garza, A. G. & Kroos, L. Regulation of dev, an operon that includes genes essential for Myxococcus xanthus development and CRISPR-associated genes and repeats. J. Bacteriol. 189, 3738–3750 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kroos, L. & Kaiser, D. Expression of many developmentally regulated genes in Myxococcus depends on a sequence of cell interactions. Genes Dev. 1, 840–854 (1987).

    CAS  PubMed  Google Scholar 

  24. Kroos, L., Kuspa, A. & Kaiser, D. A global analysis of developmentally regulated genes in Myxococcus xanthus. Dev. Biol. 117, 252–266 (1986).

    CAS  PubMed  Google Scholar 

  25. Russo-Marie, F., Roederer, M., Sager, B., Herzenberg, L. A. & Kaiser, D. Beta-galactosidase activity in single differentiating bacterial cells. Proc. Natl Acad. Sci. USA 90, 8194–8198 (1993).

    CAS  PubMed  Google Scholar 

  26. Julien, B., Kaiser, A.D. & Garza, A. Spatial control of cell differentiation in Myxococcus xanthus. Proc. Natl Acad. Sci. USA 97, 9098–9103 (2000).

    CAS  PubMed  Google Scholar 

  27. Louwen, R. et al. A novel link between Campylobacter jejuni bacteriophage defence, virulence and Guillain-Barre syndrome. Eur. J. Clin. Microbiol. Infect. Dis. 32, 207–226 (2013).

    CAS  PubMed  Google Scholar 

  28. Sampson, T. R., Saroj, S. D., Llewellyn, A. C., Tzeng, Y. L. & Weiss, D. S. A. CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature 497, 254–257 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Deltcheva, E. et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471, 602–607 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Chylinski, K., Le Rhun, A. & Charpentier, E. The tracrRNA and Cas9 families of type II CRISPR–Cas immunity systems. RNA Biol. 10, 726–737 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Gunderson, F. F. & Cianciotto, N. P. The CRISPR-associated gene cas2 of Legionella pneumophila is required for intracellular infection of amoebae. mBio 4, e00074–13 (2013).

    PubMed  PubMed Central  Google Scholar 

  32. Beloglazova, N. et al. A novel family of sequence-specific endoribonucleases associated with the clustered regularly interspaced short palindromic repeats. J. Biol. Chem. 283, 20361–20371 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Toledo-Arana, A. et al. The Listeria transcriptional landscape from saprophytism to virulence. Nature 459, 950–956 (2009).

    CAS  PubMed  Google Scholar 

  34. Mandin, P., Repoila, F., Vergassola, M., Geissmann, T. & Cossart, P. Identification of new noncoding RNAs in Listeria monocytogenes and prediction of mRNA targets. Nucleic Acids Res. 35, 962–974 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Sesto, N. et al. A PNPase dependent CRISPR system in Listeria. PLoS Genet. 10, e1004065 (2014).

    PubMed  PubMed Central  Google Scholar 

  36. Vercoe, R. B. et al. Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands. PLoS Genet. 9, e1003454 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Edgar, R. & Qimron, U. The Escherichia coli CRISPR system protects from λ lysogenization, lysogens, and prophage induction. J. Bacteriol. 192, 6291–6294 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Semenova, E. et al. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proc. Natl Acad. Sci. USA 108, 10098–10103 (2011).

    CAS  PubMed  Google Scholar 

  39. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Cady, K. C. & O'Toole, G. A. Non-identity-mediated CRISPR–bacteriophage interaction mediated via the Csy and Cas3 proteins. J. Bacteriol. 193, 3433–3445 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Zegans, M. E. et al. Interaction between bacteriophage DMS3 and host CRISPR region inhibits group behaviors of Pseudomonas aeruginosa. J. Bacteriol. 191, 210–219 (2009).

    CAS  PubMed  Google Scholar 

  42. Cady, K. C., Bondy-Denomy, J., Heussler, G. E., Davidson, A. R. & O'Toole, G. A. The CRISPR/Cas adaptive immune system of Pseudomonas aeruginosa mediates resistance to naturally occurring and engineered phages. J. Bacteriol. 194, 5728–5738 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Hale, C. R. et al. RNA-guided RNA cleavage by a CRISPR RNA–Cas protein complex. Cell 139, 945–956 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Staals, R. H. et al. Structure and activity of the RNA-targeting type III-B CRISPR–Cas complex of Thermus thermophilus. Mol. Cell 52, 135–145 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang, J. et al. Structure and mechanism of the CMR complex for CRISPR-mediated antiviral immunity. Mol. Cell 45, 303–313 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hale, C. R. et al. Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs. Mol. Cell 45, 292–302 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zebec, Z., Manica, A., Zhang, J., White, M.F. & Schleper, C. CRISPR-mediated targeted mRNA degradation in the archaeon Sulfolobus solfataricus. Nucleic Acids Res. http://dx.doi.org/10.1093/nar/gku161 (2014).

  48. Stern, A., Keren, L., Wurtzel, O., Amitai, G. & Sorek, R. Self-targeting by CRISPR: gene regulation or autoimmunity? Trends Genet. 26, 335–340 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Marraffini, L. A. & Sontheimer, E. J. Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature 463, 568–571 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sashital, D. G., Wiedenheft, B. & Doudna, J. A. Mechanism of foreign DNA selection in a bacterial adaptive immune system. Mol. Cell 46, 606–615 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Westra, E. R. et al. Type I-E CRISPR–Cas systems discriminate target from non-target DNA through base pairing-independent PAM recognition. PLoS Genet. 9, e1003742 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Brodt, A., Lurie-Weinberger, M. N. & Gophna, U. CRISPR loci reveal networks of gene exchange in archaea. Biol. Direct 6, 65 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Pleckaityte, M., Zilnyte, M. & Zvirbliene, A. Insights into the CRISPR/Cas system of Gardnerella vaginalis. BMC Microbiol. 12, 301 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Yosef, I., Goren, M. G. & Qimron, U. Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli. Nucleic Acids Res. 40, 5569–5576 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. DeBoy, R. T., Mongodin, E. F., Emerson, J. B. & Nelson, K. E. Chromosome evolution in the Thermotogales: large-scale inversions and strain diversification of CRISPR sequences. J. Bacteriol. 188, 2364–2374 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Riehle, M. M., Bennett, A. F. & Long, A. D. Genetic architecture of thermal adaptation in Escherichia coli. Proc. Natl Acad. Sci. USA 98, 525–530 (2001).

    CAS  PubMed  Google Scholar 

  57. Aklujkar, M. & Lovley, D. R. Interference with histidyl-tRNA synthetase by a CRISPR spacer sequence as a factor in the evolution of Pelobacter carbinolicus. BMC Evol. Biol. 10, 230 (2010).

    PubMed  PubMed Central  Google Scholar 

  58. Jorth, P. & Whiteley, M. An evolutionary link between natural transformation and CRISPR adaptive immunity. mBio 3, e00309–12 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Babu, M. et al. A dual function of the CRISPR–Cas system in bacterial antivirus immunity and DNA repair. Mol. Microbiol. 79, 484–502 (2011).

    CAS  PubMed  Google Scholar 

  60. Wiedenheft, B. et al. Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense. Structure 17, 904–912 (2009).

    CAS  PubMed  Google Scholar 

  61. Mojica, F. J., Ferrer, C., Juez, G. & Rodriguez-Valera, F. Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning. Mol. Microbiol. 17, 85–93 (1995).

    CAS  PubMed  Google Scholar 

  62. Makarova, K. S., Aravind, L., Grishin, N. V., Rogozin, I. B. & Koonin, E. V. A. DNA repair system specific for thermophilic archaea and bacteria predicted by genomic context analysis. Nucleic Acids Res. 30, 482–496 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Williams, E., Lowe, T. M., Savas, J. & DiRuggiero, J. Microarray analysis of the hyperthermophilic archaeon Pyrococcus furiosus exposed to gamma irradiation. Extremophiles 11, 19–29 (2007).

    CAS  PubMed  Google Scholar 

  64. Godde, J. S. & Bickerton, A. The repetitive DNA elements called CRISPRs and their associated genes: evidence of horizontal transfer among prokaryotes. J. Mol. Evol. 62, 718–729 (2006).

    CAS  PubMed  Google Scholar 

  65. Minot, S. et al. Rapid evolution of the human gut virome. Proc. Natl Acad. Sci. USA 110, 12450–12455 (2013).

    CAS  PubMed  Google Scholar 

  66. Minot, S. et al. The human gut virome: inter-individual variation and dynamic response to diet. Genome Res. 21, 1616–1625 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Sebaihia, M. et al. The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nature Genet. 38, 779–786 (2006).

    PubMed  Google Scholar 

  68. Seed, K. D., Lazinski, D. W., Calderwood, S. B. & Camilli, A. A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity. Nature 494, 489–491 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Novick, R. P., Christie, G. E. & Penades, J. R. The phage-related chromosomal islands of Gram-positive bacteria. Nature Rev. Microbiol. 8, 541–551 (2010).

    CAS  Google Scholar 

  70. Makarova, K. S., Anantharaman, V., Aravind, L. & Koonin, E. V. Live virus-free or die: coupling of antivirus immunity and programmed suicide or dormancy in prokaryotes. Biol. Direct 7, 40 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Cook, G. M. et al. Ribonucleases in bacterial toxin–antitoxin systems. Biochim. Biophys. Acta 1829, 523–531 (2013).

    CAS  PubMed  Google Scholar 

  72. Fineran, P. C. et al. The phage abortive infection system, ToxIN, functions as a protein–RNA toxin–antitoxin pair. Proc. Natl Acad. Sci. USA 106, 894–899 (2009).

    CAS  PubMed  Google Scholar 

  73. Blower, T. R. et al. A processed noncoding RNA regulates an altruistic bacterial antiviral system. Nature Struct. Mol. Biol. 18, 185–190 (2011).

    CAS  Google Scholar 

  74. Kwon, A. R. et al. Structural and biochemical characterization of HP0315 from Helicobacter pylori as a VapD protein with an endoribonuclease activity. Nucleic Acids Res. 40, 4216–4228 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Daines, D. A., Jarisch, J. & Smith, A. L. Identification and characterization of a nontypeable Haemophilus influenzae putative toxin–antitoxin locus. BMC Microbiol. 4, 30 (2004).

    PubMed  PubMed Central  Google Scholar 

  76. Richter, C., Gristwood, T., Clulow, J. S. & Fineran, P. C. In vivo protein interactions and complex formation in the Pectobacterium atrosepticum subtype I-F CRISPR/Cas system. PLoS ONE 7, e49549 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Nam, K. H. et al. Double-stranded endonuclease activity in Bacillus halodurans clustered regularly interspaced short palindromic repeats (CRISPR)-associated Cas2 protein. J. Biol. Chem. 287, 35943–35952 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Samai, P., Smith, P. & Shuman, S. Structure of a CRISPR-associated protein Cas2 from Desulfovibrio vulgaris. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 66, 1552–1556 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Gardner, A. Adaptation as organism design. Biol. Lett. 5, 861–864 (2009).

    PubMed  PubMed Central  Google Scholar 

  80. Fiegna, F. & Velicer, G. J. Competitive fates of bacterial social parasites: persistence and self-induced extinction of Myxococcus xanthus cheaters. Proc. Biol. Sci. 270, 1527–1534 (2003).

    PubMed  PubMed Central  Google Scholar 

  81. Sampson, T. R. & Weiss, D. S. Degeneration of a CRISPR/Cas system and its regulatory target during the evolution of a pathogen. RNA Biol. 10, 1618–1622 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Schunder, E., Rydzewski, K., Grunow, R. & Heuner, K. First indication for a functional CRISPR/Cas system in Francisella tularensis. Int. J. Med. Microbiol. 303, 51–60 (2013).

    CAS  PubMed  Google Scholar 

  83. Haft, D. H., Selengut, J., Mongodin, E. F. & Nelson, K. E. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput. Biol. 1, e60 (2005).

    PubMed  PubMed Central  Google Scholar 

  84. Karatan, E. & Watnick, P. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol. Mol. Biol. Rev. 73, 310–347 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Mikkelsen, H., Sivaneson, M. & Filloux, A. Key two-component regulatory systems that control biofilm formation in Pseudomonas aeruginosa. Environ. Microbiol. 13, 1666–1681 (2011).

    CAS  PubMed  Google Scholar 

  86. Bondy-Denomy, J., Pawluk, A., Maxwell, K. L. & Davidson, A. R. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature 493, 429–432 (2013).

    CAS  PubMed  Google Scholar 

  87. Severinov, K. CRISPR–Cas: outstanding questions remain: comment on “Diversity, evolution & therapeutic applications of small RNAs in prokaryotic and eukaryotic immune systems” by Edwin L. Cooper and Nicola Overstreet. Phys. Life Rev. 11, 146–148 (2013).

    PubMed  Google Scholar 

  88. Vos, M. Why do bacteria engage in homologous recombination? Trends Microbiol. 17, 226–232 (2009).

    CAS  PubMed  Google Scholar 

  89. Bikard, D., Hatoum-Aslan, A., Mucida, D. & Marraffini, L. A. CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection. Cell Host Microbe 12, 177–186 (2012).

    CAS  PubMed  Google Scholar 

  90. Palmer, K. L. & Gilmore, M. S. Multidrug-resistant enterococci lack CRISPR–Cas. mBio 1, e00227–10 (2010).

    PubMed  PubMed Central  Google Scholar 

  91. Carte, J., Wang, R., Li, H., Terns, R. M. & Terns, M. P. Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev. 22, 3489–3496 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Hale, C., Kleppe, K., Terns, R. M. & Terns, M. P. Prokaryotic silencing (psi)RNAs in Pyrococcus furiosus. RNA 14, 2572–2579 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Marraffini, L. A. & Sontheimer, E. J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322, 1843–1845 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Garneau, J. E. et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468, 67–71 (2010).

    CAS  PubMed  Google Scholar 

  95. Westra, E. R. et al. CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3. Mol. Cell 46, 595–605 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Reeks, J., Naismith, J. H. & White, M. F. CRISPR interference: a structural perspective. Biochem. J. 453, 155–166 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Jore, M. M. et al. Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nature Struct. Mol. Biol. 18, 529–536 (2011).

    CAS  Google Scholar 

  98. Rouillon, C. et al. Structure of the CRISPR interference complex CSM reveals key similarities with Cascade. Mol. Cell 52, 124–134 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Hatoum-Aslan, A., Maniv, I., Samai, P. & Marraffini, L. A. Genetic characterization of anti-plasmid immunity by a type III-A CRISPR–Cas system. J. Bacteriol. 196, 310–317 (2013).

    PubMed  Google Scholar 

  100. Sorek, R., Lawrence, C. M. & Wiedenheft, B. CRISPR-mediated adaptive immune systems in bacteria and archaea. Annu. Rev. Biochem. 82, 237–266 (2013).

    CAS  PubMed  Google Scholar 

  101. Zusman, D. R., Scott, A. E., Yang, Z. & Kirby, J. R. Chemosensory pathways, motility and development in Myxococcus xanthus. Nature Rev. Microbiol. 5, 862–872 (2007).

    CAS  Google Scholar 

Download references

Acknowledgements

E.R.W. received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under Research Executive Agency (REA) grant agreement number 327606. A.B. is supported by a UK Royal Society Wolfson Research Merit Award. P.C.F. is supported by a Rutherford Discovery Fellowship from the Royal Society of New Zealand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edze R. Westra.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (figure)

The partial complementarity between the scaRNA, tracrRNA and blp transcript is shown in detail, which is proposed to facilitate complex formation and subsequent degradation of the blp transcript. (PDF 206 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Westra, E., Buckling, A. & Fineran, P. CRISPR–Cas systems: beyond adaptive immunity. Nat Rev Microbiol 12, 317–326 (2014). https://doi.org/10.1038/nrmicro3241

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3241

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology