Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulation of endospore formation in Bacillus subtilis

Key Points

  • Endospores are formed by Bacillus, Clostridium and close relatives, generally in response to nutritional stress. The process of endospore formation is important both ecologically and practically, and it represents a simple, experimentally tractable example of cellular development and differentiation.

  • Several hundred genes are specifically devoted to sporulation and the general regulatory pathways — involving five sigma factors and numerous other transcriptional regulators — are now well understood.

  • Sporulation begins with a modified asymmetric cell division. The cell-division machinery is moved from its usual mid-cell position, to sites near each of the cell poles. One subpolar site is chosen for division. This generates the small prespore and the larger mother-cell compartments. Chromosome segregation into the prespore occurs, unusually, after septation, requiring a DNA transport protein, SpoIIIE.

  • Compartment-specific transcription is initiated by cell-specific activation of two different sigma factors: σF in the prespore and σE in the mother cell. Complex regulatory mechanisms regulate the activity of these sigma factors so that they are activated at the right time and in the right compartment. σF becomes active first, by regulatory mechanisms that are responsive to formation of the sporulation septum.

  • Soon after septation, the cell-wall material in the septum is hydrolysed and the membranes of the septum migrate around the prespore, resulting in complete enclosure of the prespore by the mother-cell cytoplasm. This engulfment process generates the unique topological state by which endospores differ from all other spores.

  • Late-gene expression in the two compartments is driven by σG (prespore) and σK (mother cell). These factors turn on new sets of genes that encode the proteins that are needed for formation of the protective cortex and spore-coat structures, and they bring about the massive physiological and biochemical changes that occur in the spore and that produce its unique resistance and dormancy properties.

Abstract

Spore formation in bacteria poses a number of biological problems of fundamental significance. Asymmetric cell division at the onset of sporulation is a powerful model for studying basic cell-cycle problems, including chromosome segregation and septum formation. Sporulation is one of the best understood examples of cellular development and differentiation. Fascinating problems posed by sporulation include the temporal and spatial control of gene expression, intercellular communication and various aspects of cell morphogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The sporulation cycle of Bacillus subtilis.
Figure 2: Cell division during growth (a) and sporulation (b) of B. subtilis.
Figure 3: Prespore chromosome segregation.
Figure 4: Cell-specific activation of σF.
Figure 5: Four steps in prespore engulfment, and the proteins involved in each step.
Figure 6: Regulation of the late stages of sporulation.

Similar content being viewed by others

References

  1. Nicholson, W. L., Munakata, N., Horneck, G., Melosh, H. J. & Setlow, P. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Mol. Biol. Rev. 64, 548–572 (2000). Enjoyable recent review of the resistance properties of endospores against the backdrop of the possible survival of spores in space.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Cano, R. J. & Borucki, M. K. Revival and identification of bacterial spores in 25- to 40-million-year-old Dominican amber. Science 268, 1060–1064 (1995).

    CAS  PubMed  Google Scholar 

  3. Vreeland, R. H., Rosenzweig, W. D. & Powers, D. W. Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 407, 897–900 (2000).

    CAS  PubMed  Google Scholar 

  4. Nicholson, W. L. Roles of Bacillus endospores in the environment. Cell. Mol. Life Sci. 59, 410–416 (2002).

    CAS  PubMed  Google Scholar 

  5. Spencer, R. C. Bacillus anthracis. J. Clin. Pathol. 56, 182–187 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Errington, J. Dynamic proteins and a cytoskeleton in bacteria. Nature Cell Biol. 5, 175–178 (2003).

    CAS  PubMed  Google Scholar 

  7. Shapiro, L. & Losick, R. Protein localization and cell fate in bacteria. Science 276, 712–718 (1997).

    CAS  PubMed  Google Scholar 

  8. Piggot, P. J. & Losick, R. in Bacillus subtilis and its Closest Relatives: From Genes to Cells (eds Sonenshein, L., Losick, R. & Hoch, J. A.) 483–517 (American Society for Microbiology, Washington DC, 2002). The most comprehensive recent review of the molecular cell biology of sporulation in B. subtilis.

    Google Scholar 

  9. Sonenshein, A. L. Control of sporulation initiation in Bacillus subtilis. Curr. Opin. Microbiol. 3, 561–566 (2000).

    CAS  PubMed  Google Scholar 

  10. Stephenson, K. & Hoch, J. A. Evolution of signalling in the sporulation phosphorelay. Mol. Microbiol. 46, 297–304 (2002).

    CAS  PubMed  Google Scholar 

  11. Perego, M. & Hoch, J. A. in Bacillus subtilis and its Closest Relatives: From Genes to Cells (eds Sonenshein, A. L., Hoch, J. A. & Losick, R.) 473–481 (American Society for Microbiology, Washington DC, 2002).

    Google Scholar 

  12. Fawcett, P., Eichenberger, P., Losick, R. & Youngman, P. The transcriptional profile of early to middle sporulation in Bacillus subtilis. Proc. Natl Acad. Sci. USA 97, 8063–8068 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Jiang, M., Shao, W., Perego, M. & Hoch, J. A. Multiple histidine kinases regulate entry into stationary phase and sporulation in Bacillus subtilis. Mol. Microbiol. 38, 535–542 (2000).

    CAS  PubMed  Google Scholar 

  14. Burbulys, D., Trach, K. A. & Hoch, J. A. Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell 64, 545–552 (1991). Biochemical tour-de-force in which the phosphorelay that is responsible for the control of Spo0A activity was uncovered.

    CAS  PubMed  Google Scholar 

  15. Fujita, M. & Losick, R. The master regulator for entry into sporulation in Bacillus subtilis becomes a cell-specific transcription factor after asymmetric division. Genes Dev. 17, 1166–1174 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Britton, R. A. et al. Genome-wide analysis of the stationary-phase sigma factor (σH) regulon of Bacillus subtilis. J. Bacteriol. 184, 4881–4890 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Molle, V. et al. Additional targets of the Bacillus subtilis global regulator CodY identified by chromatin immunoprecipitation and genome-wide transcript analysis. J. Bacteriol. 185, 1911–1922 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Strauch, M. A. & Hoch, J. A. Transition-state regulators: sentinels of Bacillus subtilis post-exponential gene expression. Mol. Microbiol. 7, 337–342 (1993).

    CAS  PubMed  Google Scholar 

  19. Ireton, K., Gunther, N. W. I. & Grossman, A. D. spo0J is required for normal chromosome segregation as well as the initiation of sporulation in Bacillus subtilis. J. Bacteriol. 176, 5320–5329 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Gonzalez-Pastor, J. E., Hobbs, E. C. & Losick, R. Cannibalism by sporulating bacteria. Science 301, 510–513 (2003).

    CAS  PubMed  Google Scholar 

  21. Harry, E. J. Bacterial cell division: regulating Z-ring formation. Mol. Microbiol. 40, 795–803 (2001).

    CAS  PubMed  Google Scholar 

  22. Errington, J., Daniel, R. A. & Scheffers, D. J. Cytokinesis in bacteria. Microbiol. Mol. Biol. Rev. 67, 52–65 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ben-Yehuda, S. & Losick, R. Asymmetric cell division in B. subtilis involves a spiral-like intermediate of the cytokinetic protein FtsZ. Cell 109, 257–266 (2002). Provides evidence that the shift in position of the FtsZ ring requires increased concentrations of FtsZ protein and synthesis of SpoIIE protein. Shows that movement of the FtsZ ring away from the mid-cell towards the cell poles occurs by an unexpected mode of helical propagation.

    CAS  PubMed  Google Scholar 

  24. Feucht, A., Magnin, T., Yudkin, M. D. & Errington, J. Bifunctional protein required for asymmetric cell division and cell-specific transcription in Bacillus subtilis. Genes Dev. 10, 794–803 (1996).

    CAS  PubMed  Google Scholar 

  25. Barák, I. & Youngman, P. SpoIIE mutants of Bacillus subtilis comprise two distinct phenotypic classes consistent with a dual functional role for the SpoIIE protein. J. Bacteriol. 178, 4984–4989 (1996).

    PubMed  PubMed Central  Google Scholar 

  26. Lewis, P. J., Partridge, S. R. & Errington, J. σ factors, asymmetry, and the determination of cell fate in Bacillus subtilis. Proc. Natl Acad. Sci. USA 91, 3849–3853 (1994). Presents evidence for a model describing the general principles underlying the establishment of cell fate during sporulation.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Pogliano, J. et al. A vital stain for studying membrane dynamics in bacteria: a novel mechanism controlling septation during Bacillus subtilis sporulation. Mol. Microbiol. 31, 1149–1159 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wu, L. J. & Errington, J. Bacillus subtilis SpoIIIE protein required for DNA segregation during asymmetric cell division. Science 264, 572–575 (1994).

    CAS  PubMed  Google Scholar 

  29. Wu, L. J., Lewis, P. J., Allmansberger, R., Hauser, P. M. & Errington, J. A conjugation-like mechanism for prespore chromosome partitioning during sporulation in Bacillus subtilis. Genes Dev. 9, 1316–1326 (1995).

    CAS  PubMed  Google Scholar 

  30. Pogliano, J., Sharp, M. D. & Pogliano, K. Partitioning of chromosomal DNA during establishment of cellular asymmetry in Bacillus subtilis. J. Bacteriol. 184, 1743–1749 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Errington, J., Bath, J. & Wu, L. J. Bacterial DNA transport. Nature Rev. Mol. Cell Biol. 2, 538–545 (2001).

    CAS  Google Scholar 

  32. Sharp, M. D. & Pogliano, K. Role of cell-specific SpoIIIE assembly in polarity of DNA transfer. Science 295, 137–139 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Chary, V. K. & Piggot, P. J. Postdivisional synthesis of the Sporosarcina ureae DNA translocase SpoIIIE either in the mother cell or in the prespore enables Bacillus subtilis to translocate DNA from the mother cell to the prespore. J. Bacteriol. 185, 879–886 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Sharp, M. D. & Pogliano, K. MinCD-dependent regulation of the polarity of SpoIIIE assembly and DNA transfer. EMBO J. 21, 6267–6274 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Thomaides, H. B., Freeman, M., El Karoui, M. & Errington, J. Division-site-selection protein DivIVA of Bacillus subtilis has a second distinct function in chromosome segregation during sporulation. Genes Dev. 15, 1662–1673 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Draper, G. C. & Gober, J. W. Bacterial chromosome segregation. Annu. Rev. Microbiol. 56, 567–597 (2002).

    CAS  PubMed  Google Scholar 

  37. Sharpe, M. E. & Errington, J. The Bacillus subtilis soj-spo0J locus is required for a centromere-like function involved in prespore chromosome partitioning. Mol. Microbiol. 21, 501–509 (1996).

    CAS  PubMed  Google Scholar 

  38. Glaser, P. et al. Dynamic, mitotic-like behaviour of a bacterial protein required for accurate chromosome partitioning. Genes Dev. 11, 1160–1168 (1997).

    CAS  PubMed  Google Scholar 

  39. Lin, D. C.-H. & Grossman, A. D. Identification and characterization of a bacterial chromosome partitioning site. Cell 92, 675–685 (1998).

    CAS  PubMed  Google Scholar 

  40. Lin, D. C.-H., Levin, P. A. & Grossman, A. D. Bipolar localization of a chromosome partition protein in Bacillus subtilis. Proc. Natl Acad. Sci. USA 94, 4721–4726 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Marston, A. L. & Errington, J. Dynamic movement of the ParA-like Soj protein of B. subtilis and its dual role in nucleoid organization and developmental regulation. Mol. Cell 4, 673–682 (1999).

    CAS  PubMed  Google Scholar 

  42. Quisel, J. D., Lin, D. C.-H. & Grossman, A. D. Control of development by altered localization of a transcription factor in B. subtilis. Mol. Cell 4, 665–672 (1999).

    CAS  PubMed  Google Scholar 

  43. Quisel, J. D. & Grossman, A. D. Control of sporulation gene expression in Bacillus subtilis by the chromosome partitioning proteins Soj (ParA) and Spo0J (ParB). J. Bacteriol. 182, 3446–3451 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Cervin, M. A. et al. A negative regulator linking chromosome segregation to developmental transcription in Bacillus subtilis. Mol. Microbiol. 29, 85–95 (1998).

    CAS  PubMed  Google Scholar 

  45. Wu, L. J. & Errington, J. A large dispersed chromosomal region required for chromosome segregation in sporulating cells of Bacillus subtilis. EMBO J. 21, 4001–4011 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ben-Yehuda, S., Rudner, D. Z. & Losick, R. RacA, a bacterial protein that anchors chromosomes to the cell poles. Science 299, 532–536 (2003).

    CAS  PubMed  Google Scholar 

  47. Wu, L. J. & Errington, J. RacA and the Soj–Spo0J system combine to effect polar chromosome segregation in sporulating Bacillus subtilis. Mol. Microbiol. 49, 1463–1475 (2003). References 46 and 47 describe the present understanding of the mechanism of prespore chromosome segregation.

    CAS  PubMed  Google Scholar 

  48. Dworkin, J. Transient genetic asymmetry and cell fate in a bacterium. Trends Genet. 19, 107–112 (2003).

    CAS  PubMed  Google Scholar 

  49. Campbell, E. A. et al. Crystal structure of the Bacillus stearothermophilus anti-sigma factor SpoIIAB with the sporulation σ factor σF. Cell 108, 795–807 (2002).

    CAS  PubMed  Google Scholar 

  50. Wu, L. J., Feucht, A. & Errington, J. Prespore-specific gene expression in Bacillus subtilis is driven by sequestration of SpoIIE phosphatase to the prespore side of the asymmetric septum. Genes Dev. 12, 1371–1380 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. King, N., Dreesen, O., Stragier, P., Pogliano, K. & Losick, R. Septation, dephosphorylation, and the activation of σF during sporulation in Bacillus subtilis. Genes Dev. 13, 1156–1167 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Feucht, A., Abbotts, L. & Errington, J. The cell differentiation protein SpoIIE contains a regulatory site that controls its phosphatase activity in response to asymmetric septation. Mol. Microbiol. 45, 1119–1130 (2002).

    CAS  PubMed  Google Scholar 

  53. Feucht, A., Daniel, R. A. & Errington, J. Characterization of a morphological checkpoint coupling cell-specific transcription to septation in Bacillus subtilis. Mol. Microbiol. 33, 1015–1026 (1999).

    CAS  PubMed  Google Scholar 

  54. Hilbert, D. W. & Piggot, P. J. Novel spoIIE mutation that causes uncompartmentalized σF activation in Bacillus subtilis. J. Bacteriol. 185, 1590–1598 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Pan, Q., Garsin, D. A. & Losick, R. Self-reinforcing activation of a cell-specific transcription factor by proteolysis of an anti-sigma factor in B. subtilis. Mol. Cell 8, 873–883 (2001).

    CAS  PubMed  Google Scholar 

  56. Lewis, P. J., Magnin, T. & Errington, J. Compartmentalized distribution of the proteins controlling the prespore-specific transcription factor σF of Bacillus subtilis. Genes Cells 1, 881–894 (1996).

    CAS  PubMed  Google Scholar 

  57. Dworkin, J. & Losick, R. Differential gene expression governed by chromosomal spatial asymmetry. Cell 107, 339–346 (2001). Recent paper that shows the importance of SpoIIE and chromosomal asymmetry in driving compartmentalized activation of σF in the prespore.

    CAS  PubMed  Google Scholar 

  58. LaBell, T. L., Trempy, J. E. & Haldenwang, W. G. Sporulation-specific σ factor σ29 of Bacillus subtilis is synthesized from a precursor protein, P31. Proc. Natl Acad. Sci. USA 84, 1784–1788 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Londoño-Vallejo, J.-A. & Stragier, P. Cell-cell signalling pathway activating a developmental transcription factor in Bacillus subtilis. Genes Dev. 9, 503–508 (1995).

    PubMed  Google Scholar 

  60. Karow, M. L., Glaser, P. & Piggot, P. J. Identification of a gene, spoIIR, that links the activation of σE to the transcriptional activity of σF during sporulation in Bacillus subtilis. Proc. Natl Acad. Sci. USA 92, 2012–2016 (1995). References 59 and 60 describe the discovery of SpoIIR, a key protein comprising the first link between the prespore and mother-cell programmes of gene expression.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Fujita, M. & Losick, R. An investigation into the compartmentalization of the sporulation transcription factor σE in Bacillus subtilis. Mol. Microbiol. 43, 27–38 (2002).

    CAS  PubMed  Google Scholar 

  62. Ju, J. & Haldenwang, W. G. The 'pro' sequence of the sporulation-specific σ transcription factor σE directs it to the mother cell side of the sporulation septum. J. Bacteriol. 181, 6171–6175 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Eichenberger, P., Fawcett, P. & Losick, R. A three-protein inhibitor of polar septation during sporulation in Bacillus subtilis. Mol. Microbiol. 42, 1147–1162 (2001).

    CAS  PubMed  Google Scholar 

  64. Abanes-De Mello, A., Sun, Y.-L., Aung, S. & Pogliano, K. A cytoskeleton-like role for the bacterial cell wall during engulfment of the Bacillus subtilis forespore. Genes Dev. 16, 3253–3264 (2002). Recent paper describing the functions of some of the proteins involved in prespore engulfment and insights into how some aspects of the process might work.

    PubMed  PubMed Central  Google Scholar 

  65. Perez, A. R., Abanes-De Mello, A. & Pogliano, K. SpoIIB localizes to active sites of septal biogenesis and spatially regulates septal thinning during engulfment in Bacillus subtilis. J. Bacteriol. 182, 1096–1108 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Margolis, P., Driks, A. & Losick, R. Sporulation gene spoIIB from Bacillus subtilis. J. Bacteriol. 175, 528–540 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Matsuno, K. & Sonenshein, A. L. Role of SpoVG in asymmetric septation in Bacillus subtilis. J. Bacteriol. 181, 3392–3401 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Fransden, N. & Stragier, P. Identification and characterization of the Bacillus subtilis spoIIP locus. J. Bacteriol. 177, 716–722 (1995).

    Google Scholar 

  69. Smith, K., Bayer, M. E. & Youngman, P. Physical and functional characterization of the Bacillus subtilis spoIIM gene. J. Bacteriol. 175, 3607–3617 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Lopez-Diaz, I., Clarke, S. & Mandelstam, J. spoIID operon of Bacillus subtilis: cloning and sequence. J. Gen. Microbiol. 132, 341–354 (1986).

    CAS  PubMed  Google Scholar 

  71. Londoño-Vallejo, J.-A., Frehel, C. & Stragier, P. spoIIQ, a forespore-expressed gene required for engulfment in Bacillus subtilis. Mol. Microbiol. 24, 29–39 (1997).

    PubMed  Google Scholar 

  72. Sun, Y. L., Sharp, M. D. & Pogliano, K. A dispensable role for forespore-specific gene expression in engulfment of the forespore during sporulation of Bacillus subtilis. J. Bacteriol. 182, 2919–2927 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Sharp, M. D. & Pogliano, K. An in vivo membrane fusion assay implicates SpoIIIE in the final stages of engulfment during Bacillus subtilis sporulation. Proc. Natl Acad. Sci. USA 96, 14553–14558 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Sharp, M. D. & Pogliano, K. The membrane domain of SpoIIIE is required for membrane fusion during Bacillus subtilis sporulation. J. Bacteriol. 185, 2005–2008 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Sun, D., Stragier, P. & Setlow, P. Identification of a new σ-factor involved in compartmentalized gene expression during sporulation of Bacillus subtilis. Genes Dev. 3, 141–149 (1989).

    CAS  PubMed  Google Scholar 

  76. Partridge, S. R. & Errington, J. The importance of morphological events and intercellular interactions in the regulation of prespore-specific gene expression during sporulation in Bacillus subtilis. Mol. Microbiol. 8, 945–955 (1993).

    CAS  PubMed  Google Scholar 

  77. Kirchman, P. A., De Grazia, H., Kellner, E. M. & Moran, C. P. Jr. Forespore-specific disappearance of the sigma-factor antagonist SpoIIAB: implications for its role in determination of cell fate in Bacillus subtilis. Mol. Microbiol. 8, 663–671 (1993).

    CAS  PubMed  Google Scholar 

  78. Stragier, P. & Losick, R. Molecular genetics of sporulation in Bacillus subtilis. Annu. Rev. Genet. 30, 297–341 (1996).

    CAS  PubMed  Google Scholar 

  79. Murakami, T., Haga, K., Takeuchi, M. & Sato, T. Analysis of the Bacillus subtilis spoIIIJ gene and its paralogue gene, yqjG. J. Bacteriol. 184, 1998–2004 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Serrano, M., Corte, L., Opdyke, J., Moran, C. P. Jr & Henriques, A. O. Expression of spoIIIJ in the prespore is sufficient for activation of σG and for sporulation in Bacillus subtilis. J. Bacteriol. 185, 3905–3917 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Kellner, E. M., Decatur, A. & Moran, C. P. Jr. Two-stage regulation of an anti-sigma factor determines developmental fate during bacterial endospore formation. Mol. Microbiol. 21, 913–924 (1996).

    CAS  PubMed  Google Scholar 

  82. Foulger, D. & Errington, J. Effects of new mutations in the spoIIAB gene of Bacillus subtilis on the regulation of σF and σG activities. J. Gen. Microbiol. 139, 3197–3203 (1993).

    CAS  PubMed  Google Scholar 

  83. Kunkel, B., Losick, R. & Stragier, P. The Bacillus subtilis gene for the developmental transcription factor σK is generated by excision of a dispensable DNA element containing a sporulation recombinase gene. Genes Dev. 4, 525–535 (1990).

    CAS  PubMed  Google Scholar 

  84. Kunkel, B., Sandman, K., Panzer, S., Youngman, P. & Losick, R. The promoter for a sporulation gene in the spoIVC locus of Bacillus subtilis and its use in studies of temporal and spatial control of gene expression. J. Bacteriol. 170, 3513–3522 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Kroos, L., Kunkel, B. & Losick, R. Switch protein alters specificity of RNA polymerase containing a compartment-specific sigma factor. Science 243, 526–529 (1989).

    CAS  PubMed  Google Scholar 

  86. Yu, Y.-T. N. & Kroos, L. Evidence that SpoIVFB is a novel type of membrane metalloprotease governing intercompartmental communication during Bacillus subtilis sporulation. J. Bacteriol. 182, 3305–3309 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Rudner, D. Z., Fawcett, P. & Losick, R. A family of membrane-embedded metalloproteases involved in regulated proteolysis of membrane-associated transcription factors. Proc. Natl Acad. Sci. USA 96, 14765–14770 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Cutting, S. et al. A forespore checkpoint for mother cell gene expression during development in B. subtilis. Cell 62, 239–250 (1990). Classic paper that describes the discovery of the intercompartmental signal coupling late mother-cell-specific transcription to events in the prespore.

    CAS  PubMed  Google Scholar 

  89. Rudner, D. Z., Pan, Q. & Losick, R. M. Evidence that subcellular localization of a bacterial membrane protein is achieved by diffusion and capture. Proc. Natl Acad. Sci. USA 99, 8701–8706 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Rudner, D. Z. & Losick, R. A sporulation membrane protein tethers the pro-σK processing enzyme to its inhibitor and dictates its subcellular localization. Genes Dev. 16, 1007–1018 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Wakeley, P. R., Dorazi, R., Hoa, N. T., Bowyer, J. R. & Cutting, S. M. Proteolysis of SpolVB is a critical determinant in signalling of Pro-σK processing in Bacillus subtilis. Mol. Microbiol. 36, 1336–1348 (2000).

    CAS  PubMed  Google Scholar 

  92. Hoa, N. T., Brannigan, J. A. & Cutting, S. M. The Bacillus subtilis signaling protein SpoIVB defines a new family of serine peptidases. J. Bacteriol. 184, 191–199 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Wu, L. J. & Errington, J. Identification and characterization of a new prespore-specific regulatory gene, rsfA, of Bacillus subtilis. J. Bacteriol. 182, 418–424 (2000).

    CAS  PubMed  Google Scholar 

  94. Bagyan, I., Hobot, J. & Cutting, S. A compartmentalized regulator of developmental gene expression in Bacillus subtilis. J. Bacteriol. 178, 4500–4507 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Kroos, L., Zhang, B., Ichikawa, H. & Yu, Y.-T. N. Control of σ factor activity during Bacillus subtilis sporulation. Mol. Microbiol. 31, 1285–1294 (1999).

    CAS  PubMed  Google Scholar 

  96. Crater, D. L. & Moran, C. P. Jr. Two regions of GerE required for promoter activation in Bacillus subtilis. J. Bacteriol. 184, 241–249 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Ducros, V. M. et al. Crystal structure of GerE, the ultimate transcriptional regulator of spore formation in Bacillus subtilis. J. Mol. Biol. 306, 759–771 (2001).

    CAS  PubMed  Google Scholar 

  98. Lai, E. M. et al. Proteomic analysis of the spore coats of Bacillus subtilis and Bacillus anthracis. J. Bacteriol. 185, 1443–1454 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Todd, S. J., Moir, A. J., Johnson, M. J. & Moir, A. Genes of Bacillus cereus and Bacillus anthracis encoding proteins of the exosporium. J. Bacteriol. 185, 3373–3378 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Driks, A. in Bacillus subtilis and its Closest Relatives: From Genes to Cells (eds Sonenshein, L., Losick, R. & Hoch, J. A.) 527–535 (American Society for Microbiology, Washington DC, 2002).

    Google Scholar 

  101. Paidhungat, M. & Setlow, P. in Bacillus subtilis and its Closest Relatives: From Genes to Cells (eds Sonenshein, L., Losick, R. & Hoch, J. A.) 537–548 (American Society for Microbiology, Washington DC, 2002).

    Google Scholar 

  102. Stragier, P. in Bacillus subtilis and its Closest Relatives: From Genes to Cells (eds Sonenshein, L., Losick, R. & Hoch, J. A.) 519–525 (American Society for Microbiology, Washington DC, 2002). Excellent, thought-provoking review representing the first comparative genomic analysis of endospore-forming bacteria.

    Google Scholar 

  103. Angert, E. R. & Losick, R. M. Propagation by sporulation in the guinea pig symbiont Metabacterium polyspora. Proc. Natl Acad. Sci. USA 95, 10218–10223 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Chary, V. K., Hilbert, D. W., Higgins, M. L. & Piggot, P. J. The putative DNA translocase SpoIIIE is required for sporulation of the symmetrically dividing coccal species Sporosarcina ureae. Mol. Microbiol. 35, 612–622 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I apologise to colleagues whose work has not been cited in full owing to space constraints. I thank A. Feucht for helpful comments on the manuscript. Work in the Errington laboratory is supported by grants from the Biotechnology and Biological Sciences Research Council, the Medical Research Council and the Human Frontier Science Program.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Protein Data Bank

SpoIIAB

SwissProt

AbrB

CodY

FtsZ

SpoOA

Soj

SpoIIB

SpoIID

SpoIIM

SpoIIP

FURTHER INFORMATION

Jeff Errington's laboratory

Glossary

PRESPORE

Equivalent to the forespore but sometimes used specifically for the small compartment before completion of engulfment.

FORESPORE

A small compartment that is formed after asymmetric division. It is sometimes used specifically for the small compartment specifically after completion of engulment.

MOTHER CELL

The large compartment in which the spore develops.

SPORANGIUM

The literal meaning is equivalent to the mother cell, but it is frequently used to refer to the two-compartment sporulating organism (that is, the prespore/forespore plus the mother cell).

SIGMA FACTOR

A subunit of the RNA polymerase holoenzyme that is required for promoter sequence recognition and the ability to initiate transcription.

TUBULIN

A eukaryotic cytoskeletal protein that is used to form microtubules.

ANTI-SIGMA FACTOR

A negative transcriptional regulator that acts by binding to a sigma factor and preventing its activity. An anti-anti-sigma factor, in turn, counteracts the action of an anti-sigma factor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Errington, J. Regulation of endospore formation in Bacillus subtilis. Nat Rev Microbiol 1, 117–126 (2003). https://doi.org/10.1038/nrmicro750

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro750

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing