Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Current concepts in procedural consolidation

Abstract

Practice is vital to the acquisition of new skills, but the brain does not stop processing information when practice stops. After practice, changes take place that strengthen and modify the new skill. These changes, described under the umbrella term 'consolidation', take two distinct forms: the enhancement of skills and the stabilization of memories. Here we describe and evaluate the evidence for these types of consolidation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The main features of two types of procedural consolidation.
Figure 2: Off-line learning and the effects of practice.
Figure 3: Proactive and retroactive interference.
Figure 4: Blocked and interleaved practice.

Similar content being viewed by others

References

  1. Lechner, H., Squire, L. & Byrne, J. 100 years of consolidation — remembering Muller and Pilzecker. Learn. Mem. 6, 77–87 (1999).

    CAS  Google Scholar 

  2. McGaugh, J. L. Memory — a century of consolidation. Science 287, 248–251 (2000).

    Article  CAS  Google Scholar 

  3. Eysenk, H. & Frith, C. Reminiscence, Motivation, and Personality (Plenum, New York & London, 1977).

    Book  Google Scholar 

  4. Karni, A., Tanne, D., Rubenstein, B. S., Askenasy, J. J. & Sagi, D. Dependence on REM sleep of overnight improvement of a perceptual skill. Science 265, 679–682 (1994).

    Article  CAS  Google Scholar 

  5. Stickgold, R., Hobson, J. A., Fosse, R. & Fosse, M. Sleep, learning, and dreams: off-line memory reprocessing. Science 294, 1052–1057 (2001).

    Article  CAS  Google Scholar 

  6. Fischer, S., Hallschmid, M., Elsner, A. L. & Born, J. Sleep forms memory for finger skills. Proc. Natl Acad. Sci. USA 99, 11987–11991 (2002).

    Article  CAS  Google Scholar 

  7. Walker, M. P., Brakefield, T., Morgan, A., Hobson, J. A. & Stickgold, R. Practice with sleep makes perfect: sleep-dependent motor skill learning. Neuron 35, 205–211 (2002).

    Article  CAS  Google Scholar 

  8. Korman, M., Raz, N., Flash, T. & Karni, A. Multiple shifts in the representation of a motor sequence during the acquisition of skilled performance. Proc. Natl Acad. Sci. USA 100, 12492–12497 (2003).

    Article  CAS  Google Scholar 

  9. Walker, M. P., Brakefield, T., Hobson, J. A. & Stickgold, R. Dissociable stages of human memory consolidation and reconsolidation. Nature 425, 616–620 (2003).

    Article  CAS  Google Scholar 

  10. Giuditta, A. et al. The sequential hypothesis of the function of sleep. Behav. Brain Res. 69, 157–166 (1995).

    Article  CAS  Google Scholar 

  11. Gais, S., Plihal, W., Wagner, U. & Born, J. Early sleep triggers memory for early visual discrimination skills. Nature Neurosci. 3, 1335–1339 (2000).

    Article  CAS  Google Scholar 

  12. Stickgold, R., Whidbee, D., Schirmer, B., Patel, V. & Hobson, J. A. Visual discrimination task improvement: a multi-step process occurring during sleep. J. Cogn. Neurosci. 12, 246–254 (2000).

    Article  CAS  Google Scholar 

  13. Smith, C. & MacNeill, C. Impaired motor memory for a pursuit rotor task following Stage 2 sleep loss in college students. J. Sleep Res. 3, 206–213 (1994).

    Article  CAS  Google Scholar 

  14. Stickgold, R., James, L. & Hobson, J. A. Visual discrimination learning requires sleep after training. Nature Neurosci. 3, 1237–1238 (2000).

    Article  CAS  Google Scholar 

  15. Maquet, P., Schwartz, S., Passingham, R. & Frith, C. Sleep-related consolidation of a visuomotor skill: brain mechanisms as assessed by functional magnetic resonance imaging. J. Neurosci. 23, 1432–1440 (2003).

    Article  CAS  Google Scholar 

  16. Robertson, E. M., Pascual-Leone, A. & Press, D. Z. Awareness modifies the skill-learning benefits of sleep. Curr. Biol. 14, 208–212 (2004).

    Article  CAS  Google Scholar 

  17. Hobson, J. & Pace-Schott, E. The cognitive neuroscience of sleep: neuronal systems, consciousness and learning. Nature Rev. Neurosci. 3, 679–693 (2002).

    Article  CAS  Google Scholar 

  18. Wilson, M. A. & McNaughton, B. L. Reactivation of hippocampal ensemble memories during sleep. Science 265, 676–679 (1994).

    Article  CAS  Google Scholar 

  19. Lee, A. K. & Wilson, M. A. Memory of sequential experience in the hippocampus during slow wave sleep. Neuron 36, 1183–1194 (2002).

    Article  CAS  Google Scholar 

  20. Steriade, M. & Timofeev, I. Neuronal plasticity in thalamocortical networks during sleep and waking oscillations. Neuron 37, 563–576 (2003).

    Article  CAS  Google Scholar 

  21. Graves, L., Pack, A. & Abel, T. Sleep and memory: a molecular perspective. Trends Neurosci. 24, 237–243 (2001).

    Article  CAS  Google Scholar 

  22. Gu, Q. Neuromodulatory transmitter systems in the cortex and their role in cortical plasticity. Neuroscience 111, 815–835 (2002).

    Article  CAS  Google Scholar 

  23. Gu, Q. Contribution of acetylcholine to visual cortex plasticity. Neurobiol. Learn. Mem. 80, 291–301 (2003).

    Article  CAS  Google Scholar 

  24. Wagner, U., Gais, S., Haider, H. & Born, J. Sleep inspires insight. Nature 427, 352–355 (2004).

    Article  CAS  Google Scholar 

  25. Stickgold, R. & Walker, M. To sleep, perchance to gain creative insight? Trends Cogn. Sci. 8, 191–192 (2004).

    Article  Google Scholar 

  26. Pascual-Leone, A., Grafman, J. & Hallett, M. Modulation of cortical motor output maps during development of implicit and explicit knowledge. Science 263, 1287–1289 (1994).

    Article  CAS  Google Scholar 

  27. Karni, A. et al. Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature 377, 155–158 (1995).

    Article  CAS  Google Scholar 

  28. Pascual-Leone, A. et al. Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. J. Neurophysiol. 74, 1037–1045 (1995).

    Article  CAS  Google Scholar 

  29. Press, D. Z., Robertson, E. M., Casement, M. & Pascual-Leone, A. Increasing skill without awareness or practice. Soc. Neurosci. Abstr. 29, 443.5 (2003).

    Google Scholar 

  30. Eysenk, H. A three-factor theory of reminiscence. Br. J. Psychol. 56, 163–181 (1965).

    Article  Google Scholar 

  31. Rachman, S. & Grassi, J. Reminiscence, inhibition and consolidation. Br. J. Psychol. 56, 157–162 (1965).

    Article  CAS  Google Scholar 

  32. Brashers-Krug, T., Shadmehr, R. & Bizzi, E. Consolidation in human motor memory. Nature 382, 252 (1996).

    Article  CAS  Google Scholar 

  33. Miall, R., Jenkinson, N. & Kulkarni, K. Adaptation to rotated visual feedback: a re-examination of motor interference. Exp. Brain Res. 154, 201–210 (2004).

    Article  Google Scholar 

  34. Krakauer, J., Ghilardi, M. & Ghez, C. Independent learning or internal models of kinematic and dynamic control of reaching. Nature Neurosci. 2, 1026–1031 (1999).

    Article  CAS  Google Scholar 

  35. Donchin, O., Sawaki, L., Madupu, G., Cohen, L. G. & Shadmehr, R. Mechanisms influencing acquisition and recall of motor memories. J. Neurophysiol. 88, 2114–2123 (2002).

    Article  CAS  Google Scholar 

  36. Hopp, J. & Fuchs, A. The characteristics and neuronal substrate of saccadic eye movement plasticity. Prog. Neurobiol. 72, 27–53 (2004).

    Article  Google Scholar 

  37. Goedert, K. & Willingham, D. Patterns of interference in sequence learning and prism adaptation inconsistent with the consolidation hypothesis. Learn. Mem. 9, 279–292 (2002).

    Article  Google Scholar 

  38. Shadmehr, R. & Holcomb, H. Neural correlates of motor memory consolidation. Science 277, 821–825 (1997).

    Article  CAS  Google Scholar 

  39. Shadmehr, R. & Brashers-Krug, T. Functional stages in the formation of human long-term motor memory. J. Neurosci. 17, 409–419 (1997).

    Article  CAS  Google Scholar 

  40. Abeele, S. & Bock, O. Mechanisms for sensorimotor adaptation to rotated visual input. Exp. Brain Res. 139, 248–253 (2001).

    Article  CAS  Google Scholar 

  41. Muellbacher, W. et al. Early consolidation in human primary motor cortex. Nature 415, 640–644 (2002).

    Article  CAS  Google Scholar 

  42. Robertson, E. M., Theoret, H. & Pascual-Leone, A. Studies in cognition: the problems solved and created by transcranial magnetic stimulation. J. Cogn. Neurosci. 15, 948–960 (2003).

    Article  CAS  Google Scholar 

  43. Baraduc, P., Lang, N., Rothwell, J. & Wolpert, D. Consolidation of dynamic motor learning is not disrupted by rTMS of primary motor cortex. Curr. Biol. 14, 252–256 (2004).

    Article  CAS  Google Scholar 

  44. Tong, C., Wolpert, D. M. & Flanagan, J. R. Kinematics and dynamics are not represented independently in motor working memory: evidence from an interference study. J. Neurosci. 22, 1108–1113 (2002).

    Article  CAS  Google Scholar 

  45. Tong, C. & Flanagan, J. R. Task-specific internal models for kinematic transformations. J. Neurophysiol. 90, 578–585 (2003).

    Article  Google Scholar 

  46. Cunningham, H. & Welch, R. Multiple concurrent visual-motor mappings: implications for models of adaptation. J. Exp. Psychol. Hum. Percep. Perform. 20, 987–999 (1994).

    Article  CAS  Google Scholar 

  47. Seidler, R. Multiple motor learning experiences enhance motor adaptability. J. Cogn. Neurosci. 16, 65–73 (2004).

    Article  Google Scholar 

  48. Willingham, D. B., Salidis, J. & Gabrieli, J. D. Direct comparison of neural systems mediating conscious and unconscious skill learning. J. Neurophysiol. 88, 1451–1460 (2002).

    Article  Google Scholar 

  49. Mayr, U. Spatial attention and implicit sequence learning: evidence from independent learning of spatial and nonspatial sequences. J. Exp. Psychol. Learn. Mem. Cogn. 22, 350–364 (1996).

    Article  CAS  Google Scholar 

  50. Schmidtke, V. & Heuer, H. Task integration as a factor in secondary-task effects on sequence learning. Psychol. Res. 60, 53–71 (1997).

    Article  Google Scholar 

  51. Shin, J. & Ivry, R. Concurrent learning of temporal and spatial sequences. J. Exp. Psychol. Learn. Mem. Cogn. 28, 445–457 (2002).

    Article  Google Scholar 

  52. Aizenstein, H. J. et al. Regional brain activation during concurrent implicit and explicit sequence learning. Cereb. Cortex 14, 199–208 (2004).

    Article  Google Scholar 

  53. Sakai, K., Kitaguchi, K. & Hikosaka, O. Chunking during visuomotor sequence learning. Exp. Brain Res. 152, 229–242 (2003).

    Article  Google Scholar 

  54. Wright, D. L., Black, C. B., Immink, M. A., Brueckner, S. & Magnuson, C. Long-term motor programming improvements occur via concatenation of movement sequences during random but not during blocked practice. J. Mot. Behav. 36, 39–50 (2004).

    Article  Google Scholar 

  55. Shea, J. & Morgan, R. Contextual interference effects on the acquisition, retention, and transfer of a motor skill. J. Exp. Psychol. Hum. Learn. Mem. 5, 179–187 (1978).

    Article  Google Scholar 

  56. Simon, D. & Bjork, R. Metacognition in motor learning. J. Exp. Psychol. Learn. Mem. Cogn. 27, 907–912 (2001).

    Article  CAS  Google Scholar 

  57. Osu, R., Hirai, S., Yoshioka, T. & Kawato, M. Random presentation enables subjects to adapt to two opposing forces on the hand. Nature Neurosci. 7, 111–112 (2004).

    Article  CAS  Google Scholar 

  58. Misanin, J. R., Miller, R. R. & Lewis, D. J. Retrograde amnesia produced by electroconvulsive shock after reactivation of a consolidated memory trace. Science 160, 554–555 (1968).

    Article  CAS  Google Scholar 

  59. Nader, K., Schafe, G. & LeDoux, J. The labile nature of consolidation theory. Nature Rev. Neurosci. 1, 216–219 (2000).

    Article  CAS  Google Scholar 

  60. Sara, S. Strengthening the shaky trace through retrieval. Nature Rev. Neurosci. 1, 212–213 (2000).

    Article  CAS  Google Scholar 

  61. Karni, A. The acquisition of perceptual and motor skills: a memory system in the adult human cortex. Brain Res. Cogn. Brain Res. 5, 39–48 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to M. Glickstein and D. Press for helpful discussions, and to M. Casement and D. Cohen for their thoughtful comments on this manuscript. The National Alliance for Research in Schizophrenia and Depression (E.M.R.), the National Institutes of Health (A.P.L.) the Goldberg Foundation (A.P.L.) and the Wellcome Trust (R.C.M.) financially supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin M. Robertson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Encyclopedia of life Science

learning and memory

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robertson, E., Pascual-Leone, A. & Miall, R. Current concepts in procedural consolidation. Nat Rev Neurosci 5, 576–582 (2004). https://doi.org/10.1038/nrn1426

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1426

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing