Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in the early detection of Alzheimer's disease

Abstract

The combination of an aging population and the promise, possibly in the near future, of disease-modifying therapies have made the characterization of the early stages of Alzheimer's disease (AD) a topic of major research interest. In this article we review recent progress in our understanding of the evolution of early AD with particular reference to the symptomatic pre-dementia stage designated 'mild cognitive impairment', emphasizing work on the early cognitive profile and associated neuroimaging studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: The PAL test.
Figure 3: Comparable T1-weighted coronal MRI slices perpendicular to the long axis of the hippocampus showing a normal-sized hippocampus in a control person (total hippocampal volume uncorrected for head size 3,480 mm3 right and 3,164 mm3 left) and a smaller hippocampus in an MCI patient (total hippocampal volume uncorrected for head size 2,050 mm3 right and 2,580 mm3 left).
Figure 4: Cumulative gray matter loss in patients with MCI (red) and AD (blue) estimated using computational neuroanatomy methods (VBM).
Figure 5: Imaging from a 59-year-old male (MMSE = 29/30, CDR = 0.5) who met consensus criteria for MCI23.

Similar content being viewed by others

David S. Knopman, Helene Amieva, … David T. Jones

References

  1. Ritchie, K. & Lovestone, S. The dementias. Lancet 360, 1759–1766 (2002).

    Article  PubMed  Google Scholar 

  2. Terry, R.D. et al. Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Ann. Neurol. 30, 572–580 (1991).

    CAS  PubMed  Google Scholar 

  3. Hyman, B.T., Van Hoesen, G.W., Damasio, A.R. & Barnes, C.L. Alzheimer's disease: cell-specific pathology isolates the hippocampal formation. Science 225, 1168–1170 (1984).

    Article  CAS  PubMed  Google Scholar 

  4. Braak, H. & Braak, E. Neuropathological staging of Alzheimer-related changes. Acta Neuropathol. 82, 239–259 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Arriagada, P.V., Growdon, J.H., Hedley-Whyte, E.T. & Hyman, B.T. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease. Neurology 42, 631–639 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. De Lacoste, M.C. & White, C.L. The role of cortical connectivity in Alzheimer's disease pathogenesis: a review and model system. Neurobiol. Aging 14, 1–16 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Delacourte, A. et al. The biochemical pathway of neurofibrillary degeneration in aging and Alzheimer's disease. Neurology 52, 1158–1165 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Bondareff, W., Mountjoy, C.Q. & Roth, M. Loss of neurons of origin of the adrenergic projection to cerebral cortex (nucleus locus ceruleus) in senile dementia. Neurology 32, 164–168 (1982).

    Article  CAS  PubMed  Google Scholar 

  9. Mann, D.M.A., Yates, P.O. & Marcyniuk, B. A comparison of changes in the nucleus basalis and locus caeruleus in Alzheimer's disease. J. Neurol. Neurosurg. Psychiatry 47, 201–203 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Whitehouse, P.J. et al. Alzheimer's disease and senile dementia: loss of neurons in the basal forebrain. Science 215, 1237–1239 (1982).

    Article  CAS  PubMed  Google Scholar 

  11. Welsh, K.A., Butters, N., Hughes, J.P., Mohs, R.C. & Heyman, A. Detection and staging of dementia in Alzheimer's disease: use of the neuropsychological measures developed for the Consortium to Establish a Registry for Alzheimer's Disease. Arch. Neurol. 49, 448–452 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Galton, C.J., Patterson, K., Xuereb, J.H. & Hodges, J.R. Atypical and typical presentations of Alzheimer's disease: a clinical, neuropsychological, neuroimaging and pathological study of 13 cases. Brain 123, 484–498 (2000).

    Article  PubMed  Google Scholar 

  13. Perry, R.J. & Hodges, J.R. Attention and executive deficits in Alzheimer's disease: a critical review. Brain 122, 383–404 (1999).

    Article  PubMed  Google Scholar 

  14. Perry, R.J., Watson, P. & Hodges, J.R. The nature and staging of attention dysfunction in early (minimal and mild) Alzheimer's disease: relationship to episodic and semantic memory impairment. Neuropsychologia 38, 252–271 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Lambon-Ralph, M.A., Patterson, K., Graham, N., Dawson, K. & Hodges, J.R. Homogeneity and heterogeneity in mild cognitive impairment and Alzheimer's disease: a cross-sectional and longitudinal study of 55 cases. Brain 126, 2350–2362 (2003).

    Article  PubMed  Google Scholar 

  16. Petersen, R.C. Mild Cognitive Impairment (Oxford University Press, New York, 2003).

    Google Scholar 

  17. Ritchie, K. & Touchon, J. Mild cognitive impairment: conceptual basis and current nosological status. Lancet 355, 225–228 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. DeCarli, C. Mild cognitive impairment: prevalence, prognosis, aetiology, and treatment. Lancet Neurology 2, 15–21 (2003).

    Article  PubMed  Google Scholar 

  19. Grundman, M. et al. Mild cognitive impairment can be distinguished from Alzheimer disease and normal aging for clinical trials. Arch. Neurol. 61, 59–66 (2004).

    Article  PubMed  Google Scholar 

  20. Chertkow, H. Mild cognitive impairment. Curr. Opin. Neurol. 15, 401–407 (2002).

    Article  PubMed  Google Scholar 

  21. Folstein, M.F., Folstein, S.E. & McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12, 189–198 (1975).

    Article  CAS  PubMed  Google Scholar 

  22. Morris, J.C. et al. Mild cognitive impairment represents early-stage Alzheimer disease. Arch. Neurol. 58, 397–405 (2001).

    CAS  PubMed  Google Scholar 

  23. Petersen, R.C. et al. Practice parameter: early detection of dementia: mild cognitive impairment (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 56, 1133–1142 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Celsis, P. Age-related cognitive decline, mild cognitive impairment or preclinical Alzheimer's disease? Ann. Med. 32, 6–14 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Ritchie, K., Artero, S. & Touchon, J. Classification criteria for mild cognitive impairment—a population-based validation study. Neurology 56, 37–42 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Blennow, K. & Hampel, H. CSF markers for incipient Alzheimer's disease. Lancet Neurology 2, 605–613 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Fuld, P.A., Masur, D.M., Blau, A.D., Crystal, H. & Aronson, M.K. Object-memory evaluation for prospective detection of dementia in normal functioning elderly: predictive and normative data. J. Clin. Exp. Neuropsychol. 12, 520–528 (1990).

    Article  CAS  PubMed  Google Scholar 

  28. Linn, R.T. et al. The “preclinical phase” of probable Alzheimer's disease: a 13-year prospective study of the Framingham cohort. Arch. Neurol. 52, 485–490 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Masur, D.M., Sliwinski, M., Lipton, R.B., Blau, A.D. & Crystal, H.A. Neuropsychological prediction of dementia and the absence of dementia in healthy elderly persons. Neurology 44, 1427–1432 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Rubin, E.H. et al. A prospective study of cognitive function and onset of dementia in cognitively healthy elders. Arch. Neurol. 55, 395–401 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Chen, P. et al. Cognitive tests that best discriminate between presymptomatic AD and those who remain nondemented. Neurology 55, 1847–1853 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Orgogozo, J.M., Fabrigoule, C., Rouch, I., Amieva, H. & Dartigues, J.F. Prediction and early diagnosis of Alzheimer's disease with simple neuropsychological tests. Int. J. Geriatr. Psychopharmacol. 2, 60–67 (2000).

    Google Scholar 

  33. Fabrigoule, C. et al. Cognitive process in preclinical phase of dementia. Brain 121, 135–141 (1998).

    Article  PubMed  Google Scholar 

  34. Fox, N.C., Warrington, E.K., Seiffer, A.L., Agnew, S.K. & Rossor, M.N. Presymptomatic cognitive deficits in individuals at risk of familial Alzhiemer's disease: a longitudinal prospective study. Brain 121, 1631–1639 (1998).

    Article  PubMed  Google Scholar 

  35. Tierney, M.C. et al. Prediction of probable Alzheimer's disease in memory-impaired patients—a prospective longitudinal study. Neurology 46, 661–665 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Albert, M.S., Moss, M.B., Tanzi, R. & Jones, K. Preclinical prediction of AD using neuropsychological tests. J. Int. Neuropsychol. Soc. 7, 631–639 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Devanand, D.P., Folz, M., Gorlyn, M., Moeller, J.R. & Stern, Y. Questionable dementia: clinical course and predictors of outcome. J. Am. Geriatr. Soc. 45, 321–328 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Flicker, C., Feris, S. & Reisberg, B. Mild cognitive impairment in the elderly: predictors of dementia. Neurology 41, 1006–1009 (1991).

    Article  CAS  PubMed  Google Scholar 

  39. Thompson, S.A., Graham, K.S., Patterson, K., Sahakian, B.J. & Hodges, J.R. Is knowledge of famous people disproportionately impaired in patients with early Alzheimer's disease? Neuropsychology 16, 344–358 (2002).

    Article  PubMed  Google Scholar 

  40. Delazer, M., Semenza, C., Reiner, M., Hofer, R. & Benke, T. Anomia for people names in DAT—evidence for semantic and post semantic impairments. Neuropsychologia 41, 1593–1598 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Estevez-Gonzalez, A. et al. Semantic knowledge of famous people in mild cognitive impairment and progression to Alzheimer's disease. Dement. Geriatr. Cogn. Disord. 17, 188–195 (2004).

    Article  PubMed  Google Scholar 

  42. Swainson, R. et al. Early detection and differential diagnosis of Alzheimer's disease and depression with neuropsychological tasks. Dement. Geriatr. Cogn. Disord. 12, 265–280 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Blackwell, A.D. et al. Detecting dementia: novel neuropsychological markers of pre-clinical Alzheimer's disease. Dement. Geriatr. Cogn. Disord. 17, 42–48 (2004).

    Article  PubMed  Google Scholar 

  44. Fowler, K.S., Saling, M.M., Conway, E.L., Semple, J.M. & Louis, W.J. Computerized delayed matching to sample and paired associate performance in the early detection of dementia. Appl. Neuropsychol. 2, 72–78 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Fowler, K.S., Saling, M.M., Conway, E.L., Semple, J.M. & Louis, W.J. Computerized neuropsychological tests in the early detection of dementia: prospective findings. J. Int. Neuropsychol. Soc. 3, 139–146 (1997).

    CAS  PubMed  Google Scholar 

  46. Lee, A.C.H., Rahman, S., Hodges, J.R., Sahakian, B. & Graham, K.S. Associative and recognition memory for novel objects in dementia: implications for diagnosis. Eur. J. Neurosci. 18, 1660–1670 (2003).

    Article  PubMed  Google Scholar 

  47. Perry, R.J. & Hodges, J. Attentional control and the time course of attention in mild cognitive impairment measurement of attentional dwell time. Eur. J. Neurosci. 18, 221–226 (2003).

    Article  PubMed  Google Scholar 

  48. Darby, D., Maruff, P., Collie, A. & McStephen, M. Mild cognitive impairment can be detected by multiple assessments in a single day. Neurology 59, 1042–1046 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Dwolatzky, T. et al. Validity of a novel computerized cognitive battery for mild cognitive impairment. BMC Geriatr. 3, 4 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Du, A. et al. Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer's disease. J. Neurol. Neurosurg. Psychiatry 71, 441–447 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Jack, C.R.J. et al. Antemortem MRI findings correlate with hippocampal neuropathology in typical aging and dementia. Neurology 58, 750–757 (2002).

    Article  PubMed  Google Scholar 

  52. Jack, C.R.J. et al. Medial temporal atrophy on MRI in normal ageing and very mild Alzheimer's disease. Neurology 49, 786–794 (1997).

    Article  PubMed  Google Scholar 

  53. Killiany, R.J. et al. Use of structural magnetic resonance imaging to predict who will get Alzheimer's disease. Ann. Neurol. 47, 430–439 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Scheltens, P., Fox, N., Barkhof, F. & De Carli, C. Structural magnetic resonance imaging in the practical assessment of dementia: beyond exclusion. Lancet Neurol. 1, 13–21 (2002).

    Article  PubMed  Google Scholar 

  55. Killiany, R.J. et al. MRI measures of entorhinal cortex vs hippocampus in preclinical AD. Neurology 58, 1188–1196 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Jack, C.R., Jr. et al. Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology 52, 1397–1403 (1999).

    Article  PubMed  Google Scholar 

  57. Visser, P.J. et al. Medial temporal lobe atrophy and memory dysfunction as predictors for dementia in subjects with mild cognitive impairment. J. Neurol. 246, 477–485 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Visser, P.J., Verhey, F.R., Hofman, P.A., Scheltens, P. & Jolles, J. Medial temporal lobe atrophy predicts Alzheimer's disease in patients with minor cognitive impairment. J. Neurol. Neurosurg. Psychiatry 72, 491–497 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Dickerson, B.C. et al. MRI-derived entorhinal and hippocampal atrophy in incipient and very mild Alzheimer's disease. Neurobiol. Aging 22, 747–754 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Braak, H. & Braak, E. Evolution of the neuropathology of Alzheimer's disease. Acta Neurolog. Scand. 165, 3–12 (1996).

    Article  CAS  Google Scholar 

  61. Xu, Y. et al. Usefulness of MRI measures of entorhinal cortex versus hippocampus in AD. Neurology 54, 1760–1767 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Goncharova, I.I., Dickerson, B.C., Stoub, T.R. & deToledo-Morrell, L. MRI of human entorhinal cortex: a reliable protocol for volumetric measurement. Neurobiol. Aging 22, 737–745 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Scheltens, P. et al. Atrophy of medial temporal lobes on MRI in “probable” Alzheimer's disease and normal ageing: diagnostic value and neuropsychological correlates. J. Neurol. Neurosurg. Psychiatry 55, 967–972 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Galton, C.J. et al. The temporal lobe rating scale: application to Alzheimer's disease and frontotemporal dementia. J. Neurol. Neurosurg. Psychiatry 70, 165–173 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. De Leon, M.J. et al. Measurement of medial temporal lobe atrophy in diagnosis of Alzheimer's disease. Lancet 341, 125–126 (1993).

    Article  CAS  PubMed  Google Scholar 

  66. De Leon, M.J. et al. The radiologic prediction of Alzheimer disease: the atrophic hippocampal formation. Am. J. Neuroradiol. 14, 897–906 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Korf, E.S.C., Wahlund, L.O., Visser, P.J. & Scheltens, P. Medial temporal lobe atrophy on MRI predicts dementia in subjects with mild cognitive impairment. Neurology (2004), in the press.

  68. Graham, J.E. et al. Prevalence and severity of cognitive impairment with and without dementia in an elderly population. Lancet 349, 1793–1796 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Di Carlo, A. et al. Cognitive impairment without dementia in older people: prevalence, vascular risk factors, impact on disability. The Italian Longitudinal Study on Ageing. J. Am. Geriatr. Soc. 48, 775–782 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Petersen, R.C. et al. Apolipoprotein E status as a predictor of the development of Alzheimer's disease in memory-impaired individuals. JAMA 273, 1274–1278 (1995).

    Article  CAS  PubMed  Google Scholar 

  71. Fox, N.C., Freeborough, P.A. & Rossor, M.N. Visualisation and quantification of rates of atrophy in Alzheimer's disease. Lancet 348, 94–97 (1996).

    Article  CAS  PubMed  Google Scholar 

  72. Scahill, R.I. et al. A longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging. Arch. Neurol. 60, 989–994 (2003).

    Article  PubMed  Google Scholar 

  73. Schott, J.M. et al. Assessing the onset of structural change in familial Alzheimer's disease. Ann. Neurol. 53, 181–188 (2003).

    Article  PubMed  Google Scholar 

  74. Jack, C.R.J. et al. Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD. Neurology 62, 591–600 (2004).

    Article  PubMed  Google Scholar 

  75. Rombouts, S.A., Barkhof, F., Witter, M.P. & Scheltens, P. Unbiased whole-brain analysis of gray matter loss in Alzheimer's disease. Neurosci. Lett. 285, 231–233 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Chetelat, G. et al. Mapping gray matter loss with voxel-based morphometry in mild cognitive impairment. Neuroreport 13, 1939–1943 (2002).

    Article  PubMed  Google Scholar 

  77. Van der Flier, W.M. et al. Cognitive decline in AD and mild cognitive impairment is associated with global brain damage. Neurology 59, 874–879 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Wolf, H. et al. A critical discussion of the role of neuroimaging in mild cognitive impairment. Acta Neurolog. Scand. Suppl. 179, 52–76 (2003).

    Article  Google Scholar 

  79. Fukuyama, H. et al. Coronal reconstruction images of glucose metabolism in Alzheimer's disease. J. Neurol. Sci. 106, 128–134 (1991).

    Article  CAS  PubMed  Google Scholar 

  80. Ishii, K. et al. Relatively preserved hippocampal glucose metabolism in mild Alzheimer's disease. Dement. Geriatr. Cogn. Disord. 9, 317–322 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. Ishii, K., Kitagaki, H., Kono, M. & Mori, E. Decreased medial temporal oxygen metabolism in Alzheimer's diseasse shown by PET. J. Nucl. Med. 37, 1159–1165 (1996).

    CAS  PubMed  Google Scholar 

  82. Jagust, W.J. et al. The cortical topography of temporal lobe hypometabolism in early Alzheimer's disease. Brain Res. 629, 189–198 (1993).

    Article  CAS  PubMed  Google Scholar 

  83. Ouchi, Y. et al. Altered glucose metabolism in the hippocampal head in memory impairment. Neurology 136–142 (1998).

  84. Minoshima, S. et al. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease. Ann. Neurol. 42, 85–94 (1997).

    Article  CAS  PubMed  Google Scholar 

  85. Kogure, D. et al. Longitudinal evaluation of early Alzheimer's disease using brain perfusion SPECT. J. Nucl. Med. 41, 1155–1162 (2000).

    CAS  PubMed  Google Scholar 

  86. Johnson, K.A. et al. Preclinical prediction of Alzheimer's disease using SPECT. Neurology 50, 1563–1571 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. Huang, C., Wahlund, L.O., Svensson, L., Winblad, B. & Julin, P. Cingulate cortex hypoperfusion predicts Alzheimer's disease in mild cognitive impairment. BMC Neurol. 2, 9 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Nestor, P.J., Fryer, T.D., Ikeda, M. & Hodges, J.R. Retrosplenial cortex (BA29/30) hypometabolism in mild cognitive impairment (prodromal Alzheimer's disease). Eur. J. Neurosci. 18, 2663–2667 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Chetelat, G. et al. Mild cognitive impairment. Can FDG-PET predict who is to rapidly convert to Alzheimer's disease? Neurology 60, 1374–1377 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Drzezga, A. et al. Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer's disease: a PET follow-up study. Eur. J. Nucl. Med. Mol. Imaging 30, 1104–1113 (2003).

    Article  PubMed  Google Scholar 

  91. Arnaiz, E. et al. Impaired cerebral glucose metabolism and cognitive functioning predict deterioration in mild cognitive impairment. Neuroreport 12, 851–855 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. De Santi, S. et al. Hippocampal formation glucose metabolism and volume losses in MCI and AD. Neurobiol. Aging 22, 529–539 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Nestor, P.J., Fryer, T.D., Smielewski, P. & Hodges, J.R. Limbic hypometabolism in Alzheimer's disease and mild cognitive impairment. Ann. Neurol. 54, 343–351 (2003).

    Article  PubMed  Google Scholar 

  94. Kadekaro, M., Crane, A.M. & Sokoloff, L. Differential effects of electrical stimulation of sciatic nerve on metabolic activity in spinal cord and dorsal root ganglion in the rat. Proc. Natl. Acad. Sci. USA 82, 6010–6013 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Minoshima, S., Cross, D.J., Foster, N.L., Henry, T.R. & Kuhl, D.E. Discordance between traditional pathologic and energy metabolic changes in very early Alzheimer's disease. Pathophysiological implications. Ann. NY Acad. Sci. 893, 350–352 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. Scahill, R.I., Schott, J.M., Stevens, J.M., Rossor, M.N. & Fox, N.C. Mapping the evolution of regional atrophy in Alzheimer's disease: unbiased analysis of fluid-registered serial MRI. Proc. Natl. Acad. Sci. USA 99, 4703–4707 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chetelat, G. et al. Dissociating atrophy and hypometabolism impact on episodic memory in mild cognitive impairment. Brain 126, 1955–1967 (2003).

    Article  PubMed  Google Scholar 

  98. Cabeza, R. & Nyberg, L. Imaging cognition II: an empirical review of 275 PET and fMRI studies. J. Cogn. Neurosci. 12, 1–47 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Francis, P.T., Palmer, A.M., Snape, M. & Wilcock, G.K. The cholinergic hypothesis of Alzheimer's disease: a review of progress. J. Neurol. Neurosurg. Psychiatry 66, 137–147 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kuhl, D.E. et al. In vivo mapping of cerebral acetylcholinesterase activity in aging and Alzheimer's disease. Neurology 52, 691–699 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. Rinne, J.O. et al. Brain acetylcholinesterase activity in mild cognitive impairment and early Alzheimer's disease. J. Neurol. Neurosurg. Psychiatry 74, 113–115 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Tiraboschi, P. et al. The decline in synapses and cholinergic activity is asynchronous in Alzheimer's disease. Neurology 55, 1278–1283 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. DeKosky, S.T. et al. Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann. Neurol. 51, 145–155 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Sarter, M., Bruno, J.P. & Givens, B. Attentional functions of cortical cholinergic inputs: what does it mean for learning and memory? Neurobiol. Learn. Mem. 80, 245–256 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Backman, L. et al. Brain regions associated with episodic retrieval in normal aging and Alzheimer's disease. Neurology 52, 1861–1870 (1999).

    Article  CAS  PubMed  Google Scholar 

  106. Becker, J.T. et al. Compensatory reallocation of brain resources supporting verbal episodic memory in Alzheimer's disease. Neurology 46, 692–700 (1996).

    Article  CAS  PubMed  Google Scholar 

  107. Klunk, W.E. et al. Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B. Ann. Neurol. 55, 306–319 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R Hodges.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nestor, P., Scheltens, P. & Hodges, J. Advances in the early detection of Alzheimer's disease. Nat Med 10 (Suppl 7), S34–S41 (2004). https://doi.org/10.1038/nrn1433

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1433

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing